Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99634
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝佳倩zh_TW
dc.contributor.advisorChia-Chien Hsiehen
dc.contributor.author鄭晨柔zh_TW
dc.contributor.authorChen- Jou Chengen
dc.date.accessioned2025-09-17T16:12:59Z-
dc.date.available2025-09-18-
dc.date.copyright2025-09-17-
dc.date.issued2025-
dc.date.submitted2025-08-08-
dc.identifier.citationAkram, Muhammad, et al. "Awareness and current knowledge of breast cancer." Biological research 50 (2017): 1-23.
Ames, B. N., Shigenaga, M. K., & Hagen, T. M. (1993). Oxidants, antioxidants, and the degenerative diseases of aging. Proceedings of the National Academy of Sciences, 90(17), 7915-7922.
Amin A, Alkaabi A, Al-Falasi S, Daoud SA. Chemopreventive activities of Trigonella foenum graecum (Fenugreek) against breast cancer. Cell Biol Int. 2005 Aug;29(8):687-94. doi: 10.1016/j.cellbi.2005.04.004. PMID: 15936223.
Al-Hilli Z, Wilkerson A. Breast Surgery: Management of Postoperative Complications Following Operations for Breast Cancer. Surg Clin North Am. 2021 Oct;101(5):845-863. doi: 10.1016/j.suc.2021.06.014. Epub 2021 Aug 7. PMID: 34537147.
Averill-Bates DA. The antioxidant glutathione. Vitam Horm. 2023;121:109-141. doi: 10.1016/bs.vh.2022.09.002. Epub 2023 Jan 13. PMID: 36707132.
American cancer society, 2024. Types of Breast Cancer. Retrieved from https://www.cancer.org/cancer/types/breast-cancer/about/types-of-breast-cancer.html
Beauloye V, Willems B, de Coninck V, Frank SJ, Edery M, Thissen JP. Impairment of liver GH receptor signaling by fasting. Endocrinology. 2002 Mar;143(3):792-800. doi: 10.1210/endo.143.3.8692. PMID: 11861499.
Beerman I, Bhattacharya D, Zandi S, Sigvardsson M, Weissman IL, Bryder D, Rossi DJ. Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion. Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5465-70. doi: 10.1073/pnas.1000834107. Epub 2010 Mar 18. PMID: 20304793; PMCID: PMC2851806.
Bianchi G, Martella R, Ravera S, Marini C, Capitanio S, Orengo A, Emionite L, Lavarello C, Amaro A, Petretto A, Pfeffer U, Sambuceti G, Pistoia V, Raffaghello L, Longo VD. Fasting induces anti-Warburg effect that increases respiration but reduces ATP-synthesis to promote apoptosis in colon cancer models. Oncotarget. 2015 May 20;6(14):11806-19. doi: 10.18632/oncotarget.3688. PMID: 25909219; PMCID: PMC4494906.
Bauersfeld SP, Kessler CS, Wischnewsky M, Jaensch A, Steckhan N, Stange R, Kunz B, Brückner B, Sehouli J, Michalsen A. The effects of short-term fasting on quality of life and tolerance to chemotherapy in patients with breast and ovarian cancer: a randomized cross-over pilot study. BMC Cancer. 2018 Apr 27;18(1):476. doi: 10.1186/s12885-018-4353-2. PMID: 29699509; PMCID: PMC5921787.
Basu, Tapan K., and Anchalee Srichamroen. "Health Benefits of Fenugreek (Trigonella foenum-graecum leguminosse)." Bioactive foods in promoting health. Academic Press, 2010. 425-435.
Brandhorst S, Choi IY, Wei M, Cheng CW, Sedrakyan S, Navarrete G, Dubeau L, Yap LP, Park R, Vinciguerra M, Di Biase S, Mirzaei H, Mirisola MG, Childress P, Ji L, Groshen S, Penna F, Odetti P, Perin L, Conti PS, Ikeno Y, Kennedy BK, Cohen P, Morgan TE, Dorff TB, Longo VD. A Periodic Diet that Mimics Fasting Promotes Multi-System Regeneration, Enhanced Cognitive Performance, and Healthspan. Cell Metab. 2015 Jul 7;22(1):86-99. doi: 10.1016/j.cmet.2015.05.012. Epub 2015 Jun 18. PMID: 26094889; PMCID: PMC4509734.
Bugajova M, Raudenska M, Hanelova K, Navratil J, Gumulec J, Petrlak F, Vicar T, Hrachovinova S, Masarik M, Kalfert D, Grega M, Plzak J, Betka J, Balvan J. Glutamine and serum starvation alters the ATP production, oxidative stress, and abundance of mitochondrial RNAs in extracellular vesicles produced by cancer cells. Sci Rep. 2024 Oct 28;14(1):25815. doi: 10.1038/s41598-024-73943-2. PMID: 39468126; PMCID: PMC11519472. Breast Cancer: A Literature Review on Prevention, Treatment and Recurrence.
Cam A, de Mejia EG. RGD-peptide lunasin inhibits Akt-mediated NF-κB activation in human macrophages through interaction with the αVβ3 integrin. Mol Nutr Food Res. 2012 Oct;56(10):1569-81. doi: 10.1002/mnfr.201200301. Epub 2012 Sep 4. PMID: 22945510.
Cantley LC, Neel BG. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4240-5. doi: 10.1073/pnas.96.8.4240. PMID: 10200246; PMCID: PMC33561.
Cao X, Fang L, Gibbs S, Huang Y, Dai Z, Wen P, Zheng X, Sadee W, Sun D. Glucose uptake inhibitor sensitizes cancer cells to daunorubicin and overcomes drug resistance in hypoxia. Cancer Chemother Pharmacol. 2007 Mar;59(4):495-505. doi: 10.1007/s00280-006-0291-9. Epub 2006 Aug 12. PMID: 16906425.
Charafe-Jauffret, E., Ginestier, C., Iovino, F., Wicinski, J., Cervera, N., Finetti, P., ... & Wicha, M. S. (2009). Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer research, 69(4), 1302-1313.
Cheng CW, Adams GB, Perin L, Wei M, Zhou X, Lam BS, Da Sacco S, Mirisola M, Quinn DI, Dorff TB, Kopchick JJ, Longo VD. Prolonged fasting reduces IGF-1/PKA to promote hematopoietic-stem-cell-based regeneration and reverse immunosuppression. Cell Stem Cell. 2014 Jun 5;14(6):810-23. doi: 10.1016/j.stem.2014.04.014. Erratum in: Cell Stem Cell. 2016 Feb 4;18(2):291-2. PMID: 24905167; PMCID: PMC4102383.
Chuba PJ, Hamre MR, Yap J, Severson RK, Lucas D, Shamsa F, Aref A. Bilateral risk for subsequent breast cancer after lobular carcinoma-in-situ: analysis of surveillance, epidemiology, and end results data. J Clin Oncol. 2005 Aug 20;23(24):5534-41. doi: 10.1200/JCO.2005.04.038. PMID: 16110014.
Cienfuegos S, Gabel K, Kalam F, Ezpeleta M, Wiseman E, Pavlou V, Lin S, Oliveira ML, Varady KA. Effects of 4- and 6-h Time-Restricted Feeding on Weight and Cardiometabolic Health: A Randomized Controlled Trial in Adults with Obesity. Cell Metab. 2020 Sep 1;32(3):366-378.e3. doi: 10.1016/j.cmet.2020.06.018. Epub 2020 Jul 15. PMID: 32673591; PMCID: PMC9407646.
Clifton KK, Ma CX, Fontana L, Peterson LL. Intermittent fasting in the prevention and treatment of cancer. CA Cancer J Clin. 2021 Nov;71(6):527-546. doi: 10.3322/caac.21694. Epub 2021 Aug 12. PMID: 34383300.
Collaborative Group on Hormonal Factors in Breast Cancer. Breast cancer and breastfeeding: collaborative reanalysis of individual data from 47 epidemiological studies in 30 countries, including 50302 women with breast cancer and 96973 women without the disease. Lancet. 2002 Jul 20;360(9328):187-95.
Cruz-Huerta E, Fernández-Tomé S, Arques MC, Amigo L, Recio I, Clemente A, Hernández-Ledesma B. The protective role of the Bowman-Birk protease inhibitor in soybean lunasin digestion: the effect of released peptides on colon cancer growth. Food Funct. 2015 Aug;6(8):2626-35. doi: 10.1039/c5fo00454c. Epub 2015 Jul 1. PMID: 26132418.
Collins N, Han SJ, Enamorado M, Link VM, Huang B, Moseman EA, Kishton RJ, Shannon JP, Dixit D, Schwab SR, Hickman HD, Restifo NP, McGavern DB, Schwartzberg PL, Belkaid Y. The Bone Marrow Protects and Optimizes Immunological Memory during Dietary Restriction. Cell. 2019 Aug 22;178(5):1088-1101.e15. doi: 10.1016/j.cell.2019.07.049.
Cho Y, Hong N, Kim KW, Cho SJ, Lee M, Lee YH, Lee YH, Kang ES, Cha BS, Lee BW. The Effectiveness of Intermittent Fasting to Reduce Body Mass Index and Glucose Metabolism: A Systematic Review and Meta-Analysis. J Clin Med. 2019 Oct 9;8(10):1645. doi: 10.3390/jcm8101645. PMID: 31601019; PMCID: PMC6832593.
Campbell EK, Campbell TM, Culakova E, Blanchard LM, Wixom N, Guido J, Fetten J, Huston A, Shayne M, Janelsins M, Mustian K, Moore RG, Peppone LJ. A Whole Food, Plant-Based Randomized Controlled Trial in Metastatic Breast Cancer: Feasibility, Nutrient, and Patient-Reported Outcomes. Res Sq [Preprint]. 2023 Nov 21:rs.3.rs-3606685. doi: 10.21203/rs.3.rs-3606685/v1. Update in: Breast Cancer Res Treat. 2024 Jun;205(2):257-266. doi: 10.1007/s10549-024-07266-1. PMID: 38045318; PMCID: PMC10690314.
Crowley LC, Marfell BJ, Scott AP, Waterhouse NJ. Quantitation of Apoptosis and Necrosis by Annexin V Binding, Propidium Iodide Uptake, and Flow Cytometry. Cold Spring Harb Protoc. 2016 Nov 1;2016(11). doi: 10.1101/pdb.prot087288. PMID: 27803250.
Comşa Ş, Cîmpean AM, Raica M. The Story of MCF-7 Breast Cancer Cell Line: 40 years of Experience in Research. Anticancer Res. 2015 Jun;35(6):3147-54. PMID: 26026074.
de Cabo R, Mattson MP. Effects of Intermittent Fasting on Health, Aging, and Disease. N Engl J Med. 2019 Dec 26;381(26):2541-2551. doi: 10.1056/NEJMra1905136. PMID: 31881139.
De Cicco P, Catani MV, Gasperi V, Sibilano M, Quaglietta M, Savini I. Nutrition and Breast Cancer: A Literature Review on Prevention, Treatment and Recurrence. Nutrients. 2019 Jul 3;11(7):1514. doi: 10.3390/nu11071514. PMID: 31277273; PMCID: PMC6682953.
de Groot, Stefanie, et al. "Effects of short-term fasting on cancer treatment." Journal of Experimental & Clinical Cancer Research 38 (2019): 1-14.
de Mejia EG, Dia VP. Lunasin and lunasin-like peptides inhibit inflammation through suppression of NF-kappaB pathway in the macrophage. Peptides. 2009 Dec;30(12):2388-98. doi: 10.1016/j.peptides.2009.08.005. Epub 2009 Aug 12. PMID: 19682518.
de Mejia EG, Wang W, Dia VP. Lunasin, with an arginine-glycine-aspartic acid motif, causes apoptosis to L1210 leukemia cells by activation of caspase-3. Mol Nutr Food Res. 2010 Mar;54(3):406-14. doi: 10.1002/mnfr.200900073. PMID: 19937853.
Dia VP, Mejia EG. Lunasin promotes apoptosis in human colon cancer cells by mitochondrial pathway activation and induction of nuclear clusterin expression. Cancer Lett. 2010 Sep 1;295(1):44-53. doi: 10.1016/j.canlet.2010.02.010. Epub 2010 Mar 4. PMID: 20206442.
Dia VP, Torres S, De Lumen BO, Erdman JW Jr, De Mejia EG. Presence of lunasin in plasma of men after soy protein consumption. J Agric Food Chem. 2009 Feb 25;57(4):1260-6. doi: 10.1021/jf803303k. PMID: 19199603.
Dia VP, Gonzalez de Mejia E. Lunasin induces apoptosis and modifies the expression of genes associated with extracellular matrix and cell adhesion in human metastatic colon cancer cells. Mol Nutr Food Res. 2011 Apr;55(4):623-34. doi: 10.1002/mnfr.201000419. Epub 2011 Jan 5. PMID: 21462330.
Delconte RB, Owyong M, Santosa EK, Srpan K, Sheppard S, McGuire TJ, Abbasi A, Diaz-Salazar C, Chun J, Rogatsky I, Hsu KC, Jordan S, Merad M, Sun JC. Fasting reshapes tissue-specific niches to improve NK cell-mediated anti-tumor immunity. Immunity. 2024 Aug 13;57(8):1923-1938.e7. doi: 10.1016/j.immuni.2024.05.021. Epub 2024 Jun 14. PMID: 38878769; PMCID: PMC11684419.
Devlin MJ. Why does starvation make bones fat? Am J Hum Biol. 2011 Sep Oct;23(5):577-85. doi: 10.1002/ajhb.21202.
Das M, Ellies LG, Kumar D, Sauceda C, Oberg A, Gross E, Mandt T, Newton IG, Kaur M, Sears DD, Webster NJG. Time-restricted feeding normalizes hyperinsulinemia to inhibit breast cancer in obese postmenopausal mouse models. Nat Commun. 2021 Jan 25;12(1):565. doi: 10.1038/s41467-020-20743-7. PMID: 33495474; PMCID: PMC7835248.
Elsheikh SE, Green AR, Rakha EA, Powe DG, Ahmed RA, Collins HM, Soria D, Garibaldi JM, Paish CE, Ammar AA, Grainge MJ, Ball GR, Abdelghany MK, Martinez-Pomares L, Heery DM, Ellis IO. Global histone modifications in breast cancer correlate with tumor phenotypes, prognostic factors, and patient outcome. Cancer Res. 2009 May 1;69(9):3802-9. doi: 10.1158/0008-5472.CAN-08-3907. Epub 2009 Apr 14. PMID: 19366799.
Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, Gottfried E, Schwarz S, Rothe G, Hoves S, Renner K, Timischl B, Mackensen A, Kunz-Schughart L, Andreesen R, Krause SW, Kreutz M. Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood. 2007 May 1;109(9):3812-9. doi: 10.1182/blood-2006-07-035972. Epub 2007 Jan 25. PMID: 17255361.
Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, Bonaldi T, Haydon C, Ropero S, Petrie K, Iyer NG, Pérez-Rosado A, Calvo E, Lopez JA, Cano A, Calasanz MJ, Colomer D, Piris MA, Ahn N, Imhof A, Caldas C, Jenuwein T, Esteller M. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet. 2005 Apr;37(4):391-400. doi: 10.1038/ng1531. Epub 2005 Mar 13. PMID: 15765097.
Ferro Y, Maurotti S, Tarsitano MG, Lodari O, Pujia R, Mazza E, Lascala L, Russo R, Pujia A, Montalcini T. Therapeutic Fasting in Reducing Chemotherapy Side Effects in Cancer Patients: A Systematic Review and Meta-Analysis. Nutrients. 2023 Jun 8;15(12):2666. doi: 10.3390/nu15122666. PMID: 37375570; PMCID: PMC10303481.
Farvid MS, Barnett JB, Spence ND. Fruit and vegetable consumption and incident breast cancer: a systematic review and meta-analysis of prospective studies. Br J Cancer. 2021 Jul;125(2):284-298. doi: 10.1038/s41416-021-01373-2. Epub 2021 May 18. PMID: 34006925; PMCID: PMC8292326.
Fernández-Tomé S, Hernández-Ledesma B. Current state of art after twenty years of the discovery of bioactive peptide lunasin. Food Res Int. 2019 Feb;116:71-78. doi: 10.1016/j.foodres.2018.12.029. Epub 2018 Dec 22. PMID: 30716999.
FDA https://www.federalregister.gov/documents/2017/10/31/2017-23629/food-labeling-health-claims-soy-protein-and-coronary-heart-disease?elq=6f14c7d1ff4f4d4c80117715f3182429&elqCampaignId=1416&elqTrackId=fc4d051b482b4e0c93074cf7ab9da370&elqaid=2065&elqat=1&utm_campaign=CFSANCU_01122018_SoyProteinCommentPeriod&utm_medium=email&utm_source=chatgpt.com
Galluzzi, L., Buque, A., Kepp, O., Zitvogel, L., & Kroemer, G. (2015). Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer cell, 28(6), 690-714.
Galvez AF, de Lumen BO. A soybean cDNA encoding a chromatin-binding peptide inhibits mitosis of mammalian cells. Nat Biotechnol. 1999 May;17(5):495-500. doi: 10.1038/8676. PMID: 10331812.
Galvez AF, Chen N, Macasieb J, de Lumen BO. Chemopreventive property of a soybean peptide (lunasin) that binds to deacetylated histones and inhibits acetylation. Cancer Res. 2001 Oct 15;61(20):7473-8. PMID: 11606382.
González-Palacios Torres C, Barrios-Rodríguez R, Muñoz-Bravo C, Toledo E,
Grabinski, Victoria F., and Otis W. Brawley. "Disparities in breast cancer." Obstetrics and Gynecology Clinics 49.1 (2022): 149-165.
Gradishar WJ, Moran MS, Abraham J, Aft R, Agnese D, Allison KH, Anderson B, Burstein HJ, Chew H, Dang C, Elias AD, Giordano SH, Goetz MP, Goldstein LJ, Hurvitz SA, Isakoff SJ, Jankowitz RC, Javid SH, Krishnamurthy J, Leitch M, Lyons J, Mortimer J, Patel SA, Pierce LJ, Rosenberger LH, Rugo HS, Sitapati A, Smith KL, Smith ML, Soliman H, Stringer-Reasor EM, Telli ML, Ward JH, Wisinski KB, Young JS, Burns J, Kumar R. Breast Cancer, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2022 Jun;20(6):691-722. doi: 10.6004/jnccn.2022.0030. PMID: 35714673.
Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov. 2013 Dec;12(12):931-47. doi: 10.1038/nrd4002. PMID: 24287781.
Ghareghomi S, Habibi-Rezaei M, Arese M, Saso L, Moosavi-Movahedi AA. Nrf2 Modulation in Breast Cancer. Biomedicines. 2022 Oct 21;10(10):2668. doi: 10.3390/biomedicines10102668. PMID: 36289931; PMCID: PMC9599257.
Hardt L, Mahamat-Saleh Y, Aune D, Schlesinger S. Plant-Based Diets and Cancer Prognosis: a Review of Recent Research. Curr Nutr Rep. 2022 Dec;11(4):695-716. doi: 10.1007/s13668-022-00440-1. Epub 2022 Sep 23. PMID: 36138327; PMCID: PMC9750928
Hashimoto, H., Vertino, P. M., & Cheng, X. (2010). Molecular coupling of DNA methylation and histone methylation. Epigenomics, 2(5), 657-669.
Hernández-Ledesma B, Hsieh CC, de Lumen BO. Lunasin, a novel seed peptide for cancer prevention. Peptides. 2009 Feb;30(2):426-30. doi: 10.1016/j.peptides.2008.11.002. Epub 2008 Nov 13. PMID: 19056440.
Hernández-Ledesma B, Hsieh CC, de Lumen BO. Antioxidant and anti-inflammatory properties of cancer preventive peptide lunasin in RAW 264.7 macrophages. Biochem Biophys Res Commun. 2009 Dec 18;390(3):803-8. doi: 10.1016/j.bbrc.2009.10.053. Epub 2009 Oct 15. PMID: 19836349.
Hernández-Ledesma B, Hsieh CC, de Lumen BO. Relationship between lunasin's sequence and its inhibitory activity of histones H3 and H4 acetylation. Mol Nutr Food Res. 2011 Jul;55(7):989-98. doi: 10.1002/mnfr.201000632. Epub 2011 May 25. PMID: 21618425.
Huang W, Li X, Song H, Yin Y, Wang H. Verification of fasting-mimicking diet to assist monotherapy of human cancer-bearing models. Biochem Pharmacol. 2023 Sep;215:115699. doi: 10.1016/j.bcp.2023.115699. Epub 2023 Jul 22. PMID: 37482198.
Hsieh CC, Wu CH, Peng SH, Chang CH. Seed-derived peptide lunasin suppressed breast cancer cell growth by regulating inflammatory mediators, aromatase, and estrogen receptors. Food Nutr Res. 2023 Jan 26;67. doi: 10.29219/fnr.v67.8991. PMID: 36794014; PMCID: PMC9899045.
Hsieh CC, Wang CH, Huang YS. Lunasin Attenuates Obesity-Associated Metastasis of 4T1 Breast Cancer Cell through Anti-Inflammatory Property. Int J Mol Sci. 2016 Dec 15;17(12):2109. doi: 10.3390/ijms17122109. PMID: 27983683; PMCID: PMC5187909.
Hsieh CC, Martínez-Villaluenga C, de Lumen BO, Hernández-Ledesma B. Updating the research on the chemopreventive and therapeutic role of the peptide lunasin. J Sci Food Agric. 2018 Apr;98(6):2070-2079. doi: 10.1002/jsfa.8719. Epub 2017 Nov 1. PMID: 28990666.
Hsieh CC, Hernández-Ledesma B, de Lumen BO. Lunasin, a novel seed peptide, sensitizes human breast cancer MDA-MB-231 cells to aspirin-arrested cell cycle and induced apoptosis. Chem Biol Interact. 2010 Jul 30;186(2):127-34. doi: 10.1016/j.cbi.2010.04.027. Epub 2010 May 21. PMID: 20457246.
Hine CM, Mitchell JR. NRF2 and the Phase II Response in Acute Stress Resistance Induced by Dietary Restriction. J Clin Exp Pathol. 2012 Jun 19;S4(4):7329. doi: 10.4172/2161-0681.S4-004. PMID: 23505614; PMCID: PMC3595563.
Isaac-Lam, Meden F., and Kelly M. DeMichael. "Calorie restriction and breast cancer treatment: A mini-review." Journal of Molecular Medicine 100.8 (2022): 1095-1109.
Ito K, Carracedo A, Weiss D, Arai F, Ala U, Avigan DE, Schafer ZT, Evans RM, Suda T, Lee CH, Pandolfi PP. A PML–PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat Med. 2012 Sep;18(9):1350-8. doi: 10.1038/nm.2882. PMID: 22902876; PMCID: PMC3566224.
Jeong HJ, Park JH, Lam Y, de Lumen BO. Characterization of lunasin isolated from soybean. J Agric Food Chem. 2003 Dec 31;51(27):7901-6. doi: 10.1021/jf034460y. PMID: 14690371.
Janssen H, Kahles F, Liu D, Downey J, Koekkoek LL, Roudko V, D'Souza D, McAlpine CS, Halle L, Poller WC, Chan CT, He S, Mindur JE, Kiss MG, Singh S, Anzai A, Iwamoto Y, Kohler Chetal K, Sadreyev RI, Weissleder R, Kim-Schulze S, Merad M, Nahrendorf M, Swirski FK. Monocytes re-enter the bone marrow during fasting and alter the host response to infection. Immunity. 2023 Apr 11;56(4):783-796.e7. doi: 10.1016/j.immuni.2023.01.024.
Jiang Q, Pan Y, Cheng Y, Li H, Liu D, Li H. Lunasin suppresses the migration and invasion of breast cancer cells by inhibiting matrix metalloproteinase-2/-9 via the FAK/Akt/ERK and NF-κB signaling pathways. Oncol Rep. 2016 Jul;36(1):253-62. doi: 10.3892/or.2016.4798. Epub 2016 May 9. PMID: 27175819.
Jaramillo MC, Zhang DD. The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev. 2013 Oct 15;27(20):2179-91. doi: 10.1101/gad.225680.113. PMID: 24142871; PMCID: PMC3814639.
Kashyap, Dharambir, et al. "Global increase in breast cancer incidence: risk factors and preventive measures." BioMed research international 2022 (2022).
Kaufman-Szymczyk A, Kaczmarek W, Fabianowska-Majewska K, Lubecka-Gajewska K. Lunasin and Its Epigenetic Impact in Cancer Chemoprevention. Int J Mol Sci. 2023 May 24;24(11):9187. doi: 10.3390/ijms24119187. PMID: 37298139; PMCID: PMC10253126.
Khan, N., Afaq, F., & Mukhtar, H. (2008). Cancer chemoprevention through dietary antioxidants: progress and promise. Antioxidants & redox signaling, 10(3), 475-510.
Khan MA, Singh R, Siddiqui S, Ahmad I, Ahmad R, Upadhyay S, Barkat MA, Ali AMA, Zia Q, Srivastava A, Trivedi A, Husain I, Srivastava AN, Mishra DP. Anticancer potential of Phoenix dactylifera L. seed extract in human cancer cells and pro-apoptotic effects mediated through caspase-3 dependent pathway in human breast cancer MDA-MB-231 cells: an in vitro and in silico investigation. BMC Complement Med Ther. 2022 Mar 15;22(1):68. doi: 10.1186/s12906-022-03533-0. PMID: 35291987; PMCID: PMC8922853.
Kroemer G, Mariño G, Levine B. Autophagy and the integrated stress response. Mol Cell. 2010 Oct 22;40(2):280-93. doi: 10.1016/j.molcel.2010.09.023. PMID: 20965422; PMCID: PMC3127250.
Kucuk O. Soy foods, isoflavones, and breast cancer. Cancer. 2017 Jun 1;123(11):1901-1903. doi: 10.1002/cncr.30614. Epub 2017 Mar 6. PMID: 28263364.
Kuper, H., Adami, H. O., & Trichopoulos, D. (2001). Infections as a major preventable cause of human cancer. Journal of internal medicine, 249(S741), 61-74.
Kwok A, Palermo C, Boltong A. Dietary experiences and support needs of women who gain weight following chemotherapy for breast cancer. Support Care Cancer. 2015 Jun;23(6):1561-8. doi: 10.1007/s00520-014-2496-5. Epub 2014 Nov 16. PMID: 25398359.
Khoja KK, Howes MR, Hider R, Sharp PA, Farrell IW, Latunde-Dada GO. Cytotoxicity of Fenugreek Sprout and Seed Extracts and Their Bioactive Constituents on MCF-7 Breast Cancer Cells. Nutrients. 2022 Feb 13;14(4):784. doi: 10.3390/nu14040784. PMID: 35215434; PMCID: PMC8879394.
Khalid, Sumaira, et al. "A review on chemistry and pharmacology of Ajwa date fruit and pit." Trends in food science & technology 63 (2017): 60-69.
Kashyap D, Garg VK, Goel N. Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis. Adv Protein Chem Struct Biol. 2021;125:73-120. doi: 10.1016/bs.apcsb.2021.01.003. Epub 2021 Apr 15. PMID: 33931145.
Kusmardi K, Wiyarta E, Rusdi NK, Maulana AM, Estuningtyas A, Sunaryo H. The potential of lunasin extract for the prevention of breast cancer progression by upregulating E-Cadherin and inhibiting ICAM-1. F1000Res. 2021 Sep 8;10:902. doi: 10.12688/f1000research.55385.1. PMID: 34691393; PMCID: PMC8506221.
Khor TO, Huang MT, Prawan A, Liu Y, Hao X, Yu S, Cheung WK, Chan JY, Reddy BS, Yang CS, Kong AN. Increased susceptibility of Nrf2 knockout mice to colitis-associated colorectal cancer. Cancer Prev Res (Phila). 2008 Aug;1(3):187-91. doi: 10.1158/1940-6207.CAPR-08-0028. Epub 2008 Mar 31. PMID: 19138955; PMCID: PMC3580177.
Kumar H, Kumar RM, Bhattacharjee D, Somanna P, Jain V. Role of Nrf2 Signaling Cascade in Breast Cancer: Strategies and Treatment. Front Pharmacol. 2022 Apr 29;13:720076. doi: 10.3389/fphar.2022.720076. PMID: 35571115; PMCID: PMC9098811.
Kubczak M, Szustka A, Rogalińska M. Molecular Targets of Natural Compounds with Anti-Cancer Properties. Int J Mol Sci. 2021 Dec 20;22(24):13659. doi:10.3390/ijms222413659. PMID: 34948455; PMCID: PMC8708931.
Lee C, Safdie FM, Raffaghello L, Wei M, Madia F, Parrella E, Hwang D, Cohen P, Bianchi G, Longo VD. Reduced levels of IGF-I mediate differential protection of normal and cancer cells in response to fasting and improve chemotherapeutic index. Cancer Res. 2010 Feb 15;70(4):1564-72. doi: 10.1158/0008-5472.CAN-09-3228. Epub 2010 Feb 9. PMID: 20145127; PMCID: PMC2836202.
Lee C, Raffaghello L, Brandhorst S, Safdie FM, Bianchi G, Martin-Montalvo A, Pistoia V, Wei M, Hwang S, Merlino A, Emionite L, de Cabo R, Longo VD. Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Sci Transl Med. 2012 Mar 7;4(124):124ra27. doi: 10.1126/scitranslmed.3003293. Epub 2012 Feb 8. PMID: 22323820; PMCID: PMC3608686.
Lessan, Nader, and Tomader Ali. "Energy metabolism and intermittent fasting: the Ramadan perspective." Nutrients 11.5 (2019): 1192.
Li, Jiehua, et al. "Clinicopathological classification and traditional prognostic indicators of breast cancer." International journal of clinical and experimental pathology 8.7 (2015): 8500.
Li Y, Zhang Q, Yang J, He W, Jiang Y, Chen Y, Wang Y. Metformin combined with glucose starvation synergistically suppress triple-negative breast cancer by enhanced unfolded protein response. Biochem Biophys Res Commun. 2023 Oct 1;675:146-154. doi: 10.1016/j.bbrc.2023.07.029. Epub 2023 Jul 14. PMID: 37473529.
Lugtenberg RT, de Groot S, Kaptein AA, Fischer MJ, Kranenbarg EM, Carpentier MD, Cohen D, de Graaf H, Heijns JB, Portielje JEA, van de Wouw AJ, Imholz ALT, Kessels LW, Vrijaldenhoven S, Baars A, Fiocco M, van der Hoeven JJM, Gelderblom H, Longo VD, Pijl H, Kroep JR; Dutch Breast Cancer Research Group (BOOG). Quality of life and illness perceptions in patients with breast cancer using a fasting mimicking diet as an adjunct to neoadjuvant chemotherapy in the phase 2 DIRECT (BOOG 2013-14) trial. Breast Cancer Res Treat. 2021 Feb;185(3):741-758. doi: 10.1007/s10549-020-05991-x. Epub 2020 Nov 11. PMID: 33179154; PMCID: PMC7921018.
Look AHEAD Research Group; Yeh HC, Bantle JP, Cassidy-Begay M, Blackburn G, Bray GA, Byers T, Clark JM, Coday M, Egan C, Espeland MA, Foreyt JP, Garcia K, Goldman V, Gregg EW, Hazuda HP, Hesson L, Hill JO, Horton ES, Jakicic JM, Jeffery RW, Johnson KC, Kahn SE, Knowler WC, Korytkowski M, Kure A, Lewis CE, Mantzoros C, Meacham M, Montez MG, Nathan DM, Pajewski N, Patricio J, Peters A, Xavier Pi-Sunyer F, Pownall H, Ryan DH, Safford M, Sedjo RL, Steinburg H, Vitolins M, Wadden TA, Wagenknecht LE, Wing RR, Wolff AC, Wyatt H, Yanovski SZ. Intensive Weight Loss Intervention and Cancer Risk in Adults with Type 2 Diabetes: Analysis of the Look AHEAD Randomized Clinical Trial. Obesity (Silver Spring). 2020 Sep;28(9):1678-1686. doi: 10.1002/oby.22936. PMID: 32841523; PMCID: PMC8855671.
Lü J, Zhang C, Han J, Xu Z, Li Y, Zhen L, Zhao Q, Guo Y, Wang Z, Bischof E, Yu Z. Starvation stress attenuates the miRNA-target interaction in suppressing breast cancer cell proliferation. BMC Cancer. 2020 Jul 6;20(1):627. doi: 10.1186/s12885-020-07118-3. PMID: 32631271; PMCID: PMC7339532.
Li J, Chen Q, Shi D, Lian X. Combined time-restricted feeding and cisplatin enhance the anti-tumor effects in cisplatin-resistant and -sensitive lung cancer cells. Med Oncol. 2022 Dec 28;40(1):63. doi: 10.1007/s12032-022-01923-5. PMID: 36576605; PMCID: PMC9797463.
Liu T, Sun L, Zhang Y, Wang Y, Zheng J. Imbalanced GSH/ROS and sequential cell death. J Biochem Mol Toxicol. 2022 Jan;36(1):e22942. doi: 10.1002/jbt.22942. Epub 2021 Nov 2. PMID: 34725879.
Maughan KL, Lutterbie MA, Ham PS. Treatment of breast cancer. Am Fam Physician. 2010 Jun 1;81(11):1339-46. PMID: 20521754.
Menon SS, Guruvayoorappan C, Sakthivel KM, Rasmi RR. Ki-67 protein as a tumour proliferation marker. Clin Chim Acta. 2019 Apr;491:39-45. doi: 10.1016/j.cca.2019.01.011. Epub 2019 Jan 14. PMID: 30653951.
McConnell EJ, Devapatla B, Yaddanapudi K, Davis KR. The soybean-derived peptide lunasin inhibits non-small cell lung cancer cell proliferation by suppressing phosphorylation of the retinoblastoma protein. Oncotarget. 2015 Mar 10;6(7):4649-62. doi: 10.18632/oncotarget.3080. PMID: 25609198; PMCID: PMC4467105.
Messina M. Impact of Soy Foods on the Development of Breast Cancer and the Prognosis of Breast Cancer Patients. Forsch Komplementmed. 2016;23(2):75-80. doi: 10.1159/000444735. Epub 2016 Apr 12. PMID: 27161216.
Moro T, Tinsley G, Bianco A, Marcolin G, Pacelli QF, Battaglia G, Palma A, Gentil P, Neri M, Paoli A. Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males. J Transl Med. 2016 Oct 13;14(1):290. doi: 10.1186/s12967-016-1044-0. PMID: 27737674; PMCID: PMC5064803.
Mazurakova A, Koklesova L, Samec M, Kudela E, Kajo K, Skuciova V, Csizmár SH, Mestanova V, Pec M, Adamkov M, Al-Ishaq RK, Smejkal K, Giordano FA, Büsselberg D, Biringer K, Golubnitschaja O, Kubatka P. Anti-breast cancer effects of phytochemicals: primary, secondary, and tertiary care. EPMA J. 2022 Apr 14;13(2):315-334. doi: 10.1007/s13167-022-00277-2. PMID: 35437454; PMCID: PMC9008621.
Mercadante AA, Kasi A. Genetics, Cancer Cell Cycle Phases. 2023 Aug 14. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 33085305.
Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA, Hoffman B, Reed JC. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene. 1994 Jun;9(6):1799-805. PMID: 8183579.
Mou Y, Wang J, Wu J, He D, Zhang C, Duan C, Li B. Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol. 2019 Mar 29;12(1):34. doi: 10.1186/s13045-019-0720-y. PMID: 30925886; PMCID: PMC6441206.
Medina MA, Oza G, Sharma A, Arriaga LG, Hernández Hernández JM, Rotello VM, Ramirez JT. Triple-Negative Breast Cancer: A Review of Conventional and Advanced Therapeutic Strategies. Int J Environ Res Public Health. 2020 Mar 20;17(6):2078. doi: 10.3390/ijerph17062078. PMID: 32245065; PMCID: PMC7143295.
Nechuta SJ, Caan BJ, Chen WY, Lu W, Chen Z, Kwan ML, Flatt SW, Zheng Y, Zheng W, Pierce JP, Shu XO. Soy food intake after diagnosis of breast cancer and survival: an in-depth analysis of combined evidence from cohort studies of US and Chinese women. Am J Clin Nutr. 2012 Jul;96(1):123-32. doi: 10.3945/ajcn.112.035972. Epub 2012 May 30. PMID: 22648714; PMCID: PMC3374736.
Nencioni A, Caffa I, Cortellino S, Longo VD. Fasting and cancer: molecular mechanisms and clinical application. Nat Rev Cancer. 2018 Nov;18(11):707-719. doi: 10.1038/s41568-018-0061-0. PMID: 30327499; PMCID: PMC6938162.
Nogueira V, Hay N. Molecular pathways: reactive oxygen species homeostasis in cancer cells and implications for cancer therapy. Clin Cancer Res. 2013 Aug 15;19(16):4309-14. doi: 10.1158/1078-0432.CCR-12-1424. Epub 2013 May 29. PMID: 23719265; PMCID: PMC3933310.Nutrients. 2019 Jul 3;11(7):1514.
Pabona JM, Dave B, Su Y, Montales MT, de Lumen BO, de Mejia EG, Rahal OM and Simmen RC. The soybean peptide lunasin promotes apoptosis of mammary epithelial cells via induction of tumor suppressor PTEN: similarities and distinct actions from soy isoflavone genistein. Genes & nutrition. 2013; 8(1):79-90.
Pateras IS, Williams C, Gianniou DD, Margetis AT, Avgeris M, Rousakis P, Legaki AI, Mirtschink P, Zhang W, Panoutsopoulou K, Delis AD, Pagakis SN, Tang W, Ambs S, Warpman Berglund U, Helleday T, Varvarigou A, Chatzigeorgiou A, Nordström A, Tsitsilonis OE, Trougakos IP, Gilthorpe JD, Frisan T. Short term starvation potentiates the efficacy of chemotherapy in triple negative breast cancer via metabolic reprogramming. J Transl Med. 2023 Mar 3;21(1):169. doi: 10.1186/s12967-023-03935-9. PMID: 36869333; PMCID: PMC9983166.
Park SY, Kim JS. A short guide to histone deacetylases including recent progress on class II enzymes. Exp Mol Med. 2020 Feb;52(2):204-212. doi: 10.1038/s12276-020-0382-4. Epub 2020 Feb 19. PMID: 32071378; PMCID: PMC7062823.
Pucci B, Kasten M, Giordano A. Cell cycle and apoptosis. Neoplasia. 2000 Jul-Aug;2(4):291-9. doi: 10.1038/sj.neo.7900101. PMID: 11005563; PMCID: PMC1550296.
Qayoom H, Mir MA. Mutant P53 modulation by cryptolepine through cell cycle arrest and apoptosis in triple negative breast cancer. Biomed Pharmacother. 2024 Oct;179:117351. doi: 10.1016/j.biopha.2024.117351. Epub 2024 Aug 30. PMID: 39216450.
Raffaghello L, Lee C, Safdie FM, Wei M, Madia F, Bianchi G, Longo VD. Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy. Proc Natl Acad Sci U S A. 2008 Jun 17;105(24):8215-20. doi: 10.1073/pnas.0708100105. Epub 2008 Mar 31. PMID: 18378900; PMCID: PMC2448817.
Rojas, Kristin, and Ashley Stuckey. "Breast cancer epidemiology and risk factors." Clinical obstetrics and gynecology 59.4 (2016): 651-672.
Raut GK, Chakrabarti M, Pamarthy D, Bhadra MP. Glucose starvation-induced oxidative stress causes mitochondrial dysfunction and apoptosis via Prohibitin 1 upregulation in human breast cancer cells. Free Radic Biol Med. 2019 Dec;145:428-441. doi: 10.1016/j.freeradbiomed.2019.09.020. Epub 2019 Oct 12. PMID: 31614178.
Ramos-Gomez M, Kwak MK, Dolan PM, Itoh K, Yamamoto M, Talalay P, Kensler TW. Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice. Proc Natl Acad Sci U S A. 2001 Mar 13;98(6):3410-5. doi: 10.1073/pnas.051618798. PMID: 11248092; PMCID: PMC30667.
Ruetenik A, Barrientos A. Dietary restriction, mitochondrial function and aging: from yeast to humans. Biochim Biophys Acta. 2015 Nov;1847(11):1434-47. doi: 10.1016/j.bbabio.2015.05.005. Epub 2015 May 12. PMID: 25979234; PMCID: PMC4575837.
Sadeghian M, Rahmani S, Khalesi S, Hejazi E. A review of fasting effects on the response of cancer to chemotherapy. Clin Nutr. 2021 Apr;40(4):1669-1681. doi: 10.1016/j.clnu.2020.10.037. Epub 2020 Oct 23. PMID: 33153820.
Salvadori G, Zanardi F, Iannelli F, Lobefaro R, Vernieri C, Longo VD. Fasting-mimicking diet blocks triple-negative breast cancer and cancer stem cell escape. Cell Metab. 2021 Nov 2;33(11):2247-2259.e6. doi: 10.1016/j.cmet.2021.10.008. PMID: 34731655; PMCID: PMC8769166.
Seely, J. M., and T. Alhassan. "Screening for breast cancer in 2018—what should we be doing today?." Current Oncology 25.s1 (2018): 115-124.
Shu, X. O., Zheng, Y., Cai, H., Gu, K., Chen, Z., Zheng, W., & Lu, W. (2009). Soy food intake and breast cancer survival. Jama, 302(22), 2437-2443.
Simões LMFR, Tavares NAR, Ferreira-Pêgo C. Plant-Based Diet and IGF-1 Modulation on HER2-Positive Breast Cancer: A Lifestyle Medicine Nutrition Approach in Oncology. Am J Lifestyle Med. 2021 Jun 19;16(1):36-45. doi: 10.1177/15598276211023048. PMID: 35185425; PMCID: PMC8848116.
Scherbakov AM, Sorokin DV, Omelchuk OA, Shchekotikhin AE, Krasil'nikov MA. Glucose starvation greatly enhances antiproliferative and antiestrogenic potency of oligomycin A in MCF-7 breast cancer cells. Biochimie. 2021 Jul;186:51-58. doi: 10.1016/j.biochi.2021.04.003. Epub 2021 Apr 16. PMID: 33872751.
Son DS, Done KA, Son J, Izban MG, Virgous C, Lee ES, Adunyah SE. Intermittent Fasting Attenuates Obesity-Induced Triple-Negative Breast Cancer Progression by Disrupting Cell Cycle, Epithelial-Mesenchymal Transition, Immune Contexture, and Proinflammatory Signature. Nutrients. 2024 Jul 1;16(13):2101. doi: 10.3390/nu16132101. PMID: 38999849; PMCID: PMC11243652.
Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R, Tang D. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology. 2016 Jan;63(1):173-84. doi: 10.1002/hep.28251. Epub 2015 Nov 26. PMID: 26403645; PMCID: PMC4688087.
Suzuki T, Shibata T, Takaya K, Shiraishi K, Kohno T, Kunitoh H, Tsuta K, Furuta K, Goto K, Hosoda F, Sakamoto H, Motohashi H, Yamamoto M. Regulatory nexus of synthesis and degradation deciphers cellular Nrf2 expression levels. Mol Cell Biol. 2013 Jun;33(12):2402-12. doi: 10.1128/MCB.00065-13. Epub 2013 Apr 9. PMID: 23572560; PMCID: PMC3700104.
Tang D, Tang Q, Huang W, Zhang Y, Tian Y, Fu X. Fasting: From Physiology to Pathology. Adv Sci (Weinh). 2023 Mar;10(9):e2204487. doi: 10.1002/advs.202204487. Epub 2023 Feb 3. PMID: 36737846; PMCID: PMC10037992.
Titus-Ernstoff, Linda, et al. "Menstrual factors in relation to breast cancer risk." Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 7.9 (1998): 783-789.
Trayes KP, Cokenakes SEH. Breast Cancer Treatment. Am Fam Physician. 2021 Aug 1;104(2):171-178. PMID: 34383430.
Uifălean A, Schneider S, Gierok P, Ionescu C, Iuga CA, Lalk M. The Impact of Soy Isoflavones on MCF-7 and MDA-MB-231 Breast Cancer Cells Using a Global Metabolomic Approach. Int J Mol Sci. 2016 Aug 31;17(9):1443. doi: 10.3390/ijms17091443. PMID: 27589739; PMCID: PMC5037722.
Uifălean A, Schneider S, Ionescu C, Lalk M, Iuga CA. Soy Isoflavones and Breast Cancer Cell Lines: Molecular Mechanisms and Future Perspectives. Molecules. 2015 Dec 22;21(1):E13. doi: 10.3390/molecules21010013. PMID: 26703550; PMCID: PMC6273223.umbrella review. Clin Nutr. 2023 Apr;42(4):600-608.
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009 May 22;324(5930):1029-33. doi: 10.1126/science.1160809. PMID: 19460998; PMCID: PMC2849637.
Vidoni, Chiara, et al. "Calorie restriction for cancer prevention and therapy: mechanisms, expectations, and efficacy." Journal of cancer prevention 26.4 (2021): 224.
Vuyyuri SB, Shidal C, Davis KR. Development of the plant-derived peptide lunasin as an anticancer agent. Curr Opin Pharmacol. 2018 Aug;41:27-33. doi: 10.1016/j.coph.2018.04.006. Epub 2018 May 22. PMID: 29679803.
Waks, Adrienne G., and Eric P. Winer. "Breast cancer treatment: a review." Jama 321.3 (2019): 288-300.
Winters, Stella, et al. "Breast cancer epidemiology, prevention, and screening." Progress in molecular biology and translational science 151 (2017): 1-32.
Wang Y, Gao S, Xu Y, Tang Z, Liu S. Characterization of starvation response-related genes for predicting prognosis in breast cancer. Cancer Sci. 2023 Aug;114(8):3144-3161. doi: 10.1111/cas.15836. Epub 2023 May 17. PMID: 37199031; PMCID: PMC10394156.
Wan X, Liu H, Sun Y, Zhang J, Chen X, Chen N. Lunasin: A promising polypeptide for the prevention and treatment of cancer. Oncol Lett. 2017 Jun;13(6):3997-4001. doi: 10.3892/ol.2017.6017. Epub 2017 Apr 10. PMID: 28599405; PMCID: PMC5453050.
Wen RJ, Dong X, Zhuang HW, Pang FX, Ding SC, Li N, Mai YX, Zhou ST, Wang JY, Zhang JF. Baicalin induces ferroptosis in osteosarcomas through a novel Nrf2/xCT/GPX4 regulatory axis. Phytomedicine. 2023 Jul 25;116:154881. doi: 10.1016/j.phymed.2023.154881. Epub 2023 May 13. PMID: 37209607.
Yan L, Sundaram S, Mehus AA, Picklo MJ. Time-restricted Feeding Attenuates High-fat Diet-enhanced Spontaneous Metastasis of Lewis Lung Carcinoma in Mice. Anticancer Res. 2019 Apr;39(4):1739-1748. doi: 10.21873/anticanres.13280. PMID: 30952713.
Yu H, Guo P, Xie X, Wang Y, Chen G. Ferroptosis, a new form of cell death, and its relationships with tumourous diseases. J Cell Mol Med. 2017 Apr;21(4):648-657. doi: 10.1111/jcmm.13008. Epub 2016 Nov 10. PMID: 27860262; PMCID: PMC5345622.
Zhao, Xu, et al. "The role and its mechanism of intermittent fasting in tumors: friend or foe?." Cancer Biology & Medicine 18.1 (2021): 63.
Zhu W, Qu H, Xu K, Jia B, Li H, Du Y, Liu G, Wei HJ, Zhao HY. Differences in the starvation-induced autophagy response in MDA-MB-231 and MCF-7 breast cancer cells. Anim Cells Syst (Seoul). 2017 May 30;21(3):190-198. doi: 10.1080/19768354.2017.1330763. PMID: 30460069; PMCID: PMC6138357.
Zhou L, Zhang Z, Nice E, Huang C, Zhang W, Tang Y. Circadian rhythms and cancers: the intrinsic links and therapeutic potentials. J Hematol Oncol. 2022 Mar 4;15(1):21. doi: 10.1186/s13045-022-01238-y. PMID: 35246220; PMCID: PMC8896306.
Zhang Y, Swanda RV, Nie L, Liu X, Wang C, Lee H, Lei G, Mao C, Koppula P, Cheng W, Zhang J, Xiao Z, Zhuang L, Fang B, Chen J, Qian SB, Gan B. mTORC1 couples cyst(e)ine availability with GPX4 protein synthesis and ferroptosis regulation. Nat Commun. 2021 Mar 11;12(1):1589. doi: 10.1038/s41467-021-21841-w. PMID: 33707434; PMCID: PMC7952727.
彭詩涵 (2018)。Lunasin對肥胖因子影響雌激素依賴型與非依賴型人類乳癌細胞生長之探討 (為出版碩士論文)。國立臺灣師範大學,台北市。
張佳心 (2020)。Lunasin對MCF-7與MDA-MB-231人類乳癌細胞生長機制之探討(為出版碩士論文)。國立臺灣師範大學,台北市。
衛生福利部 (2022)。乳癌流行病學 癌症防治組。https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=614&pid=1121
衛生福利部 (2024)。112年國人死因統計結果 衛生福利部統計處。https://www.mohw.gov.tw/cp-16-79055-1.html
衛福部國健署 (2018)。每日飲食指南手冊 (第二版第一刷)。時新出版社。
衛福部國健署 (2023)。我國乳癌現況 癌症防治組。https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=614&pid=1124
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99634-
dc.description.abstract乳癌是全球女性中最常見的癌症,也是女性癌症相關死亡的主要原因之一。研究證據顯示,短期飢餓 (short-term starvation, STS) 可以透過誘導代謝壓力選擇性抑制癌細胞的存活與增殖,進而延緩腫瘤進展。Lunasin是一種子胜肽,由43 個胺基酸所組成,已證實其具有抗發炎、抗氧化以及抗腫瘤等生理功能。然而,lunasin結合STS的合併處理是否能增強對乳癌細胞的作用,目前尚未明確。本研究旨在探討lunasin結合STS是否會影響對TNBC (Triple negative breast cancer) 型乳癌細胞MDA-MB-231和Luminal A型乳癌細胞MCF-7的生長,進而增強抑制效果,並分析細胞生長、存活與相關訊號路徑。實驗中的STS模式採用十六小時調降培養基中營養成分 (血清1% 及葡萄糖1 g/L),另八小時則維持正常培養基 (血清10% 及葡萄糖4.5 g/L) 。結果顯示,單獨lunasin及STS相較於正常組,均可降低乳癌細胞MDA-MB-231和MCF-7的存活率,而合併處理相較於單獨處理組則增強抑制效果。在細胞移行及聚落形成實驗中,合併處理具有抑制癌細胞遷移與聚落形成的趨勢。而在正常乳腺上皮細胞MCF-10A中,lunasin處理可以減緩因STS而造成的細胞損傷。在氧化壓力方面,合併處理顯著增加癌細胞內活性氧 (reactive oxygen species, ROS) 的生成,並顯著降低細胞內GSH/GSSG比值;而在MCF-10A細胞中,合併處理則可降低STS所誘導的ROS上升,並且降低GSSG,表現出對正常細胞的保護效應。細胞凋亡分析顯示,lunasin、STS及合併處理均可顯著增加癌細胞內的總凋亡比例。在細胞凋亡週期的部分,三種處理皆促使MDA-MB-231和MCF-7停滯於G2/M期;而STS及合併處理則會使MCF-10A細胞週期停滯在G0_G1期,伴隨S期比例顯著下降。此外,也觀察到STS會誘導癌細胞Nrf2上調並抑制GPX4,尤以MDA-MB-231最為明顯。相較之下,STS並未誘導MCF-10A的Nrf2上調,顯示正常細胞的氧化還原調控較為穩定。綜合上述,lunasin合併STS可能藉由選擇性調控細胞內氧化壓力與凋亡路徑,誘導乳癌細胞的細胞毒性,同時減輕對正常細胞的傷害,突顯了lunasin與STS聯合應用作為乳癌的潛在化學預防策略。zh_TW
dc.description.abstractBreast cancer is the most common cancer among women worldwide and is the leading cause of cancer-related deaths in females. Short-term starvation (STS) can selectively retard or inhibit cancer progression by inducing metabolic stress. Lunasin, a peptide derived from seeds, exhibits multiple bioactivities including anti-carcinogenesis, anti-inflammation, and anti-oxidation. However, the combined effect of lunasin and STS in breast cancer cells remains unclear. The study aims to investigate the impact of lunasin combined with STS on human breast cancer cell lines MDA-MB-231 and MCF-7, and to examine the related signaling pathways. In this study, the program of STS model was used, as nutrient-reduced medium (1% serum and 1g/L glucose) for 16 hours, followed by complete medium (10% serum and 4.5g/L glucose) for 8 hours. The results showed that both lunasin and STS alone significantly reduced cancer cell viability compared to the control group, and their combination exhibited a stronger inhibitory effect. Similarly, the combination treatment effectively suppressed cell migration and colony-forming ability compared to single treatments. Interestingly, in normal mammary epithelial cells MCF-10A, lunasin treatment was able to retard the cellular damage caused by STS. Regarding oxidative stress, the combination treatment significantly increased intracellular reactive oxygen species (ROS) levels and reduced the GSH/GSSG ratio in cancer cells. Conversely, in MCF-10A cells, the combination treatment reduced STS-induced ROS accumulation and lowered GSSG levels, supporting its protective effect on normal cells. Apoptosis assays revealed that lunasin, STS, and their combination significantly increased apoptosis in cancer cells, whereas lunasin reduced STS-induced apoptosis in MCF-10A. Cell cycle analysis further showed that G2/M phase arrest in cancer cells after all treatments, whereas in MCF-10A, STS, and the combination treatment induced G0/G1 arrest and decreased the S phase. In addition, we observed that STS upregulated Nrf2 expression and suppressed GPX4 in MDA-MB-231 cells. In contrast, STS did not increase Nrf2 in MCF-10A cells, indicating that normal cells may have a stable redox regulatory capacity. These findings suggest that lunasin combined with STS selectively enhances oxidative stress and apoptotic signaling in breast cancer cells while protecting normal cells, highlighting that lunasin combined with STS is a potential chemopreventive strategy against breast cancer.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:12:59Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-17T16:12:59Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
Abstract ii
目次 iii
圖次 vii
表次 viii
第一章、文獻探封 1
第一節、乳癌 1
一、 乳癌的流行病學 1
二、 乳癌的臨床分類 2
三、 乳癌的治療 3
3.1 臨床處置 3
3.2 飲食療法 4
第二節、 禁食 5
一、 禁食簡介 5
1.1 熱量限制 (CR) 6
1.2 間歇性禁食 (IF) 6
二、 禁食與癌症 7
2.1 細胞對禁食的耐受性和敏感性差異 7
2.2抗腫瘤免疫系統與禁食 10
2.3 禁食與乳癌 11
2.4 乳癌細胞的禁食模式 12
三、禁食在臨床中的應用 16
3.1 禁食的潛力與臨床挑戰 16
3.2 禁食與臨床實證與耐受性 16
第三節、天然植化素與乳癌 18
一、 Lunasin 簡介 20
1.1 Lunasin的消化吸收 20
二、 Lunasin 的生理功效 21
2.1 抗氧化 21
2.2 抗發炎 22
2.3 抗腫瘤 22
第二章、研究動機與目的 28
第一節、動機與假說 28
第二節、實驗架構圖 29
第三章、實驗材料與方法 30
第一節、實驗儀器設備及耗材 30
第二節、實驗材料與方法 31
一、 細胞培養 31
二、 Short term starvation (STS) 模式建立 32
三、 Lunasin 處理對人類乳癌細胞與乳腺細胞生長之影響 33
四、 Lunasin合併STS對人類乳癌細胞與乳腺細胞生長之影響 34
(一) 細胞存活率試驗 (MTT assay) 34
(二) 細胞移行試驗 (Wound healing assay) 34
(三) 細胞聚落形成分析 (Colony forming assay) 35
(四) 細胞內活性氧偵測 (Intracellular ROS detection assay) 35
(五) 細胞內GSH/GSSG偵測 (GSH/GSSG assay) 36
(六) 抑制劑與細胞存活率試驗 36
(七) 細胞凋亡試驗 (Apoptosis assay) 37
(八) 細胞週期試驗 (Cell cycle assay) 38
(九) 西方墨點法 (Western blot) 38
(十) 統計分析 40
第四章、實驗結果 41
第一節、 Lunasin合併STS對乳癌細胞與正常乳腺細胞生長的影響 41
一、 Lunasin處理對MDA-MB-231及MCF-7與MCF-10A細胞存活率的影響 41
二、 Lunasin合併STS對MDA-MB-231及MCF-7與MCF-10A細胞存活率之影響 43
三、 Lunasin合併STS對MDA-MB-231及MCF-7與MCF-10A細胞移行能力之影響 47
四、 Lunasin合併STS對MDA-MB-231及MCF-7與MCF-10A細胞聚落形成之影響 49
三、 Lunasin合併STS對MDA-MB-231及MCF-7與MCF-10A細胞中Nrf2及GPX4蛋白表現之影響 58
第三節、Lunasin合併STS對乳癌細胞與正常乳腺細胞毒殺路徑的探討 61
一、 不同抑制劑在MDA-MB-231及MCF-7與MCF-10A細胞中對Lunasin合併STS處理之影響 61
二、 Lunasin合併STS對MDA-MB-231及MCF-7與MCF-10A細胞中細胞凋亡之影響 63
三、 Lunasin與STS及合併處理對氧化壓力及誘導乳癌細胞凋亡之間的相關性 67
四、 Lunasin合併STS對MDA-MB-231及MCF-7與MCF-10A細胞中細胞週期之影響 68
第五章、討論 72
第一節、Lunasin合併STS的潛力與對乳癌細胞特性的影響 72
一、 Lunasin合併STS對人類乳癌細胞存活率的影響 72
二、 Lunasin合併STS對人類乳癌細胞遷移及聚落形成的影響 73
三、 Lunasin合併STS對人類乳癌細胞之細胞週期的影響 74
四、 Lunasin合併STS對人類乳癌細胞之細胞凋亡的影響 75
第二節、 Lunasin合併STS誘導乳癌細胞死亡途徑的機制探討 77
一、 Lunasin合併STS誘導乳癌細胞氧化壓力的變化 77
二、 Lunasin及STS對乳癌細胞Nrf2/GPX4抗氧化防禦系統的調控作用 78
第三節、Lunasin合併STS對正常乳腺細胞的選擇性保護效應 80
第六章、結論 81
第七章、參考資料 83
-
dc.language.isozh_TW-
dc.subject短期飢餓zh_TW
dc.subjectlunasinzh_TW
dc.subject細胞凋亡zh_TW
dc.subject活性氧zh_TW
dc.subject乳癌zh_TW
dc.subjectbreast canceren
dc.subjectreactive oxygen speciesen
dc.subjectcell apoptosisen
dc.subjectshort-term starvationen
dc.subjectlunasinen
dc.titleLunasin結合短期飢餓加強對人類乳癌細胞之細胞毒性及氧化壓力zh_TW
dc.titleLunasin combined with short-term starvation enhances breast cancer cell toxicity and oxidative stressen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林璧鳳;羅凱尹;吳啟豪zh_TW
dc.contributor.oralexamcommitteeBi-Fong Lin;Kai-Yin Lo;Chi-Hao Wuen
dc.subject.keywordlunasin,短期飢餓,乳癌,活性氧,細胞凋亡,zh_TW
dc.subject.keywordlunasin,short-term starvation,breast cancer,reactive oxygen species,cell apoptosis,en
dc.relation.page100-
dc.identifier.doi10.6342/NTU202503835-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-12-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生化科技學系-
dc.date.embargo-lift2030-08-04-
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
5.52 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved