請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99631完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧南佑 | zh_TW |
| dc.contributor.advisor | Nan-You Lu | en |
| dc.contributor.author | 沈昱伶 | zh_TW |
| dc.contributor.author | Yu-Ling Shen | en |
| dc.date.accessioned | 2025-09-17T16:12:26Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-08 | - |
| dc.identifier.citation | IEA IEA. Net zero roadmap: A global pathway to keep the 1.5 c goal in reach. International Energy Agency Report, 2023.
M. Hutchinson and F. Zhao. Global wind report 2023, 2023. Published: 27 March 2023. Front cover image courtesy of Vestas. Design by Lennombox. J. Lee and F. Zhao. Global wind report 2024, 2024. Published: 16 April 2024. Front cover image courtesy of Masdar. Design by lemonbox. A. Arapogianni et al. Deep water—the next step for offshore wind energy. European Wind Energy Association (EWEA), pages 978–972, 2013. M.-Z. Gao et al. Review of recent offshore wind power strategy in taiwan: Onshore wind power comparison. Energy Strategy Reviews, 38:100747, Oct. 2021. 4C Offshore. Global offshore wind speeds rankings, 2023. Accessed: May 31, 2023. Global Wind Energy Council. Offshore wind technical potential in taiwan, June 2021. Accessed: May 31, 2023. T. A. T. Nguyen and S.-Y. Chou. Impact of government subsidies on economic feasibility of offshore wind system: Implications for taiwan energy policies. Applied Energy, 217:336–345, 2018. Y.-K. Wu et al. Impact on critical clearing time after integrating large-scale wind 99 power into taiwan power system. Sustainable Energy Technologies and Assessments, 16:128–136, 2016. Y.-H. Cheng and M.-H. Chang. Exceptionally cold water days in the southern Taiwan strait: their predictability and relation to la niña. Natural Hazards and Earth System Sciences, 18(7):1999–2010, 2018. A. Robertson et al. Offshore code comparison collaboration continuation within iea wind task 30: Phase ii results regarding a floating semisubmersible wind system. In International Conference on Offshore Mechanics and Arctic Engineering, volume 45547, page V09BT09A012. American Society of Mechanical Engineers, 2014. 行政院國家永續發展委員會. 臺灣2050 淨零排放路徑及策略總說明, 2022. Retrieved Dec. 18, 2023, from https://ncsd.ndc.gov.tw/. Central Weather Administration. Faq for typhoon 14, 2024. accessed on 25 June 2025. F. Zahle et al. Definition of the iea wind 22-megawatt offshore reference wind turbine. Technical report, National Renewable Energy Laboratory (NREL), Golden, CO (United States), 2024. H. Zhu and J. Ou. Numerical simulation of the heave motion of a deep draft semisubmersible platform. Journal of Harbin Engineering University, 32(5):589–594, 2011. V. Bagherian et al. Rigid multibody dynamic modeling for a semi-submersible wind turbine. Energy Conversion and Management, 244:114399, 2021. D. Gong et al. Modeling and vortex-induced vibrations of semi-submersible floating 100 offshore wind turbines. Mechanical Systems and Signal Processing, 220:111667, 2024. R. Haider et al. Coupled analysis of floating offshore wind turbines with new mooring systems by cfd method. 312:119054, 2024. C. Luan et al. Design and analysis of a braceless steel 5-mw semi-submersible wind turbine. In International conference on offshore mechanics and arctic engineering, volume 49972, page V006T09A052. American Society of Mechanical Engineers, 2016. Z. Yu et al. Numerical modelling and dynamic response analysis of a 10 mw semi-submersible floating offshore wind turbine subjected to ship collision loads. Renewable Energy, 184:677–699, 2022. J. Galvan et al. Nautilus-dtu10 mw floating offshore wind turbine at gulf of maine: Public numerical models of an actively ballasted semisubmersible. In Journal of physics: conference series, volume 1102, page 012015. IOP Publishing, 2018. L. Carmo et al. Numerical modeling of wave basin experiments of a floating wind turbine with active thrust emulation: A discussion of important aspects. 309:118379, 2024. H. Meng et al. A novel conceptual design of a semi-submersible foundation for a 15 mw floating wind turbine. Ocean Engineering, 294:116726, 2024. C.-B. Li et al. Yielding strength assessment of a 15 mw offshore floating wind turbine substructure with a fully coupled approach. 335:121673, 2025. I.-J. Hsu et al. Optimization of semi-submersible hull design for floating offshore 101 wind turbines. In International Conference on Offshore Mechanics and Arctic Engineering, volume 85932, page V008T09A065. American Society of Mechanical Engineers, 2022. 黃心偉等. 半潛式平臺結構尺寸對海上風電機組穩定性的影響研究. 動力工程學報, 44(12):1878–1886, 2024. 曹林陽等. 15mw 半潛式風力機結構回應極值預報研究. 太陽能學報, 45(9):534–542, 2024. Q. Liu et al. Analysis of dynamic response of offshore wind turbines subjected to earthquake loadings and the corresponding mitigation measures: A review. Ocean Engineering, 311:118892, 2024. G. Nielsen et al. Integrated dynamic analysis of floating offshore wind turbines. In International conference on offshore mechanics and arctic engineering, volume 47462, pages 671–679, 2006. D. Roddier et al. Windfloat: a floating foundation for offshore wind turbines—part i: design basis and qualification process. In International conference on offshore mechanics and Arctic engineering, volume 43444, pages 845–853, 2009. A. Goupee et al. Experimental comparison of three floating wind turbine concepts. Journal of Offshore Mechanics and Arctic Engineering, 136(2):020906, 2014. Y.-M. Liu et al. Research on dynamic response of super large floating wind turbine under wind-wave misalignment. 44(2):383–393, 2022. Q. Zou et al. Short-term prediction of hydrodynamic response of a novel semi- 102 submersible fowt platform under wind, current and wave loads. Ocean Engineering, 278:114471, 2023. Y. Alkarem and B. Ozbahceci. A complemental analysis of wave irregularity effect on the hydrodynamic responses of offshore wind turbines with the semi-submersible platform. Applied Ocean Research, 113:102757, 2021. C. Clement et al. Investigation of viscous damping effect on the coupled dynamic response of a hybrid floating platform concept for offshore wind turbines. Ocean Engineering, 225:108836, 2021. M. Soeb et al. Response of nonlinear offshore spar platform under wave and current. Ocean Engineering, 144:296–304, 2017. L.-X. Zhang et al. Second-order hydrodynamic effects on the response of three semisubmersible floating offshore wind turbines. Ocean Engineering, 207:107371, 2020. L.-X. Zhang et al. Moderate water depth effects on the response of a floating wind turbine. In Structures, volume 28, pages 1435–1448. Elsevier, 2020. A. Otter et al. A review of modelling techniques for floating offshore wind turbines. Wind Energy, 25(5):831–857, 2022. J. Jonkman et al. Full-system linearization for floating offshore wind turbines in openfast. In International Conference on Offshore Mechanics and Arctic Engineering, volume 51975, page V001T01A028. American Society of Mechanical Engineers, 2018. 103 J. Zheng. Study on fluid properties of coupling aero-hydrodynamic on a floating offshore wind turbine with heave plate. January 2021. E. Wayman et al. Coupled dynamic modeling of floating wind turbine systems. In Offshore technology conference, pages OTC–18287. OTC, 2006. J. Jonkman. Dynamics modeling and loads analysis of an offshore floating wind turbine. University of Colorado at Boulder, 2007. J. Jonkman. The new modularization framework for the fast wind turbine cae tool. In 51st AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, page 202, 2013. M. Masciola et al. Investigation of a fast-orcaflex coupling module for integrating turbine and mooring dynamics of offshore floating wind turbines. Technical report, National Renewable Energy Lab.(NREL), Golden, CO (United States), 2011. M. Karimirad and T. Moan. Wave-and wind-induced dynamic response of a spar-type offshore wind turbine. Journal of waterway, port, coastal, and ocean engineering, 138(1):9–20, 2012. B. Koo et al. Model test correlation study for a floating wind turbine on a tension leg platform. In International Conference on Offshore Mechanics and Arctic Engineering, volume 55423, page V008T09A101. American Society of Mechanical Engineers, 2013. Y. Yang et al. Development and application of an aero-hydro-servo-elastic coupling framework for analysis of floating offshore wind turbines. Renewable Energy, 161:606–625, 2020. 104 Z.-H. Zhang et al. Dynamic responses and mooring line failure analysis of the fully submersible platform for floating wind turbine under typhoon. Engineering Structures, 301:117334, 2024. S.-Q. Liu et al. Dynamic performance evaluation of an integrated 15 mw floating offshore wind turbine under typhoon and ecd conditions. Frontiers in Energy Research, 10:874438, 2022. H. Xu et al. Dynamic response of floating offshore wind turbine under different stages of typhoon passage. Applied Ocean Research, 148:104047, 2024. Z. Ma et al. The typhoon effect on the aerodynamic performance of a floating offshore wind turbine. Journal of Ocean Engineering and Science, 2(4):279–287, 2017. C.-Y. Yang et al. Typhoon eye-induced misalignment effects on the serviceability of floating offshore wind turbines: Insights typhoon soulik. Energies, 18(3):490, 2025. M. Haskind. The oscillation of a ship in still water. Bull. Acad. Sci. URSS. Cl. Sci. Tech. Izvestia Akad. Nauk SSSR, pages 23–34, 1946. M. Haskind. The hydrodynamic theory of ship oscillations in rolling and pitching. Prikl. Mat. Mekh, 10:33–66, 1946. M. Hansen. Aerodynamics of wind turbines. Routledge, 2015. N. Wiener. Generalized harmonic analysis. Acta mathematica, 55(1):117–258, 1930. A. Khintchine. Korrelationstheorie der stationären stochastischen prozesse. Mathematische Annalen, 109(1):604–615, 1934. 105 S. Guntur et al. A validation and code-to-code verification of fast for a megawattscale wind turbine with aeroelastically tailored blades. Wind Energy Science, 2(2):443–468, 2017. A. Gasmi et al. Numerical stability and accuracy of temporally coupled multi-physics modules in wind turbine cae tools. In 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, page 203, 2013. M. Sprague and J. Jonkman. Fast modular wind turbine cae tool: Nonmatching spatial and temporal meshes. In 32nd ASME Wind Energy Symposium, page 0520, 2014. M. Sprague et al. Fast modular framework for wind turbine simulation: New algorithms and numerical examples. In 33rd Wind Energy Symposium, page 1461, 2015. L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001. G. Biau. Analysis of a random forests model. Biau, G. (2012). Analysis of a random forests model. The Journal of Machine Learning Research, 13:1063–1095, 2012. G. Biau and E. Scornet. A random forest guided tour. Test, 25(2):197–227, 2016. E. Gaertner et al. Iea wind tcp task 37: definition of the iea 15-megawatt offshore reference wind turbine. Technical report, National Renewable Energy Lab.(NREL), Golden, CO (United States), 2020. C. Allen et al. Definition of the umaine volturnus-s reference platform developed for the iea wind 15-megawatt offshore reference wind turbine. Technical report, Na-106 tional Renewable Energy Lab.(NREL), Golden, CO (United States); Univ. of Maine, Orono, ME (United States), 2020. B. Jonkman et al. Turbsim user's guide v2. 00.00. Natl. Renew. Energy Lab, 2014. H. Sutherland. On the fatigue analysis of wind turbines. 1999. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99631 | - |
| dc.description.abstract | 本研究以 15MW 半潛式浮式風力發電機為對象,系統性探討其於台灣海峽實際颱風環境下的動態響應與結構負載特性,並評估關鍵影響因子。首先,整合 2024 年凱米颱風觀測風場與波浪資料,建立具代表性的極端環境條件,並運用 Ansys AQWA 進行浮台水動力分析、TurbSim 生成風場,結合 OpenFAST 完整數值模擬,重現浮式風機於颱風期間不同條件下的運動與受力行為。分析範圍涵蓋浮台六自由度運動響應、塔底彎矩與葉根彎矩等關鍵結構部位之時序變化、統計特性及等效疲勞載重。進一步以隨機森林回歸模型,評估多項環境參數(如風速、波高、風向、波向、風浪夾角、轉子轉速)對浮台運動與結構負載之相對重要性。結果顯示,颱風環境下浮式風機於運轉條件之運動與結構負載變異性皆顯著高於停機條件,塔底與葉根等效疲勞負載平均值分別較停機提升約 76.8% 與 82.5%。隨機森林模型指出,運轉條件下浮台縱搖為主導塔底與葉根彎矩變異之關鍵自由度,而在停機條件下,塔底彎矩主要受縱搖控制,葉根彎矩則以橫搖為主,但縱搖之重要度亦高達 0.87。進一步針對關鍵自由度進行環境因子細部分析,結果顯示風向與風速為影響浮台運動的主要參數,而示性波高與峰值週期之重要度皆低於 0.4,顯示其在本研究涵蓋之颱風情境中影響相對有限。整體成果可為台灣地區浮式離岸風電於極端氣候下之設計、評估及運維策略提供重要參考。 | zh_TW |
| dc.description.abstract | This study investigates the dynamic responses and structural load characteristics of 15 MW floating offshore wind turbine under typhoon conditions in the Taiwan Strait, with particular emphasis on evaluating key influencing factors. Representative extreme environmental conditions were constructed by integrating wind and wave observations from Typhoon Gaemi (2024). The hydrodynamic behavior of the platform was analyzed using Ansys AQWA, wind fields were generated with TurbSim, and fully coupled numerical simulations were conducted in OpenFAST to reproduce the motion and load responses of the floating wind turbine under various operational scenarios. The analysis encompasses 6-DOF platform motions, as well as the time histories, statistical characteristics, and equivalent fatigue loads at critical structural locations, including tower base and blade root bending moments. Furthermore, a random forest regression model was employed to assess the variable importance of multiple environmental parameters—such as wind speed, significant wave height, wind and wave directions, wind–wave misalignment, and rotor speed—on platform motions and structural loads.The findings indicate that both platform motion and structural load variability are considerably elevated under operational conditions compared to idling states during typhoon events. In the full-period statistical analysis, the mean EFLs at the tower base and blade root were 76.8% and 82.5% higher than those under idling conditions, respectively. The random forest analysis further shows that, under operational conditions, platform pitch is the most dominant degree of freedom affecting both tower base and blade root moment variability. Under idling conditions, pitch remains most influential for the tower base moment, while roll is most important for the blade root moment—with pitch still exhibiting a high variable importance of 0.87. Further investigation into the environmental variables governing key degrees of freedom reveals that wind direction and wind speed are the primary drivers of platform motions, whereas significant wave height and peak period both have variable importance below 0.4, indicating limited impact within the investigated typhoon scenarios. Overall, this study provides a comprehensive reference for the design, assessment, and operation and maintenance strategies of floating offshore wind farms in typhoon-prone regions. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:12:26Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:12:26Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 摘要 iii Abstract iv 目次 vi 圖次 viii 表次 xi 縮寫表 xii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 3 1.3 論文架構 6 第二章 模擬方法與流程 11 2.1 AQWA 理論基礎 11 2.2 TurbSim 風場模擬方法 15 2.3 OpenFAST 多物理耦合模擬架構 18 2.4 隨機森林統計學習方法 19 2.5 模型設定 21 2.5.1 15MW 風機模型 21 2.5.2 UMaine VolturnUS-S 浮台與繫泊系統 22 2.5.3 水動力係數模擬設定 23 2.5.4 風機模擬設定 23 2.5.5 環境參數 25 2.6 AQWA 模型驗證 27 2.7 整體研究流程 28 第三章浮台動態響應分析 49 3.1 浮台頻域運動與波浪負載響應 49 3.2 浮台六自由度時域響應 50 3.3 浮台水平面方向運動分析 52 第四章風機結構負載分析 66 4.1 塔底前後向彎矩響應分析 66 4.2 葉根出平面彎矩響應分析 67 4.3 風機結構等效疲勞負載分析 69 第五章颱風期間浮式風機負載特性與影響因子分析 80 5.1 風機負載統計分析 80 5.2 多變數影響因子分析 81 5.2.1 以浮台運動為變數探討風機負載影響因子分析 82 5.2.2 以環境參數為變數探討浮台影響因子分析 83 第六章結論與建議 95 6.1 成果與討論 95 6.2 未來展望 97 參考文獻 99 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 浮式風機 | zh_TW |
| dc.subject | 颱風 | zh_TW |
| dc.subject | 影響因子 | zh_TW |
| dc.subject | 隨機森林 | zh_TW |
| dc.subject | influencing factors | en |
| dc.subject | floating offshore wind turbone | en |
| dc.subject | typhoon | en |
| dc.subject | random forest | en |
| dc.title | 15-MW 浮式風機於颱風下之運動、負載與風浪場特性分析 | zh_TW |
| dc.title | Analysis of Dynamics, Loads and Wind-Wave Characteristics of a 15-MW Floating Offshore Wind Turbine under Typhoon Conditions | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林宗岳;楊舜涵;吳亦莊 | zh_TW |
| dc.contributor.oralexamcommittee | Tsung-Yueh Lin;Shun-Han Yang;Yi-Chuang Wu | en |
| dc.subject.keyword | 浮式風機,颱風,影響因子,隨機森林, | zh_TW |
| dc.subject.keyword | floating offshore wind turbone,typhoon,influencing factors,random forest, | en |
| dc.relation.page | 107 | - |
| dc.identifier.doi | 10.6342/NTU202504332 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-13 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2030-08-08 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 7.36 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
