Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9962
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱錦洲(Chin-Chou Chu),張建成(Chien-Cheng Chang)
dc.contributor.authorKai-Han Yaoen
dc.contributor.author姚凱涵zh_TW
dc.date.accessioned2021-05-20T20:52:11Z-
dc.date.available2011-08-16
dc.date.available2021-05-20T20:52:11Z-
dc.date.copyright2011-08-16
dc.date.issued2011
dc.date.submitted2011-08-05
dc.identifier.citationBirch, J. M., & Dickinson, M. H. (2001). Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature, 412(6848), 729-733.
Birch, J. M., Dickson, W. B., & Dickinson, M. H. (2004). Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers. Journal of Experimental Biology, 207(7), 1063.
Bohorquez, D. P. a. F. (2006). Challenges Facing Future Micro-Air-Vehicle Development. Journal of Aircraft, 43, 290--305.
Cosyn, P., & Vierendeels, J. (2006). Numerical investigation of low-aspect-ratio wings at low Reynolds numbers. Journal of Aircraft, 43(3), 713-722.
Dickinson, M. H., & Gotz, K. G. (1993). Unsteady aerodynamic performance of model wings at low Reynolds numbers. Journal of Experimental Biology, 174(1), 45.
Ellington, C. (1984). The aerodynamics of hovering insect flight. I. The quasi-steady analysis. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 305(1122), 1.
Ellington, C. P., Van Den Berg, C., Willmott, A. P., & Thomas, A. L. R. (1996). Leading-edge vortices in insect flight. Nature 384, 626 - 630
Francis, R., & Cohen, J. (1933). The flow near a wing which starts suddenly from rest and then stalls. Rep Memo Aeronaut Res Comm, 1561.
Freymuth, P., Bank, W., & Finaish, F. (1987). Further visualization of combined wing tip and starting vortex systems. AIAA journal, 25, 1153-1159.
Hamdani, H., & Sun, M. (2000). Aerodynamic forces and flow structures of an airfoil in some unsteady motions at small Reynolds number. Acta mechanica, 145(1), 173-187.
Jane Wang, Z. (2000). Two dimensional mechanism for insect hovering. Physical Review Letters, 85(10), 2216-2219.
Norberg, U. (1976). Aerodynamics of hovering flight in the long-eared bat Plecotus auritus. Journal of Experimental Biology, 65(2), 459.
Ringuette, M. J., Milano, M., & Gharib, M. (2007). Role of the tip vortex in the force generation of low-aspect-ratio normal flat plates. Journal of Fluid Mechanics, 581(-1), 453-468.
Stolpe, M., & Zimmer, K. (1939). Der schwirrflug des kolibri im zeitlupenfilm. Journal of Ornithology, 87(1), 136-155.
Torres, G. E., & Mueller, T. J. (2004). Low-aspect-ratio wing aerodynamics at low Reynolds numbers. AIAA journal, 42(5), 865-873.
Wagner, H. (1925). Uber die Entstehung des dynamischen Auftriebes von Tragflugeln. Z. Angew. Math. Mech, 5(1), 17¡V35.
Walker, P. (1931). Growth of circulation about a wing and an apparatus for measuring fluid motion. ARC report.
Wang, Z. J. (2000). Vortex shedding and frequency selection in flapping flight. Journal of Fluid Mechanics, 410(1), 323¡V341.
王浩丞. (2010). 柔性翼對開合機制之空氣動力學的研究. 臺灣大學.
陳俊為. (2008). 仿生合攏-張開之雙翼受力與流場量測. 臺灣大學.
蔡長志. (2007). 仿生撲翼之二維流場與受力量測. 臺灣大學.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9962-
dc.description.abstract微飛行器有許多研究學者投入心力去研究,較有前瞻性的是模仿鳥類或昆蟲
的撲翼運動,因其具有很高的機動性。而微飛行器主要有兩個特點:(1)在低雷諾數(Re=100、300)下運作;(2)低展弦比。在低雷諾數下,許多複雜的現象可能在邊界層(Boundary Layer)發生,例如:流場分離 (Separation)、過渡流(Transition Flow)、流體再附著(Reattachment);且低展弦比的情況下,翼尖渦的影響及其與前緣渦的交互作用變得重要得多。為簡化問題,本實驗以低展弦比的平板作為研究對象,使用流場顯影配合升、阻力量測,探討有限平板渦漩的發展以及前緣渦與翼尖渦的結構。本實驗在甘油和水的混合溶液下以雷諾數100、300進行低展弦比翼板高攻角瞬間起動且作平移運動,使用的平板展弦比有1、2、3,攻角15、30、45、60度,用六軸量力感測器記錄其升、阻力係數隨時間的變化,並分析無因次化時間T=2與T=7升阻力係數的差異以及展弦比對升阻力係數的影響。流場觀測方面,藉著釋放微塑膠顆粒,並使用雷射光切頁與CCD擷取圖像,在不同剖面觀察前緣渦與翼尖渦隨時間的發展,配合PIV方法計算流場的速度場及渦度值。由量力結果發現在翼板剛起動時有著較大的升阻力係數以及較高的升阻力係數比值,符合延遲失速(Delayed Stall)效應;且在觀察前緣渦的發展中,發現在較低雷諾數與較高的展弦比情況下,前緣渦聚集成巨大的渦漩;反之,前緣渦則容易受到翼尖渦的影響,使前緣渦消散變成不規則的運動,甚至是滯流的狀態。在翼尖渦可自由發展的情況下,本實驗並無發現馮卡門渦漩(Von Kármán Vortex)的產生。
zh_TW
dc.description.abstractMicro air vehicles (MAV) is a popular research topic. Because of the high maneuverability, simulation of flapping wings of birds and insects may have good potential in the MAV development. Micro air vehicles operate in a relatively low Reynolds number regime. In this regime, many complex flow phenomena take place within the boundary layers: separation, transition, and reattachment can all occur within a short distance along the chord of a wing. Under the condition of low-aspect-ratio, the effect of wing-tip vortex and it’s interaction with leading-edge vortex become more important. To simplify the problem, low-aspect-ratio flat plates are used to investigate the formation of leading-edge vortex, wing-tip vortices by means of quantitative flow visualization. The experiment is performed in a tank filled with a Glycerine/water mixer. The low-aspect-ratio rectangular plate is impulsively started and translated at high angles of attack at low Reynolds numbers(Re=100、300). The considered aspect-ratios are 1, 2 and 3, respectively. The angles of attack are 15, 30, 45 and 60 degrees. The plate is rigidly mounted to a six-axis force sensor recording lift and drag force with time. The variations of lift and drag coefficients between nondimensional time T=2 and T=7, and the effect of aspect-ratio to lift and drag coefficients are analyzed. For flow visualization, small particles are released in the fluids illuminated by laser light sheet. The trajectories of the particles are captured by CCD camera. The velocity and vorticity fields can be calculated by PIV method, through which, the formation of leading-edge vortex and wing-tip vortices can be observed. Results show that at the beginning of translation the plate has larger lift and drag coefficients and larger lift to drag ratios, which conform to the effect of delayed stall. In the observation, we find that under the conditions of lower Reynolds number and higher aspect-ratio, the leading-edge vortex can be gathered to form a bigger vortex; otherwise, the leading-edge vortex will be influenced by the wing-tip vortices and dissipate to an irregular and slow motion. In the situation of free development of wing-tip, the Von Kármán Vortex was not observed in the present study.en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:52:11Z (GMT). No. of bitstreams: 1
ntu-100-R98543077-1.pdf: 5954749 bytes, checksum: b1d88ebfd81ff4236f18371cc04a8eb5 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsCONTENTS
口試委員會審定書 ..........................#
誌謝 ...................................i
中文摘要 ...................................ii
ABSTRACT ...................................iii
CONTENTS ...................................v
LIST OF FIGURES ..........................viii
LIST OF TABLES ..........................xiii
Chapter 1 Introduction .................1
1.1 前言 ..........................1
1.2 文獻回顧 ..........................2
1.3 研究動機與目的 .................3
Chapter 2 實驗設備與實驗方法 .................5
2.1 實驗設備 ..........................5
2.1.1 實驗水槽 ..........................5
2.1.2 黏度計(Viscometer) .................5
2.1.3 運動模擬系統 .................6
2.1.4 受力量測系統 .................6
2.1.4.1 防水型六軸力規感應器 ........6
2.1.4.2 訊號擷取裝置 .................7
2.1.5 流場量測系統 .................7
2.1.5.1 雷射 ..........................7
2.1.5.2 電子耦合攝影機(Charge-Couple Device) 7
2.1.5.3 流場顯影粒子 .................8
2.1.5.4 影像擷取卡及軟體 .................8
2.2 實驗方法 ..........................8
2.2.1 運動控制 ..........................8
2.2.2 實驗步驟 ..........................9
2.2.2.1 升阻力量測 .................9
2.2.2.2 流場顯影 ..........................9
2.2.3 實驗訊號分析 .................10
2.2.3.1 量力訊號分析 .................10
2.2.3.2 流場影像分析 .................10
Chapter 3 理論分析 ..........................12
3.1 動態比例 ..........................12
3.1.1 展弦比(Aspect Ratio) ........12
3.1.2 雷諾數(Reynolds Number) ........12
3.1.3 無因次時間 .................13
3.1.4 升力係數(CL) .................13
3.1.5 阻力係數(CD) .................14
3.2 基礎理論 ..........................14
3.2.1 近穩態假設(The Quasi-Steady Assumption) 14
3.2.2 尾渦度(Wake Vorticity) ........15
3.2.3 華格納效應(The Wagner Effect) 15
3.2.4 延遲失速效應(Delayed Stall) ........15
Chapter 4 實驗結果與討論 .................17
4.1 實驗參數 ..........................17
4.2 受力量測 ..........................18
4.2.1 與數值結果比對 .................18
4.2.2 升阻力係數 .................19
4.2.3 極座標圖(Polar Plot) ........20
4.2.4 升阻力係數比值與攻角 ........21
4.2.5 升阻力係數與展弦比 .................21
4.3 流場顯影 ..........................22
4.3.1 前緣渦 ..........................22
4.3.1.1 雷諾數100 ..........................22
4.3.1.2 雷諾數300 ..........................24
4.3.2 翼尖渦 ..........................26
4.3.2.1 雷諾數100 ..........................26
4.3.2.2 雷諾數300 ..........................28
Chapter 5 結論與未來展望 .................30
5.1 結論 ..........................30
5.2 未來展望 ..........................31
REFERENCE ...................................32
dc.language.isozh-TW
dc.title低雷諾數下低展弦比翼板之起動流場實驗分析zh_TW
dc.titleExperimental Study on Flow around the Low-Aspect-Ratio Wing of Start-Up Motion at Low Reynolds Numbersen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.advisor-orcid,張建成(mechang@iam.ntu.edu.tw)
dc.contributor.oralexamcommittee陳弘正,黃世霖,謝政達
dc.subject.keyword低雷諾數,低展弦比,前緣渦,翼尖渦,有限翼,zh_TW
dc.subject.keywordlow Reynolds number,low-aspect-ratio,leading-edge vortex,wing-tip vortex,finite plate,high angle of attack,en
dc.relation.page90
dc.rights.note同意授權(全球公開)
dc.date.accepted2011-08-05
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf5.82 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved