Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99621
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor丁健芳zh_TW
dc.contributor.advisorChien-Fang Dingen
dc.contributor.author莊詠森zh_TW
dc.contributor.authorYung-Sen Chuangen
dc.date.accessioned2025-09-17T16:10:05Z-
dc.date.available2025-09-18-
dc.date.copyright2025-09-17-
dc.date.issued2025-
dc.date.submitted2025-08-12-
dc.identifier.citation[1]B. Drincic, "Mechanical models of friction that exhibit hysteresis, stick-slip, and the stribeck effect," University of Michigan, 2012.
[2]D. Chou, "Dahl friction modeling," Massachusetts Institute of Technology, 2004.
[3]E. Kamenar, "Ultra-high precision positioning via a mechatronics approach," University of Rijeka. Faculty of Engineering, 2016.
[4]L. Márton and B. Lantos, "Control of mechanical systems with Stribeck friction and backlash," Systems & Control Letters, vol. 58, no. 2, pp. 141-147, 2009.
[5]B. Armstrong-Hélouvry, P. Dupont, and C. C. De Wit, "A survey of models, analysis tools and compensation methods for the control of machines with friction," Automatica, vol. 30, no. 7, pp. 1083-1138, 1994.
[6]F. Altpeter, "Friction modeling, identification and compensation," EPFL, 1999.
[7]B. M. Nouri, "Friction identification in mechatronic systems," ISA transactions, vol. 43, no. 2, pp. 205-216, 2004.
[8]A. D. Berman, W. A. Ducker, and J. N. Israelachvili, "Origin and characterization of different stick− slip friction mechanisms," Langmuir, vol. 12, no. 19, pp. 4559-4563, 1996.
[9]C. C. De Wit, H. Olsson, K. J. Astrom, and P. Lischinsky, "A new model for control of systems with friction," IEEE Transactions on automatic control, vol. 40, no. 3, pp. 419-425, 1995.
[10]A. Amthor, S. Zschaeck, and C. Ament, "High precision position control using an adaptive friction compensation approach," IEEE Transactions on automatic control, vol. 55, no. 1, pp. 274-278, 2009.
[11]T. Piatkowski, "Dahl and LuGre dynamic friction models—The analysis of selected properties," Mechanism and Machine Theory, vol. 73, pp. 91-100, 2014.
[12]P. R. Dahl, "A solid friction model," A solid friction model, 1968.
[13]J. Wang, S. Ge, and T. Lee, "Adaptive NN control of robot manipulator with unknown dynamic friction," in Proc. of Asian Conference on Robotics and Applications, 2001, pp. 160-165.
[14]G. Rill, T. Schaeffer, and M. Schuderer, "LuGre or not LuGre," Multibody System Dynamics, vol. 60, no. 2, pp. 191-218, 2024.
[15]L. C. Hale, "Principles and techniques for designing precision machines," Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States), 1999.
[16]D. L. Blanding, Exact constraint: machine design using kinematic principles. American Society of Mechanical Engineers, 1999.
[17]K. Szykiedans and M. Bujwan, "Shifted axis angular positioning mechanisms–unconventional use of exact constraint design," in MATEC Web of Conferences, 2018, vol. 157.
[18]B. P. Trease, Y.-M. Moon, and S. Kota, "Design of large-displacement compliant joints," 2005.
[19]J. Wu, S. Cai, J. Cui, and J. Tan, "A generalized analytical compliance model for cartwheel flexure hinges," Review of Scientific Instruments, vol. 86, no. 10, 2015.
[20]Y. K. Yong, T.-F. Lu, and D. C. Handley, "Review of circular flexure hinge design equations and derivation of empirical formulations," Precision engineering, vol. 32, no. 2, pp. 63-70, 2008.
[21]Q. Yao, J. Dong, and P. M. Ferreira, "Design, analysis, fabrication and testing of a parallel-kinematic micropositioning XY stage," International Journal of Machine Tools and Manufacture, vol. 47, no. 6, pp. 946-961, 2007.
[22]P. Weisbord, "How to design flexure hinges," Machine Design, pp. 151-156, 1965.
[23]G. H. Gowd and E. V. Goud, "Static analysis of leaf spring," International Journal of Engineering Science and Technology, vol. 4, no. 8, pp. 3794-3803, 2012.
[24]M. M. Shokrieh and D. Rezaei, "Analysis and optimization of a composite leaf spring," Composite structures, vol. 60, no. 3, pp. 317-325, 2003.
[25]H.-J. Su, D. V. Dorozhkin, and J. M. Vance, "A screw theory approach for the conceptual design of flexible joints for compliant mechanisms," 2009.
[26]H.-J. Su and H. Tari, "Realizing orthogonal motions with wire flexures connected in parallel," 2010.
[27]L. Lu, B. Yao, Q. Wang, and Z. Chen, "Adaptive robust control of linear motors with dynamic friction compensation using modified LuGre model," Automatica, vol. 45, no. 12, pp. 2890-2896, 2009.
[28]L. Xu and B. Yao, "Adaptive robust control of mechanical systems with non-linear dynamic friction compensation," International Journal of control, vol. 81, no. 2, pp. 167-176, 2008.
[29]L. Mostefai, M. Denaï, O. Sehoon, and Y. Hori, "Optimal control design for robust fuzzy friction compensation in a robot joint," IEEE Transactions on Industrial Electronics, vol. 56, no. 10, pp. 3832-3839, 2009.
[30]L. Yuan, L. E. Achenie, and W. Jiang, "Robust H∞ control for linear discrete-time systems with norm-bounded time-varying uncertainty," Systems & control letters, vol. 27, no. 4, pp. 199-208, 1996.
[31]H. Olsson, K. J. Åström, C. C. De Wit, M. Gäfvert, and P. Lischinsky, "Friction models and friction compensation," Eur. J. Control, vol. 4, no. 3, pp. 176-195, 1998.
[32]B. A. Bucci, "A practical method for friction compensation in rapid point-to-point motion," University of Pittsburgh, 2011.
[33]V. Lampaert, J. Swevers, and F. Al-Bender, "Experimental comparison of different friction models for accurate low-velocity tracking," in Proceeding of the 2004 American Control Conference, Boston, Massachusetts, June, 2002, pp. 1121-1126.
[34]T. Tjahjowidodo, F. Al-Bender, H. Van Brussel, and W. Symens, "Friction characterization and compensation in electro-mechanical systems," Journal of sound and vibration, vol. 308, no. 3-5, pp. 632-646, 2007.
[35]H. Olsson and K. J. Astrom, "Observer-based friction compensation," in Proceedings of 35th IEEE conference on decision and control, 1996, vol. 4: IEEE, pp. 4345-4350.
[36]C. C. De Wit and P. Lischinsky, "Adaptive friction compensation with partially known dynamic friction model," International journal of adaptive control and signal processing, vol. 11, no. 1, pp. 65-80, 1997.
[37]J. C. Martinez-Rosas and L. Alvarez-Icaza, "Adaptive compensation of dynamic friction in an industrial robot," in 2008 IEEE International Conference on Control Applications, 2008: IEEE, pp. 1145-1150.
[38]J. G. Ziegler and N. B. Nichols, "Optimum settings for automatic controllers," Transactions of the American society of mechanical engineers, vol. 64, no. 8, pp. 759-765, 1942.
[39]K. L. Chien, J. Hrones, and J. Reswick, "On the automatic control of generalized passive systems," Transactions of the American Society of Mechanical Engineers, vol. 74, no. 2, pp. 175-183, 1952.
[40]G. Cohen and G. Coon, "Theoretical consideration of retarded control," Transactions of the American Society of Mechanical Engineers, vol. 75, no. 5, pp. 827-834, 1953.
[41]B. A. Bucci, J. S. Vipperman, D. G. Cole, and S. J. Ludwick, "Evaluation of a servo settling algorithm," Precision Engineering, vol. 37, no. 1, pp. 10-22, 2013.
[42]Bosch Rexroth官方網站。檢自https://store.boschrexroth.com/
[43]NYCe 4000使用手冊。User Manuals: Bosch Rexroth NYCe 4000 Motion Control
[44]igus官方網站。檢自https://www.igus.com.tw/
[45]Renishaw官方網站。檢自https://www.renishaw.com/
[46]API官方網站。檢自https://apimetrology.com/
[47]Baumer官方網站。檢自https://www.baumer.com/
[48]瑞滄企業股份有限公司。檢自http://www.algol.com.tw/
[49]Wikipedia維基百科。檢自https://zh.wikipedia.org/
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99621-
dc.description.abstract微米級運動中,摩擦力會導致運動誤差(Kinematic error),影響定位精度與重複性。為提升控制性能,本研究設計單軸運動平台,使用Dahl與LuGre模型分析摩擦行為,並透過6D雷射干涉儀量測運動精度,量測數據顯示滑軌(Linear guide)間平行度誤差(Straightness error)導致平台變形。為降低所導致摩擦行為不穩定,設計不鏽鋼撓性結構(Flexure structure)降低特定方向剛性吸收應力,以提升運動重複性。實驗結果顯示,撓性結構可使最大靜摩擦力(Stiction friction)與庫倫摩擦力(Coulomb friction)有效降低,並顯著減少摩擦力變化,使用比例積分微分控制器(Proportional-Integral-Derivative, PID)結合前饋控制器,均方根(Root mean square, RMS)之追蹤誤差(Tracking error)為1.84 µm,證實其提升運動精度與穩定性。zh_TW
dc.description.abstractIn micron-scale motion, friction induces kinematic errors that affect positioning accuracy and repeatability. To enhance control performance, this study designed a single-axis motion platform and analyzed friction behavior using Dahl and LuGre friction models. A 6D laser interferometer was employed to measure motion accuracy. Measurement data revealed that straightness errors between linear guides caused stage deformation. To decrease the results from friction-induced instability, a stainless steel flexure structure was designed to reduce stiffness in specific directions, thereby absorbing stress and improving repeatability. Experimental results showed that the flexure structure effectively reduced both stiction friction and Coulomb friction, furthermore, significantly decreasing friction variations. Through PID controller combining with feedforward controller, the root mean square (RMS) tracking error was reduced to 1.84 µm, demonstrating improvement on motion accuracy and stability.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:10:05Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-17T16:10:05Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文審定書 i
謝辭 ii
中文摘要 iii
Abstract iv
目次 v
圖次 viii
表次 xi
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 論文架構 3
第二章 文獻回顧 4
2.1 摩擦力簡介 5
2.1.1 摩擦力穩態與動態特性 6
2.1.1.1 穩態摩擦力(Steady state friction, Fss) 6
2.1.1.2 動態摩擦力(Dynamic friction) 7
2.1.2 摩擦力模型 9
2.1.2.1 庫倫模型(Coulomb model) 9
2.1.2.2 達爾模型(Dahl model) 10
2.1.2.3 隆德-格勒諾布爾模型(Lund-Grenoble model, LuGre model) 11
2.2 精密工程與精確約束 13
2.2.1 自由度(Degree of freedom, DOF)與約束條件(Constraint) 13
2.2.2 撓性結構(Flexure structure) 15
2.2.2.1 割痕式撓性鉸鍊(Flexure notch hinge) 16
2.2.2.2 撓性薄板(Flexure blade) 17
2.2.2.3 葉片彈簧(Leaf spring) 18
2.2.2.4 撓性纜線(Flexure wire) 20
2.3 摩擦力控制與補償 20
2.3.1 前饋控制器(Feedforward control) 21
2.3.2 滑模觀測器(Sliding mode observer) 22
2.3.3 比例積分微分控制器(PID control) 24
2.3.3.1 NIASA演算法(Nonlinear integral action settling algorithm) 25
2.4 小結 27
第三章 材料與方法 28
3.1 滾珠式線性滑軌運動平台 28
3.2 系統架構圖 29
3.3 實驗流程 29
3.4 實驗平台設備 30
3.4.1 線性馬達(Linear motor) 30
3.4.2 滾珠式線性滑軌組(Ball type linear guide system) 31
3.4.3 運動控制器(Motion control system) 31
3.4.4 拖鏈(Cable carrier) 32
3.4.5 光學尺(Optical encoder) 32
3.5 實驗量測設備 33
3.5.1 雷射干涉儀(Laser interferometer) 33
3.5.2 力感測器(Force sensor) 34
3.5.3 電子式推拉力計(Push pull force gauge) 35
3.6 模擬軟體 35
3.6.1 有限元素分析(Finite element analysis, FEA) 35
3.6.2 系統模擬 36
第四章 結果與討論 37
4.1 摩擦力量測與摩擦力模型建立 37
4.1.1 穏態摩擦力量測 37
4.1.2 動態摩擦力量測 39
4.1.3 摩擦力模型建立 40
4.1.4 運動平台摩擦力模型 41
4.2 撓性結構 43
4.2.1 撓性薄板剛性設計 44
4.2.2 撓性薄板材質選擇 45
4.2.3 撓性薄板設計摩擦力模型 46
4.2.3.1 重現性(Repeatability) 46
4.2.3.2 再現性(Reproducibility) 49
4.2.4 小結 54
4.3 摩擦力補償控制器設計 55
4.3.1 PID控制器設計 57
4.3.2 PID結合前饋控制器設計 59
4.3.3 小結 61
第五章 結論與未來展望 62
5.1 結論 62
5.2 未來展望 63
參考文獻 64
附錄 67
NIASA演算法 67
-
dc.language.isozh_TW-
dc.subject摩擦力模型zh_TW
dc.subject線性馬達系統zh_TW
dc.subject前饋控制zh_TW
dc.subjectPID控制zh_TW
dc.subject撓性結構zh_TW
dc.subjectFlexure structureen
dc.subjectPID controlen
dc.subjectFeedforward controlen
dc.subjectFriction modelingen
dc.subjectLinear motor systemen
dc.title結合撓性結構設計與摩擦力模型於線性馬達運動精度影響之研究zh_TW
dc.titleStudy on the Effects of Flexible Structure Design and Friction Modeling on Linear Motor Motion Accuracyen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee洪育民;廖國基;李貫銘zh_TW
dc.contributor.oralexamcommitteeYu-Min Hong;Kuo-Chi Liao;Kuan-Ming Lien
dc.subject.keyword線性馬達系統,摩擦力模型,撓性結構,PID控制,前饋控制,zh_TW
dc.subject.keywordLinear motor system,Friction modeling,Flexure structure,PID control,Feedforward control,en
dc.relation.page67-
dc.identifier.doi10.6342/NTU202503693-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-14-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物機電工程學系-
dc.date.embargo-lift2030-08-04-
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2030-08-04
7.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved