Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9961
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙本秀(Pen-Hsiu Chao)
dc.contributor.authorChia-Hsiang Fengen
dc.contributor.author馮嘉襄zh_TW
dc.date.accessioned2021-05-20T20:52:07Z-
dc.date.available2012-08-08
dc.date.available2021-05-20T20:52:07Z-
dc.date.copyright2011-08-08
dc.date.issued2011
dc.date.submitted2011-08-05
dc.identifier.citation1. Ridley, A.J., Cell Migration: Integrating Signals from Front to Back. Science, 2003. 302(5651): p. 1704-1709.
2. O. C. Rodriguez, A.W.S., C. A.Mandato, P. Forscher,W. M. Bement, C. M.Waterman-Storer, Conserved microtubule–actin interactions in cell movement and morphogenesis. Nature Cell Biology, 2003. 5(7): p. 599-609.
3. Worthylake, R.A., RhoA is required for monocyte tail retraction during transendothelial migration. The Journal of Cell Biology, 2001. 154(1): p. 147-160.
4. M. D.Welch and M.R. Dyche, Cellular control of actin nucleation. Annual Review of Cell and Developmental Biology, 2002. 18(1): p. 247-288.
5. Emsley, J., et al., Structural Basis of Collagen Recognition by Integrin α2β1. Cell, 2000. 101(1): p. 47-56.
6. R. Zaidel-Bar, M.C., L. Addadi, B. Geiger, Hierarchical assembly of cell matrix adhesion complexes. Biochemical Society Transactions 2004. 32(3).
7. Yeh, C.-H., C.-H. Chen, and Y.-C. Lin, Use of a gradient-generating microfluidic device to rapidly determine a suitable glucose concentration for cell viability test. Microfluidics and Nanofluidics, 2010. 10(5): p. 1011-1018.
8. Daniel St Johnston, C.N.-V., The Origin of Pattern and Polarity in the Drosophila Embryo. Cell, 1992. 68: p. 201-219.
9. McCaig, C.D., B. Song, and A.M. Rajnicek, Electrical dimensions in cell science. Journal of Cell Science, 2009. 122(23): p. 4267-4276.
10. Chao, P.-H.G., et al., Effects of Applied DC Electric Field on Ligament Fibroblast Migration and Wound Healing. Connective Tissue Research, 2007. 48(4): p. 188-197.
11. Franchi, M., et al., Tendon and ligament fibrillar crimps give rise to left-handed helices of collagen fibrils in both planar and helical crimps. Journal of Anatomy, 2010. 216(3): p. 301-309.
12. Rajnicek, A.M., L.E. Foubister, and C.D. McCaig, Prioritising guidance cues: Directional migration induced by substratum contours and electrical gradients is controlled by a rho/cdc42 switch. Developmental Biology, 2007. 312(1): p. 448-460.
13. Doyle, A.D., et al., One-dimensional topography underlies three-dimensional fibrillar cell migration. The Journal of Cell Biology, 2009. 184(4): p. 481-490.
14. Grinnell, F., Fibroblast biology in three-dimensional collagen matrices. Trends in Cell Biology, 2003. 13(5): p. 264-269.
15. Cukierman, E., Taking Cell-Matrix Adhesions to the Third Dimension. Science, 2001. 294(5547): p. 1708-1712.
16. Martins, G.G. and J. Kolega, Endothelial cell protrusion and migration in three-dimensional collagen matrices. Cell Motility and the Cytoskeleton, 2006. 63(2): p. 101-115.
17. S. I.Fraley, et al., A distinctive role for focal adhesion proteins in three-dimensional cell motility. Nature Cell Biology, 2010. 12(6): p. 598-604.
18. Shan Sun, J.W., Michael Cho, Human Fibroblast Migration in Three-Dimensional Collagen Gel in Response to Noninvasive Electrical Stimulus. I. Characterization of Induced Three-Dimensional Cell Movement. Tissue Engineering Part A, 2004. 10(9): p. 1548-1557.
19. R. J. Pelham. JR, Y.L.W., Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. USA, 1997. 94: p. 13661–13665.
20. Fraley, S.I., et al., Reply: reducing background fluorescence reveals adhesions in 3D matrices. Nature Cell Biology, 2011. 13(1): p. 5-7.
21. Wozniak, M.A., ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. The Journal of Cell Biology, 2003. 163(3): p. 583-595.
22. Tiffani A. Cook, T.N., and Gregg G. Gundersen, Rho Guanosine Triphosphatase Mediates the Selective Stabilization of Microtubules Induced by Lysophosphatidic Acid. The Journal of Cell Biology, 1998. 141(1): p. 175-185.
23. Ezratty, E.J., M.A. Partridge, and G.G. Gundersen, Microtubule-induced focal adhesion disassembly is mediated by dynamin and focal adhesion kinase. Nature Cell Biology, 2005. 7(6): p. 581-590.
24. Akhmanova, A., S.J. Stehbens, and A.S. Yap, Touch, Grasp, Deliver and Control: Functional Cross-Talk Between Microtubules and Cell Adhesions. Traffic, 2009. 10(3): p. 268-274.
25. N. Saeidi, E. A.Sander, and J. W.Ruberti, Dynamic shear-influenced collagen self-assembly. Biomaterials, 2009. 30(34): p. 6581-6592.
26. K.E.Sung, et al., Control of 3-dimensional collagen matrix polymerization for reproducible human mammary fibroblast cell culture in microfluidic devices. Biomaterials, 2009. 30(27): p. 4833-4841.
27. al., B.S.e., Application of direct current electric fields to cells and tissues in vitro and modulation of wound electric field in vivo. Nature Protocols, 2007. 2(6): p. 1479-1489.
28. George T. Rodeheaver, L.K., Barbara J. Kircher, Richard E Edlich, , Pluronic F-68': A Promising New Skin Wound Cleanser. Ann Emerg Med, 1980. 9(11): p. 572-576.
29. Sarl, G., SU8-Photoepoxy GM 1070 Datasheet. 2005.
30. M. H. Wu, et al., Development of PDMS microbioreactor with well-defined and homogenous culture environment for chondrocyte 3-D culture. Biomedical Microdevices, 2006. 8(4): p. 331-340.
31. Tan, W. and T.A. Desai, Layer-by-layer microfluidics for biomimetic three-dimensional structures. Biomaterials, 2004. 25(7-8): p. 1355-1364.
32. A. M. Rajnicek, L. E. Foubister, and C. D. McCaig, Alignment of corneal and lens epithelial cells by co-operative effects of substratum topography and DC electric fields. Biomaterials, 2008. 29(13): p. 2082-2095.
33. P.G.H. Chao , R.R., R.L.Mauck , W. Liu, W.B. Valhmu, C.T. Hung Chondrocyte Translocation Response to Direct Current Electric Fields. Journal of Biomechanical Engineering, 2000. 122: p. 261-267.
34. Takao Inoue, H.O., A New Drying Method of Biological Specimens for Scanning Electron Microscopy The t-Butyl Alcohol Freeze-drying Method. Arch. Histol. Cytol., 1988. 51(1): p. 53-59.
35. Roeder, B.A., et al., Tensile Mechanical Properties of Three-Dimensional Type I Collagen Extracellular Matrices With Varied Microstructure. Journal of Biomechanical Engineering, 2002. 124(2): p. 214.
36. Li, Q., Lau, Anthony, Morris, Terence J., Guo, Lin, Fordyce, Christopher B., Stanley, Elise F. , A Syntaxin 1, G{alpha}o, and N-Type Calcium Channel Complex at a Presynaptic Nerve Terminal: Analysis by Quantitative Immunocolocalization. ournal of Neuroscience, 2004. 24: p. 4070-4081.
37. Sander E. A, B.V.H., Comparison of 2D fiber network orientation measurement methods. J Biomed Mater Res A, 2009. 88(2): p. 322-331.
38. Matthews JA, W.G., Simpson DG, Bowlin GL., Electrospinning of collagen nanofibers. Biomacromolecules, 2002. 3: p. 232–238.
39. R. B.Dickinson, S.G., R. T. Tranquillo, Biased cell migration of fibroblasts exhibiting contact guidance in oriented collagen gels. Ann. Biomed. Eng. , 1994. 22: p. 342-356.
40. Wilson DL, M.R., Hong S, Cronin-Golomb M, Mirkin CA, Kaplan DL. , Surface organization and nanopatterning of collagen by dip-pen nanolithography. Proc Natl Acad Sci U S A 2001. 98: p. 13660–13664.
41. K.A.Faraj, T.H.v.K., W.F.Daamen Construction of collagen scaffolds that mimic the three-dimensional architecture of specific tissues. . Tissue Eng, 2007. 13: p. 2387–2394.
42. David Vader, A.K., David Weitz, Lakshminarayana Mahadevan, Strain-Induced Alignment in Collagen Gels. PLoS ONE, 2009. 4(6): p. 1-12.
43. Dallon, J.C. and H.P. Ehrlich, A review of fibroblast-populated collagen lattices. Wound Repair and Regeneration, 2008. 16(4): p. 472-479.
44. Irina Kaverina, O.K., J. Victor Small, Microtubule Targeting of Substrate Contacts Promotes Their Relaxation and Dissociation. The Journal of Cell Biology, 1999. 146(5): p. 1033–1043.
45. Chen, B.H., Roles of Rho-associated Kinase and Myosin Light Chain Kinase in Morphological and Migratory Defects of Focal Adhesion Kinase-null Cells. Journal of Biological Chemistry, 2002. 277(37): p. 33857-33863.
46. Kolega, X.L.J., Effects of Direct Current Electric Fields on Cell Migration and Actin Filament Distribution. J Vasc Res, 2002. 39: p. 391-404.
47. Albert. K. Harris, N.K.P., David Paydarfar, Effects of Electric Fields on Fibroblast Contractility and Cytoskeleton. The Journal of Experimental Zoology, 1990. 253: p. 163-176
48. G.Totsukawa, Distinct roles of MLCK and ROCK in the regulation of membrane protrusions and focal adhesion dynamics during cell migration of fibroblasts. The Journal of Cell Biology, 2004. 164(3): p. 427-439.
49. Brown, T.D., Techniques for mechanical stimulation of cells in vitro: a review. Journal of Biomechanics, 2000. 33(1): p. 3-14.
50. E. Cukierman, R.P., K. M. Yamada, Cell interactions with three-dimensional matrices. Current Opinion in Cell Biology, 2002. 14(5): p. 633-640.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9961-
dc.description.abstract本實驗的目標是要發展出一個有方向性的膠原蛋白模型來探討韌帶纖維母細胞在三度空間中之移動。韌帶纖維母細胞原生在由膠原蛋白纖維束組成的排列結構中,而研究顯示具方向性的環境可以改變細胞外型,蛋白表現、細胞移動和附著。 同時,細胞在平面上和三度空間之中會表現出不同的細胞表現。在本實驗中,我們利用微流道的方式創造出一個有排列的膠原蛋白,來比較細胞在平面和三度空間中的差異。我們施加電場在細胞來提供一個均勻的刺激。
細胞在平面和三度空間中都顯現出對於有方向性的膠原蛋白會排列,同時在電刺激下會沿著膠原蛋白的纖維走向移動爬行。但是,細胞移動的方向性似乎也受到了膠原蛋白的高度影響。這個影響可能跟細胞附著的調節和細胞張力恆定有關。
zh_TW
dc.description.abstractThe aim of this study is to develop an aligned collagen matrix to examine cell migration of ligament fibroblasts, which natively reside in a highly collagen fibrous and anisotropic microenvironment made of type I collagen. This highly aligned arrangement has been shown to modulate fibroblast morphology, migration rate and attachment. However, cells also exhibit significantly different behaviors in 2D and 3D environments. In the current study, a microfluidic device was developed to create aligned collagen hydrogel and examine cell migration behavior in 2D and 3D collagen matrix. Cells are subjected with an electrical field to apply a homogenous field of migration stimulation.
Cells in both 2D and 3D show high alignment to the collagen matrix and cell migration show preference of contact guidance over EF stimulation. However, cell migration directionality is influenced by matrix thickness, possibly through regulation of cell attachment disassembly and tensional homeostasis.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:52:07Z (GMT). No. of bitstreams: 1
ntu-100-R98548058-1.pdf: 1689412 bytes, checksum: 0d71602782bd28b1c5e235d0cc0f3b97 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員會審定書............................................ i
誌謝.................................................... ii
中文摘要 .................................................iii
Abstract.................................................iv
Chapter 1 Introduction
1.1 Cell migration ...................................1
1.2 Cellular microenvironment.........................4
1.3 Hypothesis: Matrix stiffness affects cell migration in aligned collagen matrix................................6
Chapter 2 Materials and Methods
2.1 Cell Culture .....................................9
2.2 Microchannel Fabrication ........................10
2.3 Collagen Preparation.............................10
2.4 Electric Field Studies...........................13
2.5 Cell Morphology and Migration Analysis...........13
2.6 Scanning Electrical Microscopy ..................14
2.7 Immunofluorescence Microscopy ...................14
2.8 Statistical analysis.............................15
Chapter 3 Results.......................................17
Chapter 4 Discussion ...................................23
Reference ...............................................39
Appendix.................................................44
dc.language.isozh-TW
dc.title以具方向性的膠原蛋白模型來探討細胞在立體空間中之運動zh_TW
dc.titleAn Aligned 3D Collagen Matrix for the Study of Cell Migrationen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林峰輝(Feng-Huei Lin),郭柏齡(Po-Ling Kuo)
dc.subject.keyword細胞爬行,三度空間膠原蛋白,張力恆定,電刺激,zh_TW
dc.subject.keywordCell migration,3D collagen matrix,tensional homeostasis,electrical field,en
dc.relation.page44
dc.rights.note同意授權(全球公開)
dc.date.accepted2011-08-05
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf1.65 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved