請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99613完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李翔傑 | zh_TW |
| dc.contributor.advisor | Hsiang-Chieh Lee | en |
| dc.contributor.author | 陳祥瑜 | zh_TW |
| dc.contributor.author | Xiang-Yu Chen | en |
| dc.date.accessioned | 2025-09-17T16:08:39Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-10 | - |
| dc.identifier.citation | L. M. Sakata, A. Green, B. Zangerl, S. J. Masselos, D. A. Danesh-Meyer, J. K. Gamble, C. A. Crowston, “Optical coherence tomography of the retina and optic nerve: a review,” Clinical and Experimental Ophthalmology, vol. 37, no. 1, pp. 90–99, 2009.
B. W. Colston, U. S. Sathyam, L. B. DaSilva, J. B. Everett, N. Otis, M. Follen, “Imaging of hard- and soft-tissue structure in the oral cavity by optical coherence tomography,” Applied Optics, vol. 37, no. 16, pp. 3582–3585, 1998. J. Olsen, J. Holmes, G. B. Jemec, “Advances in optical coherence tomography in dermatology: a review,” Journal of Biomedical Optics, vol. 23, no. 4, pp. 1–10, 2018. G. J. Tearney, H. Yabushita, S. L. Houser, E. A. Aretz, C. E. Jang, M. Schlendorf, F. J. Fallon, W. L. Bouma, “Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography,” Circulation, vol. 107, no. 1, pp. 113–119, 2003. N. S. Samel, H. Mashimo, “Application of OCT in the gastrointestinal tract,” Applied Sciences, vol. 9, no. 15, p. 2991, 2019 T.-H. Tsai, H.-C. Lee, Y.-H. Chen, S.-C. Yang, Y.-C. Li, H.-P. Yu, J.-M. Yang, “Optical coherence tomography in gastroenterology: a review and future outlook,” Journal of Biomedical Optics, vol. 22, no. 12, p. 121716, 2017. H. Long, J. Ji, L. Chen, J. Feng, J. Liao, Y. Yang, “Endobronchial optical coherence tomography: a potential strategy on early diagnosis and treatment for lung cancer,” Frontiers in Oncology, vol. 13, p. 1156218, 2023. G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, E. A. Swanson, J. G. Fujimoto, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Optics Letters, vol. 21, no. 7, pp. 543–545, 1996. M. J. Gora, T. J. Sauk, J. Suter, X. Li, C. H. Rosenberg, A. B. Carruth, N. V. Iftimia, H. L. Regan, J. Jiang, M. E. McNally, C. E. Hart, P. Wang, R. S. Nishioka, H. Mashimo, J. G. Fujimoto, “Endoscopic optical coherence tomography: technologies and clinical applications [Invited],” Biomedical Optics Express, vol. 8, no. 5, pp. 2405–2444, 2017. I. K. Jang, S. Bouma, B. Kang, M. Park, G. Fujimoto, E. Shishkov, J. G. Fujimoto, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound,” Journal of the American College of Cardiology, vol. 39, no. 4, pp. 604–609, 2002. S. Kim, M. Lee, J. Yoon, H. Park, K. Kim, H. J. Oh, Y. J. Yoo, J. W. Song, J. K. Park, C. Kim, “Forward-viewing optical coherence tomography for guiding minimally invasive procedures,” Journal of Biophotonics, vol. 8, no. 5, pp. 371–383, 2015. K. Liang, O. O. Ahsen, Z. Wang, H. C. Lee, W. Liang, B. M. Potsaid, S. H. Yun, J. G. Fujimoto, “Endoscopic forward-viewing optical coherence tomography and angiography with MHz swept source,” Optics Letters, vol. 42, no. 16, pp. 3193–3196, 2017. X. M. Liu, M. J. Cobb, Y. C. Chen, M. B. Kimmey, X. D. Li, “Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography,” Optics Letters, vol. 29, no. 15, pp. 1763–1765, 2004. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “Optical coherence tomography for biomedical imaging and biosensing,” Optical Engineering, vol. 51, no. 8, p. 081203, 2012. M. J. Gora, T. J. Sauk, J. Suter, X. Li, C. H. Rosenberg, A. B. Carruth, N. V. Iftimia, H. L. Regan, J. Jiang, M. E. McNally, C. E. Hart, P. Wang, R. S. Nishioka, H. Mashimo, J. G. Fujimoto, “Endoscopic optical coherence tomography: technologies and clinical applications [Invited],” Biomedical Optics Express, vol. 8, no. 5, pp. 2405–2444, 2017. O. O. Ahsen, K. Liang, Z. Wang, B. M. Potsaid, J. G. Fujimoto, “Correction of rotational distortion for catheter-based en face OCT and OCT angiography,” Optics Letters, vol. 39, no. 20, pp. 5973–5976, 2014. B. Barney, “Introduction to parallel computing,” Lawrence Livermore National Laboratory, no. 6, p. 10, 2010. I. Kuon, R. Tessier, J. Rose, “FPGA architecture: survey and challenges,” Foundations and Trends in Electronic Design Automation, vol. 2, no. 2, pp. 135–253, 2007. Intel Corporation, “FPGA getting started resources,” Intel Corporation, 2024. NVIDIA Corporation, “NVIDIA CUDA C programming guide,” NVIDIA Corporation, 2020. R. F. Souza and S. J. Spechler, “Concepts in the prevention of adenocarcinoma of the distal esophagus and proximal stomach,” CA: A Cancer Journal for Clinicians, vol. 55, pp. 334–351, 2005. A. M. Lee, S. J. Ahn, K. C. Chu, M. H. Kim, T. S. Jeong, and Y. S. Kim, “Wide-field in vivo oral OCT imaging,” Biomedical Optics Express, vol. 6, no. 7, pp. 2664–2674, 2015. J. M. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Optics Express, vol. 3, no. 6, pp. 199–211, 1998. Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Optics Express, vol. 20, no. 4, pp. 4710–4725, 2012. J. A. Izatt and M. A. Choma, “Theory of optical coherence tomography,” in Optical Coherence Tomography: Technology and Applications, W. Drexler and J. G. Fujimoto, Eds., Springer Berlin Heidelberg, pp. 47–72, 2008. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science, vol. 254, no. 5035, pp. 1178–1181, 1991. J. G. Fujimoto and W. Drexler, “Introduction to OCT,” in Optical Coherence Tomography: Technology and Applications, W. Drexler and J. G. Fujimoto, Eds., Springer International Publishing, pp. 3–64, 2015. W. Kang, X. Li, C. Zhou, J. Su, J. M. Jiang, Q. Wang, X. Liu, J. G. Fujimoto, H. Mashimo, “Motion artifacts associated with in vivo endoscopic OCT images of the esophagus,” Optics Express, vol. 19, no. 21, pp. 20722–20735, 2011. B.-C. Chen, “Development of high-speed functional optical coherence tomography (OCT) imaging with a graphics processing unit (GPU)-accelerated engine,” Master’s thesis, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, pp. 1–63, 2022. AlazarTech, “On-FPGA FFT,” AlazarTech, 2023. B. M. Chapman, G. Jost, R. van der Pas, Using OpenMP – Portable Shared Memory Parallel Programming, in Scientific and Engineering Computation, MIT Press, 2008. D. Ruijters, B. ter Haar Romeny, P. Suetens, “Efficient GPU-based texture interpolation using uniform B-splines,” Journal of Graphics Tools, vol. 13, pp. 61–69, 2008. Y.-L. Chen, “Development of high-speed functional optical coherence tomography (OCT) imaging with a graphics processing unit (GPU)-accelerated engine,” Master’s thesis, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, pp. 1–63, 2021. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99613 | - |
| dc.description.abstract | 本論文以導管式光學同調斷層掃描術(catheter-based Optical Coherence Tomography, OCT)為應用核心,設計並實現一套高效能異質運算系統。系統以AlazarTech ATS9373高速數位器為資料擷取平台,結合內建現場可程式化邏輯閘陣列(Field Programmable Gate Array, FPGA)即時進行快速傅立葉轉換(Fast Fourier Transform, FFT),整合我們實驗室研究團隊所發展的1.3.2 圖形處理器(Graphics Processing Units, GPU)為主體之非均勻旋轉畸變(Non-Uniform Rotational Distortion, NURD)修正及光學同調斷層血管造影術(OCT Angiography, OCTA)演算法處理流程,並於CPU運算過程中導入OpenMP平行化技術,協同提升影像前處理效率。
本系統將資料擷取、即時FFT運算、NURD修正、OCTA分析及顯示前的影像加速等流程,分別由FPGA、GPU及CPU協同負責,完整串接即時catheter-based OCT影像資料流,展現異質運算平台於高效醫學影像處理之優勢。 論文內容涵蓋OCT原理、導管式影像NURD修正與OCTA演算法設計,並詳述系統架構、軟體整合流程、影像優化方法。針對FPGA-based FFT於即時成像應用中所遇挑戰,提出包括CPU/OpenMP加速、GPU-NURD修正及GPU-OCTA整合等系統架構與解決方案,進一步提升影像品質與使用者介面(GUI)操作便利性。實驗結果證明,所建構系統於即時成像、影像修正及介面操作等層面均有效提升效能,並增進影像品質及血管顯示效果。 | zh_TW |
| dc.description.abstract | This thesis focuses on catheter-based Optical Coherence Tomography (OCT) and presents the design and implementation of a high-performance heterogeneous computing system. The system employs an AlazarTech ATS9373 high-speed digitizer as its data-acquisition platform, featuring a built-in Field-Programmable Gate Array (FPGA) for real-time Fast Fourier Transform (FFT) processing. In addition, GPU-based algorithms for Non-Uniform Rotational Distortion (NURD) correction and Optical Coherence Tomography Angiography (OCTA) developed by our research group are integrated, with Graphics Processing Units (GPUs) serving as the primary computational engines. OpenMP parallelization is employed on the CPU to further enhance image-preprocessing efficiency.
The proposed architecture assigns data acquisition, real-time FFT computation, NURD correction, OCTA analysis, and pre-display image acceleration to the FPGA, GPU, and CPU, respectively, thereby enabling a seamless real-time catheter-based OCT dataflow. This design highlights the advantages of heterogeneous computing platforms for high-efficiency medical image processing. The thesis covers OCT fundamentals, the design of NURD-correction and OCTA algorithms for catheter-based imaging, and provides detailed descriptions of the system architecture, software-integration workflow, and image-optimization strategies. To address the challenges of FPGA-based FFT in real-time imaging, a system architecture and complementary solutions, including CPU/OpenMP acceleration, GPU-implemented NURD correction, and GPU-OCTA integration, are proposed to further improve image quality and enhance graphical user-interface (GUI) usability. Experimental results demonstrate that the developed system significantly improves performance in real-time imaging, image correction, and interface operation, while delivering higher-quality images and clearer vascular visualization. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:08:39Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:08:39Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii 目次 v 表次 viii 圖次 ix Chapter 1 緒論 1 1.1 導管式光學同調斷層掃描術之發展 1 1.1.1 側視型導管(Side-viewing catheter) 2 1.1.2 前視型導管(Forward-viewing catheter) 3 1.1.3 近端掃描式導管(Proximal-end scanning catheter) 3 1.1.4 遠端掃描式導管(Distal-end scanning catheter) 3 1.2 影像畸變(Distortion) 4 1.3 異質運算(Heterogeneous Computing) 5 1.3.1 現場可程式化邏輯閘陣列(Field Programmable Gate Array, FPGA) 7 1.3.2 圖形處理器(Graphics Processing Units, GPU) 8 1.3.3 多執行緒中心處理器(Central Processing Units, CPU) 9 1.4 研究動機 10 1.5 論文範疇 11 Chapter 2 光學同調斷層掃描術(Optical Coherence Tomography) 12 2.1 光學同調斷層掃描術介紹 12 2.2 光學同調斷層掃描術之基本原理與其特性 12 2.2.1 低同調干涉儀 12 2.2.2 軸向解析度 16 2.2.3 橫向解析度 17 2.3 光學同調斷層掃描術之發展 17 2.3.1 時域式光學同調斷層掃描術(Time-domain OCT) 17 2.3.2 頻域式光學同調斷層掃描術(Spectral-domain OCT) 18 2.3.3 掃頻式光學同調斷層掃描術(Swept-source OCT) 19 2.4 非均勻旋轉畸變(Non-uniform Rotational Distortion, NURD)修正 20 2.5導管式光學同調血管攝影術(Catheter-based Optical Coherence Tomography Angiography, OCTA) 21 Chapter 3 異質運算單元 23 3.1 AlazarTech FPGA-based FFT engine 介紹與架構 23 3.1.1 FPGA-based FFT 23 3.2 CPU 介紹及架構 25 3.1.1 Open Multi-Processing (OpenMP) 26 3.3 GPU介紹及GPU架構 27 3.4 統一計算架構(Compute Unified Device Architecture, CUDA) 28 3.5 NVIDIA Nsight Systems 分析工具介紹 29 Chapter 4 系統架構與演算法開發方法 31 4.1 Catheter-based channel OCT系統架構 31 4.2 C++ graphic user interface (GUI) 33 4.3 用於即時成像之FPGA-based FFT accelerated C++ GUI 及處理框架 34 4.3.1 OpenMP 平行化加速與 CPU 負載優化 36 4.3.2 GPU-NURD interpolation version 36 4.3.3 NURD功能切換之GUI checkbox 37 4.3.4 GPU OCTA Processing 38 4.3.5 OCTA影像優化與閘值調整 39 Chapter 5 實驗結果與討論 41 5.1 FPGA-base FFT 即時成像表現結果 41 5.1.1 OpenMP與CPU資源占用分析 42 5.2 FPGA-base FFT與多模式GPU系統之整合結果 45 5.2.1 GPU-NURD插值修正與GUI NURD correction切換之checkbox比對功能展示 45 5.2.2 GPU-OCTA processing 47 5.2.3 OCTA 影像優化驗證 48 5.2.4 OCTA 閥值功能驗證 50 5.3 系統效能提升分析 52 5.4 討論 54 Chapter 6 結論與未來展望 57 6.1 結論 57 6.2 未來展望 57 參考文獻 59 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 數位轉換卡 | zh_TW |
| dc.subject | 中央處理器 | zh_TW |
| dc.subject | OpenMP平行運算 | zh_TW |
| dc.subject | 圖形處理器 | zh_TW |
| dc.subject | 異質運算 | zh_TW |
| dc.subject | 即時成像 | zh_TW |
| dc.subject | 光學同調斷層掃描術 | zh_TW |
| dc.subject | 現場可程式化邏輯閘陣列 | zh_TW |
| dc.subject | heterogeneous computing | en |
| dc.subject | real-time imaging | en |
| dc.subject | central processing unit (CPU) | en |
| dc.subject | graphics processing unit (GPU) | en |
| dc.subject | OpenMP parallel computing | en |
| dc.subject | digitizar | en |
| dc.subject | field programmable gate array (FPGA) | en |
| dc.subject | optical coherence tomography (OCT) | en |
| dc.title | 基於異質運算架構的高效能導管式光學同調斷層掃描術 | zh_TW |
| dc.title | High-Performance Catheter-Based Optical Coherence Tomography Based on a Heterogeneous Computing Framework | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡睿哲;王義閔;李正匡 | zh_TW |
| dc.contributor.oralexamcommittee | Jui-Che Tsai;Yi-Min Wang;Cheng-Kuang Lee | en |
| dc.subject.keyword | 光學同調斷層掃描術,現場可程式化邏輯閘陣列,數位轉換卡,圖形處理器,中央處理器,OpenMP平行運算,即時成像,異質運算, | zh_TW |
| dc.subject.keyword | optical coherence tomography (OCT),field programmable gate array (FPGA),digitizar,OpenMP parallel computing,graphics processing unit (GPU),central processing unit (CPU),real-time imaging,heterogeneous computing, | en |
| dc.relation.page | 62 | - |
| dc.identifier.doi | 10.6342/NTU202504265 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-14 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | 2030-08-07 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 4.91 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
