Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99612
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳政維zh_TW
dc.contributor.advisorCheng-Wei Chenen
dc.contributor.author任瑨洋zh_TW
dc.contributor.authorChin-Yang Jenen
dc.date.accessioned2025-09-17T16:08:28Z-
dc.date.available2025-09-18-
dc.date.copyright2025-09-17-
dc.date.issued2025-
dc.date.submitted2025-08-11-
dc.identifier.citation[1] S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering Governing Equations from Data by Sparse Identification of Nonlinear Dynamical Systems,” Proceedings of the National Academy of Sciences, vol. 113, no. 15, pp. 3932–3937, 2016. [Online]. Available: https://www.pnas.org/doi/abs/10.1073/pnas.1517384113
[2] T. Lee, B. D. Lee, and F. C. Park, “Optimal Excitation Trajectories for Mechanical Systems Identification,” Automatica, vol. 131, p. 109773, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0005109821002934
[3] A. Perrusquía, R. Garrido, and W. Yu, “An Input Error Method for Parameter Identification of a Class of Euler-Lagrange Systems,” in 2021 18th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE). IEEE, 2021, pp. 1–6. [Online]. Available: https://doi.org/10.1109/CCE53527.2021.9633110
[4] D. Q. Mayne, “Model Predictive Control: Recent Developments and Future Promise,” Automatica, vol. 50, no. 12, pp. 2967–2986, 2014. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0005109814005160
[5] T. A. Johansen and B. Foss, “Constructing NARMAX Models using ARMAX Models,” International Journal of Control, vol. 58, no. 5, pp. 1125–1153, 1993. [Online]. Available: https://doi.org/10.1080/00207179308923046
[6] M. Verhaegen and P. Dewilde, “Subspace Model Identification Part 2. Analysis of the Elementary Output-Error State-Space Model Identification Algorithm,” International Journal of Control, vol. 56, no. 5, pp. 1211–1241, 1992. [Online]. Available: https://doi.org/10.1080/00207179208934364
[7] I. D. Landau and A. Karimi, “An Output Error Recursive Algorithm for Unbiased Identification in Closed Loop,” Automatica, vol. 33, no. 5, pp. 933–938, 1997. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0005109896002233
[8] R. Garrido and R. Miranda, “DC Servomechanism Parameter Identification: A Closed Loop Input Error Approach,” ISA Transactions, vol. 51, no. 1, pp. 42–49, 2012. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0019057811000760
[9] A. Novak, L. Simon, F. Kadlec, and P. Lotton, “Nonlinear System Identification Using Exponential Swept-Sine Signal,” IEEE Transactions on Instrumentation and Measurement, vol. 59, no. 8, pp. 2220–2229, 2010. [Online]. Available: https://doi.org/10.1109/TIM.2009.2031836
[10] K. Kaheman, U. Fasel, J. J. Bramburger, B. Strom, J. N. Kutz, and S. L. Brunton, “The Experimental Multi-Arm Pendulum on a Cart: A Benchmark System for Chaos, Learning, and Control,” HardwareX, vol. 15, p. e00465, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S246806722300072X
[11] H.-F. Cheng, Y.-C. Ho, and C.-W. Chen, “DentiBot: System Design and 6-DoF Hybrid Position/Force Control for Robot-Assisted Endodontic Treatment,” arXiv preprint arXiv:2310.09691, 2023. [Online]. Available: https://arxiv.org/abs/2310.09691
[12] S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Sparse Identification of Nonlinear Dynamics with Control (SINDYc),” IFAC-PapersOnLine, vol. 49, no. 18, pp. 710–715, 2016, 10th IFAC Symposium on Nonlinear Control Systems NOLCOS 2016. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2405896316318298
[13] E. Kaiser, J. N. Kutz, and S. L. Brunton, “Sparse Identification of Nonlinear Dynamics for Model Predictive Control in the Low-data Limit,” Proceedings of the Royal Society A, vol. 474, no. 2219, p. 20180335, 2018. [Online]. Available: https://doi.org/10.1098/rspa.2018.0335
[14] U. Fasel, E. Kaiser, J. N. Kutz, B. W. Brunton, and S. L. Brunton, “SINDy with Control: A Tutorial,” in 2021 60th IEEE Conference on Decision and Control (CDC), 2021, pp. 16–21. [Online]. Available: https://doi.org/10.1109/CDC45484.2021.9683120
[15] F. Abdullah and P. D. Christofides, “Data-based Modeling and Control of Nonlinear Process Systems Using Sparse Identification: An Overview of Recent Results,” Computers & Chemical Engineering, vol. 174, p. 108247, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0098135423001175
[16] D. Lee, W. Chen, L. Wang, Y.-C. Chan, and W. Chen, “Data-driven Design for Metamaterials and Multiscale Systems: a Review,” Advanced Materials, vol. 36, no. 8, p. 2305254, 2024. [Online]. Available: https://doi.org/10.1002/adma.202305254
[17] J. Liang, X. Zhang, K. Wang, M. Tang, and M. Tian, “Discovering Dynamic Models of COVID-19 Transmission,” Transboundary and Emerging Diseases, vol. 69, no. 4, pp. e64–e70, 2022. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/tbed.14263
[18] J. D. Lee, Y. Kim, Y. Kim, and H. Bang, “Sparse Identification of Nonlinear Dynamics-Based Model Predictive Control for Multirotor Collision Avoidance,” IET Control Theory & Applications, vol. 19, no. 1, p. e70049, 2025. [Online]. Available: https://doi.org/10.1049/cth2.70049
[19] A. Purnomo and M. Hayashibe, “Sparse Identification of Lagrangian for Nonlinear Dynamical Systems via Proximal Gradient Method,” Scientific Reports, vol. 13, no. 1, p. 7919, 2023. [Online]. Available: https://doi.org/10.1038/s41598-023-34931-0
[20] A. D. Wilson and T. D. Murphey, “Maximizing Fisher Information using Discrete Mechanics and Projection-based Trajectory Optimization,” in 2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2015, pp. 2403–2409. [Online]. Available: https://doi.org/10.1109/ICRA.2015.7139519
[21] M. Gautier and W. Khalil, “Exciting Trajectories for the Identification of Base Inertial Parameters of Robots,” The International Journal of Robotics Research, vol. 11, no. 4, pp. 362–375, 1992. [Online]. Available: https://doi.org/10.1177/027836499201100408
[22] J. Swevers, C. Ganseman, D. B. Tukel, J. De Schutter, and H. Van Brussel, “Optimal Robot Excitation and Identification,” IEEE Transactions on Robotics and Automation, vol. 13, no. 5, pp. 730–740, 1997. [Online]. Available: https://doi.org/10.1109/70.631234
[23] J. Hu, D. Zachariah, T. Wigren, and P. Stoica, “Adaptive Input Design for Nonlinear System Identification with Operational Constraints,” arXiv preprint arXiv:2502.20941, 2025. [Online]. Available: https://arxiv.org/abs/2502.20941
[24] A. E. Tzikas and M. J. Kochenderfer, “An Iterative Bayesian Approach for System Identification based on Linear Gaussian Models,” arXiv preprint arXiv:2501.16625, 2025. [Online]. Available: https://arxiv.org/abs/2501.16625
[25] B. Armstrong, “On Finding Exciting Trajectories for Identification Experiments Involving Systems with Nonlinear Dynamics,” The International Journal of Robotics Research, vol. 8, no. 6, pp. 28–48, 1989. [Online]. Available: https://doi.org/10.1177/027836498900800603
[26] B. Miao, R. Zane, and D. Maksimovic, “System Identification of Power Converters with Digital Control Through Cross-correlation Methods,” IEEE Transactions on Power Electronics, vol. 20, no. 5, pp. 1093–1099, 2005. [Online]. Available: https://doi.org/10.1109/TPEL.2005.854035
[27] H. M. Shariff, M. H. Fazalul Rahiman, and M. Tajjudin, “Nonlinear System Identification: Comparison Between PRBS and Random Gaussian Perturbation on Steam Distillation Pilot Plant,” in 2013 IEEE 3rd International Conference on System Engineering and Technology. IEEE, 2013, pp. 269–274. [Online]. Available: https://doi.org/10.1109/ICSEngT.2013.6650183
[28] C. R. Rojas, J. S. Welsh, G. C. Goodwin, and A. Feuer, “Robust Optimal Experiment Design for System Identification,” Automatica, vol. 43, no. 6, pp. 993–1008, 2007. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0005109807000696
[29] K. Ayusawa, A. Rioux, E. Yoshida, G. Venture, and M. Gautier, “Generating Persistently Exciting Trajectory Based on Condition Number Optimization,” in 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017, pp. 6518–6524. [Online]. Available: https://doi.org/10.1109/ICRA.2017.7989770
[30] H. Tian, M. Huber, C. E. Mower, Z. Han, C. Li, X. Duan, and C. Bergeles, “Excitation Trajectory Optimization for Dynamic Parameter Identification using Virtual Constraints in Hands-on Robotic System,” in 2024 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2024, pp. 11 605–11 611. [Online]. Available: https://doi.org/10.1109/ICRA57147.2024.10610950
[31] V. Bonnet, P. Fraisse, A. Crosnier, M. Gautier, A. González, and G. Venture, “Optimal Exciting Dance for Identifying Inertial Parameters of an Anthropomorphic Structure,” IEEE Transactions on Robotics, vol. 32, no. 4, pp. 823–836, 2016. [Online]. Available: https://doi.org/10.1109/TRO.2016.2583062
[32] A. D. Wilson, J. A. Schultz, and T. D. Murphey, “Trajectory Synthesis for Fisher Information Maximization,” IEEE Transactions on Robotics, vol. 30, no. 6, pp. 1358–1370, 2014. [Online]. Available: https://doi.org/10.1109/TRO.2014.2345918
[33] J. Vantilt, E. Aertbeliën, F. De Groote, and J. De Schutter, “Optimal Excitation and Identification of the Dynamic Model of Robotic Systems with Compliant Actuators,” in 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015, pp. 2117–2124. [Online]. Available: https://doi.org/10.1109/ICRA.2015.7139478
[34] M. Forgione, X. Bombois, P. M. Van den Hof, and H. Hjalmarsson, “Experiment Design for Parameter Estimation in Nonlinear Systems Based on Multilevel Excitation,” in 2014 European Control Conference (ECC). IEEE, 2014, pp. 25–30. [Online]. Available: https://doi.org/10.1109/ECC.2014.6862274
[35] P. E. Valenzuela, C. R. Rojas, and H. Hjalmarsson, “A Graph Theoretical Approach to Input Design for Identification of Nonlinear Dynamical Models,” Automatica, vol. 51, pp. 233–242, 2015. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0005109814004786
[36] A. De Cock, M. Gevers, and J. Schoukens, “D-optimal Input Design for Nonlinear FIR-type Systems: A Dispersion-based Approach,” Automatica, vol. 73, pp. 88–100, 2016. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0005109816301844
[37] C. Hametner, M. Stadlbauer, M. Deregnaucourt, and S. Jakubek, “Incremental Optimal Process Excitation for Online System Identification Based on Evolving Local Model Networks,” Mathematical and Computer Modelling of Dynamical Systems, vol. 19, no. 6, pp. 505–525, 2013. [Online]. Available: https://doi.org/10.1080/13873954.2013.800122
[38] Y. Liu, M. Kiss, R. Tóth, and M. Schoukens, “On Space-Filling Input Design for Nonlinear Dynamic Model Learning: A Gaussian Process Approach,” arXiv preprint arXiv:2502.17042, 2025. [Online]. Available: https://arxiv.org/abs/2502.17042
[39] H. J. van Waarde, “Beyond Persistent Excitation: Online Experiment Design for Data-Driven Modeling and Control,” IEEE Control Systems Letters, vol. 6, pp. 319–324, 2022. [Online]. Available: https://doi.org/10.1109/LCSYS.2021.3073860
[40] M. Camlibel, H. van Waarde, and P. Rapisarda, “The Shortest Experiment for Linear System Identification,” Systems & Control Letters, vol. 197, p. 106045, 2025. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0167691125000271
[41] J. Qian, M. Nadri, and P. Dufour, “Optimal Input Design for Parameter Estimation of Nonlinear Systems: Case Study of an Unstable Delta Wing,” International Journal of Control, vol. 90, no. 4, pp. 873–887, 2017. [Online]. Available: https://doi.org/10.1080/00207179.2016.1225990
[42] I. Markovsky and S. Van Huffel, “Overview of Total Least-squares Methods,” Signal Processing, vol. 87, no. 10, pp. 2283–2302, 2007, special Section: Total Least Squares and Errors-in-Variables Modeling. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0165168407001405
[43] S. Van Huffel and H. Zha, “10 The Total Least Squares Problem,” in Computational Statistics, ser. Handbook of Statistics. Elsevier, 1993, vol. 9, pp. 377–408. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0169716105801348
[44] S. Van Huffel and J. Vandewalle, “Analysis and Properties of the Generalized Total Least Squares Problem AX ≈ B When Some or All Columns in A are Subject to Error,” SIAM Journal on Matrix Analysis and Applications, vol. 10, no. 3, pp. 294–315, 07 1989. [Online]. Available: https://doi.org/10.1137/0610023
[45] S. L. Lacy, D. S. Bernstein, and R. S. Erwin, “Finite-horizon Input Selection for System Identification,” in 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475), vol. 6. IEEE, 2003, pp. 6485–6490 Vol.6. [Online]. Available: https://doi.org/10.1109/CDC.2003.1272390
[46] T. Çimen, “State-Dependent Riccati Equation (SDRE) Control: A Survey,” IFAC Proceedings Volumes, vol. 41, no. 2, pp. 3761–3775, 2008, 17th IFAC World Congress. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1474667016395349
[47] C. Urrea and J. Pascal, “Dynamic Parameter Identification Based on Lagrangian Formulation and Servomotor-type Actuators for Industrial Robots,” International Journal of Control, Automation and Systems, vol. 19, no. 8, pp. 2902–2909, 2021. [Online]. Available: https://doi.org/10.1007/s12555-020-0476-8
[48] D. J. López-Araujo and A. Loría, “Closed-loop Identification and Tracking Control of Lagrangian Systems Under Input Constraints,” in 2015 54th IEEE Conference on Decision and Control (CDC). IEEE, 2015, pp. 6966–6971. [Online]. Available: https://doi.org/10.1109/CDC.2015.7403317
[49] M. Ahmadi, U. Topcu, and C. Rowley, “Control-Oriented Learning of Lagrangian and Hamiltonian Systems,” in 2018 Annual American Control Conference (ACC). IEEE, 2018, pp. 520–525. [Online]. Available: https://doi.org/10.23919/ACC.2018.8431726
[50] R. Tibshirani, “Regression Shrinkage and Selection Via the LASSO,” Journal of the Royal Statistical Society: Series B (Methodological), vol. 58, no. 1, pp. 267–288, 12 2018. [Online]. Available: https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
[51] A. E. Hoerl and R. W. Kennard, “Ridge Regression: Biased Estimation for Nonorthogonal Problems,” Technometrics, vol. 12, no. 1, pp. 55–67, 1970. [Online]. Available: https://www.tandfonline.com/doi/abs/10.1080/00401706.1970.10488634
[52] H. Zou and T. Hastie, “Regularization and Variable Selection Via the Elastic Net,” Journal of the Royal Statistical Society Series B: Statistical Methodology, vol. 67, no. 2, pp. 301–320, 03 2005. [Online]. Available: https://doi.org/10.1111/j.1467-9868.2005.00503.x
[53] I. CVX Research, “CVX: Matlab Software for Disciplined Convex Programming, version 2.0,” https://cvxr.com/cvx, Aug. 2012.
[54] M. Grant and S. Boyd, “Graph Implementations for Nonsmooth Convex Programs,” in Recent Advances in Learning and Control, ser. Lecture Notes in Control and Information Sciences, V. Blondel, S. Boyd, and H. Kimura, Eds. Springer-Verlag Limited, 2008, pp. 95–110, https://web.stanford.edu/~boyd/papers/graph_dcp.html.
[55] K.-C. Toh, M. J. Todd, and R. H. Tütüncü, “SDPT3—A MATLAB Software Package for Semidefinite Programming, Version 1.3,” Optimization Methods and Software, vol. 11, no. 1-4, pp. 545–581, 1999. [Online]. Available: https://doi.org/10.1080/10556789908805762
[56] J. J. Craig, “Adaptive Control of Mechanical Manipulators,” Ph.D. Thesis, Department of Electrical Engineering, Stanford University, Stanford, CA, 1986.
[57] J. J. Craig, P. Hsu, and S. S. Sastry, “Adaptive Control of Mechanical Manipulators,” The International Journal of Robotics Research, vol. 6, no. 2, pp. 16–28, 1987. [Online]. Available: https://doi.org/10.1177/027836498700600202
[58] J. C. Willems, P. Rapisarda, I. Markovsky, and B. L. De Moor, “A Note on Persistency of Excitation,” Systems & Control Letters, vol. 54, no. 4, pp. 325–329, 2005. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0167691104001434
[59] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic Differentiation in PyTorch,” in NIPS 2017 Workshop on Autodiff, 2017. [Online]. Available: https://openreview.net/forum?id=BJJsrmfCZ
[60] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” arXiv preprint arXiv:1412.6980, 2017. [Online]. Available: https://arxiv.org/abs/1412.6980
[61] A. Wiesel, Y. C. Eldar, and A. Yeredor, “Linear Regression With Gaussian Model Uncertainty: Algorithms and Bounds,” IEEE Transactions on Signal Processing, vol. 56, no. 6, pp. 2194–2205, 2008. [Online]. Available: https://doi.org/10.1109/TSP.2007.914323
[62] G.W. Stewart, “Stochastic Perturbation Theory,” SIAM Review, vol. 32, no. 4, pp. 579–610, 1990. [Online]. Available: https://doi.org/10.1137/1032121
[63] I. Ball, “Bauer’s Maximum Principle for Quasiconvex Functions,” arXiv preprint arXiv:2305.04893, 2023. [Online]. Available: https://arxiv.org/abs/2305.04893
[64] H. Akaike, Information Theory and an Extension of the Maximum Likelihood Principle. New York, NY: Springer New York, 1998, pp. 199–213. [Online]. Available: https://doi.org/10.1007/978-1-4612-1694-0_15
[65] ——, “A New Look at the Statistical Model Identification,” IEEE Transactions on Automatic Control, vol. 19, no. 6, pp. 716–723, 1974. [Online]. Available: https://doi.org/10.1109/TAC.1974.1100705
[66] G. Schwarz, “Estimating the Dimension of a Model,” The Annals of Statistics, vol. 6, no. 2, pp. 461–464, 1978. [Online]. Available: https://www.jstor.org/stable/2958889
[67] H. Zou, T. Hastie, and R. Tibshirani, “On the "Degrees of Freedom” of the LASSO,” The Annals of Statistics, vol. 35, no. 5, pp. 2173 – 2192, 2007. [Online]. Available: https://doi.org/10.1214/009053607000000127
[68] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,” Nature Methods, vol. 17, pp. 261–272, 2020. [Online]. Available: https://rdcu.be/b08Wh
[69] W. Su, M. Bogdan, and E. Candès, “False Discoveries Occur Early on the LASSO Path,” The Annals of Statistics, vol. 45, no. 5, pp. 2133–2150, 2017. [Online]. Available: https://www.jstor.org/stable/26362897
[70] M. Herceg, M. Kvasnica, C. N. Jones, and M. Morari, “Multi-Parametric Toolbox 3.0,” in 2013 European Control Conference (ECC), Zürich, Switzerland, July 17–19 2013, pp. 502–510, https://control.ee.ethz.ch/~mpt. [Online]. Available: 10.23919/ECC.2013.6669862
[71] A. Savitzky and M. J. E. Golay, “Smoothing and Differentiation of Data by Simplified Least Squares Procedures,” Analytical Chemistry, vol. 36, no. 8, pp. 1627–1639, 1964. [Online]. Available: https://doi.org/10.1021/ac60214a047
[72] Y.-C. Weng, “Trajectory Tracking Control of an Omnidirectional Mobile Robot,” Master’s thesis, Department of Engineering Science, National Cheng Kung University, 2007, in Chinese. [Online]. Available: https://hdl.handle.net/11296/235tqc
[73] J.-C. Huang, “Balance Control of the Inverted Pendulum System Actuated by a Control Moment Gyroscope,” Master’s thesis, Department of Engineering Science, National Cheng Kung University, 2014, in Chinese. [Online]. Available: https://hdl.handle.net/11296/y39wby
[74] Y. Tianjian, A. Purnomo, and M. Hayashibe, “Sparse Identification of Lagrangian for Nonlinear Dynamical Systems Involving Dissipation Function,” Journal of Computational and Nonlinear Dynamics, vol. 20, no. 5, p. 051003, 03 2025. [Online]. Available: https://doi.org/10.1115/1.4068081
[75] J. Hsin, S. Agarwal, A. Thorpe, L. Sentis, and D. Fridovich-Keil, “Symbolic Regression on Sparse and Noisy Data with Gaussian Processes,” arXiv preprint arXiv:2309.11076, 2024. [Online]. Available: https://arxiv.org/abs/2309.11076
[76] S. Kuang and X. Lin, “Debiasing Continuous-time Nonlinear Autoregressions,” arXiv preprint arXiv:2504.05525, 2025. [Online]. Available: https://arxiv.org/abs/2504.05525
[77] R. A. Fisher, “On the Mathematical Foundations of Theoretical Statistics,” Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, vol. 222, no. 594-604, pp. 309–368, 1922. [Online]. Available: https://doi.org/10.1098/rsta.1922.0009
[78] H. Cramér, Mathematical Methods of Statistics. Princeton university press, 1999, vol. 9. 153
[79] C. R. Rao, “Information and the Accuracy Attainable in the Estimation of Statistical Parameters,” in Breakthroughs in Statistics: Foundations and Basic Theory, S. Kotz and N. L. Johnson, Eds. New York, NY: Springer New York, 1992, pp. 235–247. [Online]. Available: https://doi.org/10.1007/978-1-4612-0919-5_16
[80] F. Pukelsheim, Optimal Design of Experiments. Society for Industrial and Applied Mathematics, 2006. [Online]. Available: https://epubs.siam.org/doi/abs/10.1137/1.9780898719109
[81] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. USA: Prentice-Hall, Inc., 1993.
[82] H. A. Barker, A. H. Tan, and K. R. Godfrey, “Optimal Levels of Perturbation Signals for Nonlinear System Identification,” IEEE Transactions on Automatic Control, vol. 49, no. 8, pp. 1404–1407, 2004. [Online]. Available: https://doi.org/10.1109/TAC.2004.832860
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99612-
dc.description.abstract在當代基於模型的控制方法中,由於準確的系統建模可以顯著提升控制效果,因此系統識別在其中扮演了關鍵角色。近期結合稀疏性的數據驅動識別方法,例如非線性動態稀疏識別(SINDy)、擴展拉格朗日-SINDy(xL-SINDy)及其變體,在歐拉─拉格朗日系統的識別上展現出極大潛力。然而,這些方法往往忽略了激發設計對識別效果的影響。
本研究提出線上最佳擴展拉格朗日動態稀疏識別框架(簡稱 OOL-SINDy),該方法可線上即時生成最佳激發輸入,以提升識別準確性。在每一個時間步長內,OOL-SINDy 透過已蒐集的資料估測系統,並藉由最小化克拉梅爾─拉奧下界(Cramér–Rao bound)來計算下一個輸入。此線上最佳化機制能加速收斂,並在較短時間內獲得更準確的模型,優於傳統的激發輸入方法。值得一提的是,OOL-SINDy 為全數據驅動的方法,不需要太多系統的先驗知識,並能在線上自我調整。多項模擬以及實作於反應輪系統上的硬體實驗皆驗證了此方法的有效性與強健性。
zh_TW
dc.description.abstractSystem identification is fundamental to modern model-based control, as accurate models enable superior control performance. Recent data-driven identification methods that incorporate sparsity, such as \textit{Sparse Identification of Nonlinear Dynamical Systems (SINDy)}, \textit{Extended Lagrangian-SINDy (xL-SINDy)}, and their variants, have shown great promise in identifying Euler–Lagrangian systems. However, these approaches often overlook the impact of excitation trajectory design.
This study introduces the \textit{Online-Optimized xL-SINDy (OOL-SINDy)} framework, which generates optimal excitation signals in real time to improve model identification. At each time step, OOL-SINDy estimates the system from collected data and computes the next input by minimizing the Cramér–Rao bound of the parameter estimates. This online optimization accelerates convergence and yields more accurate models in less time compared to traditional excitation signals. Notably, OOL-SINDy is fully data-driven, requires minimal prior knowledge of the system, and adapts online. Extensive simulation studies and hardware experiments on a reaction wheel system confirm the effectiveness and robustness of the proposed framework.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:08:28Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-17T16:08:28Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsOral Examination Committee Approval . . . . . . . . . . . . . . . . . . . i
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Chinese Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.1 System Identification of Nonlinear Dynamic Systems . . . . . . . . . 2
1.2 Previous Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Black Box Methods . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Excitation Signals . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.1 Online Optimal Excitation Input Sequencing . . . . . . . . . . . . . 9
1.3.2 Output Constraints During Identification Process . . . . . . . . . . 9
1.3.3 Advantages and Innovations . . . . . . . . . . . . . . . . . . . . . 10
1.4 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 Gray Box Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Black Box Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Sparse Identification of Nonlinear Dynamical systems (SINDy) . . . . 15
2.2.2 Extended Lagrangian-SINDy (xL-SINDy) . . . . . . . . . . . . . . . . 21
2.3 Literature Review: Optimal Excitation Signals . . . . . . . . . . . . 25
2.3.1 Offline Excitation Signal Planning . . . . . . . . . . . . . . . . . 26
2.3.2 Online Excitation Input Design . . . . . . . . . . . . . . . . . . . 30
2.3.3 Discussion and Research Gaps . . . . . . . . . . . . . . . . . . . . 32
3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.2 Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Pre-Process Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.1 Library Preparation and Candidate generation . . . . . . . . . . . . 40
3.2.2 Prior Data Collection . . . . . . . . . . . . . . . . . . . . . . . 42
3.3 Online Optimization Phase . . . . . . . . . . . . . . . . . . . . . . 43
3.3.1 Model Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.2 CRB Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.3 Solving Optimal Input . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.4 Dealing with Output Boundaries . . . . . . . . . . . . . . . . . . . 53
3.4 Post-Process Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4.1 LASSO with AIC/BIC . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.2 Overall Post-Process . . . . . . . . . . . . . . . . . . . . . . . . 58
3.5 Algorithm Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4 Numerical Results and Discussion . . . . . . . . . . . . . . . . . . . . 63
4.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.1 Single pendulum . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.2 Cart pendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2.3 Double pendulum . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5 Experimental Results and Discussions . . . . . . . . . . . . . . . . . . 109
5.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.1.1 Plant and Controller . . . . . . . . . . . . . . . . . . . . . . . . 109
5.1.2 Dealing with State Derivatives . . . . . . . . . . . . . . . . . . . 112
5.1.3 Dealing with Dissipative Forces . . . . . . . . . . . . . . . . . . 115
5.1.4 Voltage-Torque Relationship . . . . . . . . . . . . . . . . . . . . 118
5.1.5 Setup for OOL-SINDy . . . . . . . . . . . . . . . . . . . . . . . . 123
5.2 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.2.1 Gaussian as Prior Input . . . . . . . . . . . . . . . . . . . . . . 128
5.2.2 PRBS as Prior Input . . . . . . . . . . . . . . . . . . . . . . . . 130
5.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.3.1 Potential Defects . . . . . . . . . . . . . . . . . . . . . . . . . 132
6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 135
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
A Least Squares Solvers and Linear Regressions . . . . . . . . . . . . . . 141
A.1 Ordinary Least Squares (OLS) . . . . . . . . . . . . . . . . . . . . . 141
A.2 Generalized Least Squares (GLS) . . . . . . . . . . . . . . . . . . . 143
A.3 Total Least Squares (TLS) . . . . . . . . . . . . . . . . . . . . . . 144
A.4 Generalized Total Least Squares (GTLS) . . . . . . . . . . . . . . . . 146
A.5 Sparsity Considerations: Ridge and LASSO . . . . . . . . . . . . . . . 148
B Fisher Information Matrix (FIM) and Cramér–Rao Bound (CRB) . . . . . . . 151
C Optimality Criterions . . . . . . . . . . . . . . . . . . . . . . . . . 157
D Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
E Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
E.1 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
E.2 Vectorization and Reformulation . . . . . . . . . . . . . . . . . . . 164
E.3 Fisher Information Matrix and Cramér-Rao Bound . . . . . . . . . . . . 165
F Signal Design in Subsection 5.1.4 . . . . . . . . . . . . . . . . . . . 171
G Test Set in Section 5.2 . . . . . . . . . . . . . . . . . . . . . . . . 175
H Arguments on PRBS . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
-
dc.language.isoen-
dc.subject歐拉─拉格朗日系統zh_TW
dc.subject非線性系統識別zh_TW
dc.subject非線性動態稀疏識別zh_TW
dc.subject克拉梅爾─拉奧下界zh_TW
dc.subject最佳實驗設計zh_TW
dc.subjectD-最適設計zh_TW
dc.subjectSparse Identification of Nonlinear Dynamics (SINDy)en
dc.subjectEuler-Lagrangian Systemsen
dc.subjectD-Optimal Designen
dc.subjectOptimal Experiment Designen
dc.subjectCramér–Rao bounden
dc.subjectNonlinear System Identificationen
dc.title透過線上激發輸入序列演算法加速歐拉─拉格朗日動態系統的稀疏識別zh_TW
dc.titleAccelerating Sparse Identification of Euler-Lagrange Dynamical Systems via Online Excitation Input Sequencingen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李宇修;傅立成;李彥寰;連豊力zh_TW
dc.contributor.oralexamcommitteeYu-Hsiu Lee;Li-Chen Fu;Yen-Huan Li;Feng-Li Lianen
dc.subject.keyword歐拉─拉格朗日系統,非線性系統識別,非線性動態稀疏識別,克拉梅爾─拉奧下界,最佳實驗設計,D-最適設計,zh_TW
dc.subject.keywordEuler-Lagrangian Systems,Nonlinear System Identification,Sparse Identification of Nonlinear Dynamics (SINDy),Cramér–Rao bound,Optimal Experiment Design,D-Optimal Design,en
dc.relation.page192-
dc.identifier.doi10.6342/NTU202504001-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-13-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電機工程學系-
dc.date.embargo-lift2030-08-05-
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2030-08-05
9.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved