Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99605
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張瑞峰zh_TW
dc.contributor.advisorRuey-Feng Changen
dc.contributor.author孫皓廷zh_TW
dc.contributor.authorHao-Ting Sunen
dc.date.accessioned2025-09-17T16:07:11Z-
dc.date.available2025-09-18-
dc.date.copyright2025-09-17-
dc.date.issued2025-
dc.date.submitted2025-08-20-
dc.identifier.citation[1] D. J. Browning, "Pharmacology of chloroquine and hydroxychloroquine," in Hydroxychloroquine and chloroquine retinopathy: Springer, 2014, pp. 35–63.
[2] G. Panozzo and A. Mercanti, "Optical coherence tomography findings in myopic traction maculopathy," Archives of ophthalmology, vol. 122, no. 10, pp. 1455–1460, 2004.
[3] M. Niemeijer, B. Van Ginneken, J. Staal, M. S. Suttorp-Schulten, and M. D. Abràmoff, "Automatic detection of red lesions in digital color fundus photographs," IEEE Transactions on medical imaging, vol. 24, no. 5, pp. 584–592, 2005.
[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet Classification with Deep Convolutional Neural Networks," in Advances in Neural Information Processing Systems, F. Pereira, C. J. Burges, L. Bottou, and K. Q. Weinberger, Eds., 2012, vol. 25: Curran Associates, Inc.
[5] K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.
[6] A. G. Howard et al., "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications," arXiv preprint arXiv:1704.04861, 2017.
[7] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, "A ConvNet for the 2020s," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, June 2022, pp. 11976–11986.
[8] S. Woo et al., "ConvNeXt V2: Co-Designing and Scaling ConvNets With Masked Autoencoders," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, Canada, June 2023, pp. 16133–16142.
[9] W. Yu, P. Zhou, S. Yan, and X. Wang, "InceptionNeXt: When Inception Meets ConvNeXt," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, June 2024, pp. 5672–5683.
[10] H. Zhang et al., "ResNeSt: Split-Attention Networks," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2022, pp. 2736–2746.
[11] A. Dosovitskiy et al., "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale," in International Conference on Learning Representations, Virtual Event, May 2021.
[12] T. De Silva, G. Jayakar, P. Grisso, N. Hotaling, E. Y. Chew, and C. A. Cukras, "Deep Learning-Based Automatic Detection of Ellipsoid Zone Loss in Spectral-Domain OCT for Hydroxychloroquine Retinal Toxicity Screening," Ophthalmology Science, vol. 1, no. 4, p. 100060, 2021.
[13] G. Kalra et al., "Machine Learning–Based Automated Detection of Hydroxychloroquine Toxicity and Prediction of Future Toxicity Using Higher-Order OCT Biomarkers," Ophthalmology Retina, vol. 6, no. 12, pp. 1241–1252, 2022.
[14] P. Woodward-Court et al., "Deep-learning algorithm for the diagnosis and prediction of hydroxychloroquine retinopathy: An International, multi-institutional study," Ophthalmology Retina, 2025.
[15] J. M. Ahn, S. Kim, K.-S. Ahn, S.-H. Cho, K. B. Lee, and U. S. Kim, "A deep learning model for the detection of both advanced and early glaucoma using fundus photography," PloS one, vol. 13, no. 11, p. e0207982, 2018.
[16] F. Grassmann et al., "A Deep Learning Algorithm for Prediction of Age-Related Eye Disease Study Severity Scale for Age-Related Macular Degeneration from Color Fundus Photography," Ophthalmology, vol. 125, no. 9, pp. 1410–1420, 2018.
[17] R. Raman, S. Srinivasan, S. Virmani, S. Sivaprasad, C. Rao, and R. Rajalakshmi, "Fundus photograph-based deep learning algorithms in detecting diabetic retinopathy," Eye, vol. 33, no. 1, pp. 97–109, 2019.
[18] Y. Bengio, J. r. Louradour, me, R. Collobert, and J. Weston, "Curriculum learning," in Proceedings of the 26th Annual International Conference on Machine Learning, New York, NY, USA, 2009: Association for Computing Machinery, in ICML '09, pp. 41–48.
[19] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, "Adaptive Mixtures of Local Experts," Neural Computation, vol. 3, no. 1, pp. 79–87, 1991.
[20] L. W. Tao, Z. Wu, R. H. Guymer, and C. D. Luu, "Ellipsoid zone on optical coherence tomography: a review," Clinical \& experimental ophthalmology, vol. 44, no. 5, pp. 422–430, 2016.
[21] O. Strauss, "The retinal pigment epithelium in visual function," Physiological reviews, 2005.
[22] J. Son, W. Bae, S. Kim, S. J. Park, and K.-H. Jung, "Classification of Findings with Localized Lesions in Fundoscopic Images Using a Regionally Guided CNN," in Computational Pathology and Ophthalmic Medical Image Analysis, Cham, Switzerland, 2018, pp. 176–184.
[23] J. Son, J. Y. Shin, H. D. Kim, K.-H. Jung, K. H. Park, and S. J. Park, "Development and Validation of Deep Learning Models for Screening Multiple Abnormal Findings in Retinal Fundus Images," Ophthalmology, vol. 127, no. 1, pp. 85–94, 2020.
[24] Z. Liu et al., "Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows," in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, Canada, October 2021, pp. 10012–10022.
[25] M. M. Derakhshani et al., "Assisted excitation of activations: A learning technique to improve object detectors," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, June 2019, pp. 9201–9210.
[26] H. Touvron, M. Cord, A. Sablayrolles, G. Synnaeve, and H. e. J\'egou, "Going Deeper With Image Transformers," in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2021, pp. 32–42.
[27] Z. Yang, L. Zhu, Y. Wu, and Y. Yang, "Gated channel transformation for visual recognition," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, June 2020, pp. 11794–11803.
[28] J. Hu, L. Shen, and G. Sun, "Squeeze-and-excitation networks," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, June 2018, pp. 7132–7141.
[29] D. Misra, T. Nalamada, A. U. Arasanipalai, and Q. Hou, "Rotate to attend: Convolutional triplet attention module," in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Virtual Event, January 2021, pp. 3139–3148.
[30] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, "Cbam: Convolutional block attention module," in Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, September 2018, pp. 3–19.
[31] C. Drummond, R. C. Holte, and others, "C4. 5, class imbalance, and cost sensitivity: why under-sampling beats over-sampling," in Workshop on learning from imbalanced datasets II, 2003, vol. 11.
[32] C. Ju, A. Bibaut, and M. van der Laan, "The relative performance of ensemble methods with deep convolutional neural networks for image classification," Journal of Applied Statistics, vol. 45, no. 15, pp. 2800–2818, 2018.
[33] G. Polat, I. Ergenc, H. T. Kani, Y. O. Alahdab, O. Atug, and A. Temizel, "Class Distance Weighted Cross-Entropy Loss for Ulcerative Colitis Severity Estimation," in Medical Image Understanding and Analysis, Cham, G. Yang, A. Aviles-Rivero, M. Roberts, and C.-B. Schnlieb, Eds., 2022: Springer International Publishing, pp. 157–171.
[34] R. Kohavi and others, "A study of cross-validation and bootstrap for accuracy estimation and model selection," in Ijcai, 1995, vol. 14, pp. 1137–1145.
[35] S. K. Kumar, "On weight initialization in deep neural networks," CoRR, vol. abs/1704.08863, 2017.
[36] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, "Focal Loss for Dense Object Detection," in Proceedings of the IEEE International Conference on Computer Vision (ICCV), Oct 2017.
[37] J. A. Hanley and B. J. McNeil, "The meaning and use of the area under a receiver operating characteristic (ROC) curve," Radiology, vol. 143, no. 1, pp. 29–36, 1982.
[38] T. G. Dietterich, "Approximate statistical tests for comparing supervised classification learning algorithms," Neural computation, vol. 10, no. 7, pp. 1895–1923, 1998.
[39] E. R. DeLong, D. M. DeLong, and D. L. Clarke-Pearson, "Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach," Biometrics, pp. 837–845, 1988.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99605-
dc.description.abstract視網膜病變可由多種原因引起,嚴重影響患者視力和生活品質。傳統上,視網膜黃斑部病變主要透過光學相干斷層掃描進行檢測,但由於其斷層掃描的特性,光學相干斷層掃描只能檢測黃斑部等視網膜中央區域,限制了其能檢測的視網膜疾病種類。眼底攝影是另外一種檢測視網膜病變的方式,其能夠檢測更廣泛範圍的視網膜,但其影像特性導致眼科醫師難以用其診斷黃斑部病變。本研究著重在以眼底鏡影像檢測自體免疫性疾病用藥羥氯喹導致的視網膜黃斑部病變,是第一篇嘗試這麼做的研究。我們所提出的基於深度學習的電腦輔助診斷系統,包括影像前處理、黃斑部遮罩生成與視網膜病變預測。在影像前處理,會先調整圖片大小並進行裁切。同時,影像會被輸入中央凹定位模型來預測黃斑部的位置,並根據預測結果來生成黃斑部遮罩。接著,眼底鏡影像與黃斑部遮罩會被輸入分類器來判斷黃斑部是否出現病變。中央凹定位模型與分類器兩者都是以ConvNeXt網路為基底。最後,我們在訓練模型時加入了課程學習、集成學習與混合專家模型來嘗試改善模型預測的準確性和穩定性。根據實驗結果,本研究提出的電腦輔助診斷系統達到了77.73%的準確度、77.14%的靈敏度、77.86%的特異度與0.8442的ROC曲線下面積。這些結果表明使用眼底鏡影像檢測黃斑部病變具有可行性及有效性,有助於輔助眼科醫生進行診斷。zh_TW
dc.description.abstractHydroxychloroquine (HCQ), besides its antimalarial use, is also prescribed for autoimmune diseases such as rheumatoid arthritis. However, when taken long-term for chronic conditions, HCQ can exert toxic effects on the retinal macula. Consequently, patients receiving prolonged HCQ therapy must undergo regular screening for maculopathy. Maculopathy is typically detected via optical coherence tomography (OCT), but OCT’s tomographic nature limits it to imaging central retinal regions such as the macula, restricting the spectrum of detectable diseases. In contrast, color fundus photography (CFP) captures a wider retinal field and can reveal pathologies beyond OCT’s reach. Yet CFP’s image characteristics fail to display obvious visual changes, making it difficult even for expert ophthalmologists to diagnose HCQ-induced maculopathy from fundus photos alone. Therefore, this study seeks to detect HCQ-induced maculopathy using CFP images, and we believe it is the first effort in this direction. Our proposed computer aided diagnosis (CAD) system consists of three stages: image preprocessing, macular mask generation, and retinopathy classification. In preprocessing, fundus images are resized and cropped. Simultaneously, they are fed into a fovea localization network to predict the fovea’s position, from which a macular mask is generated. The cropped image and its corresponding mask are then input to a classifier that determines the presence of maculopathy. Both the fovea localization network and the classifier are built on the ConvNeXt architecture. During training, we incorporate Curriculum Learning, Ensemble Learning, and a Mixture of Experts framework to enhance prediction accuracy and robustness. In our experiments, the proposed CAD system achieved 77.73% accuracy, 77.14% sensitivity, 77.86% specificity, and an area under the ROC curve (AUC) of 0.8442. These results demonstrate that our method accurately identifies severe maculopathy, although detecting mild ones remains challenging.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:07:11Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-17T16:07:11Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
摘要 iii
Abstract v
Table of Contents vii
List of Figures ix
List of Tables xi
Chapter 1. Introduction 1
Chapter 2. Material 5
Chapter 3. Methods 9
3.1 Image Preprocessing 10
3.2 Mask Generation 11
3.2.1 Fovea Localization Network 12
3.2.2 Postprocessing 13
3.3 Retinopathy Classification 14
3.3.1 Attention-Augmented ConvNeXt block 15
3.3.2 Soft Spatial Guidance Mechanisms 19
3.3.3 Curriculum Learning 23
3.3.4 Ensemble and Mixture of Experts 25
Chapter 4. Experimental Results 31
4.1 Experimental Setting and Evaluation 31
4.1.1 Experimental Environment 31
4.1.2 Training of Fovea Localization Network 31
4.1.3 Experimental Setting of Retinopathy Classification 33
4.1.4 Evaluation 35
4.2 Experimental Results 36
4.2.1 Model Comparison 37
4.2.2 Attention Modules and Curriculum Learning 40
4.2.3 Ensemble and Mixture of Experts 45
Chapter 5. Discussion and Conclusion 50
5.1 Discussion 50
5.2 Conclusion 52
References 54
-
dc.language.isoen-
dc.subject眼底攝影zh_TW
dc.subject課程學習zh_TW
dc.subject集成學習zh_TW
dc.subject混合專家模型zh_TW
dc.subject視網膜黃斑部病變zh_TW
dc.subject羥氯喹zh_TW
dc.subject電腦輔助診斷zh_TW
dc.subject卷積神經網路zh_TW
dc.subjectMixture of expertsen
dc.subjectFundus photographyen
dc.subjectRetinal maculopathyen
dc.subjectEnsemble learningen
dc.subjectCurriculum learningen
dc.subjectConvolutional neural networken
dc.subjectHydroxychloroquineen
dc.subjectComputer aided diagnosisen
dc.title深度學習模型於眼底鏡影像篩檢羥氯喹視網膜病變之應用zh_TW
dc.titleDeep Learning Models for Hydroxychloroquine Retinopathy Screening Using Color Fundus Photosen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳啓禎;羅崇銘zh_TW
dc.contributor.oralexamcommitteeChii-Jen Chen;Chung-Ming Loen
dc.subject.keyword視網膜黃斑部病變,眼底攝影,電腦輔助診斷,羥氯喹,卷積神經網路,課程學習,集成學習,混合專家模型,zh_TW
dc.subject.keywordRetinal maculopathy,Fundus photography,Computer aided diagnosis,Hydroxychloroquine,Convolutional neural network,Curriculum learning,Ensemble learning,Mixture of experts,en
dc.relation.page57-
dc.identifier.doi10.6342/NTU202504424-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-20-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊網路與多媒體研究所-
dc.date.embargo-lift2030-07-16-
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
2 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved