請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99600完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林建中 | zh_TW |
| dc.contributor.advisor | Chien-Chung Lin | en |
| dc.contributor.author | 呂健瑜 | zh_TW |
| dc.contributor.author | Chien-Yu Lu | en |
| dc.date.accessioned | 2025-09-17T16:06:17Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-13 | - |
| dc.identifier.citation | [1] E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, "White‐light‐emitting diodes with quantum dot color converters for display backlights," Advanced materials, vol. 22, no. 28, pp. 3076–3080, 2010.
[2] Y. Wang et al., "Patterning Technologies of Quantum Dots for Color Conversion Micro-LED Display Applications," Nanoscale, 2025. [3] Z. Hu et al., "Inkjet printed uniform quantum dots as color conversion layers for full-color OLED displays," Nanoscale, vol. 12, no. 3, pp. 2103–2110, 2020. [4] S. J. Park, C. Keum, H. Zhou, T. W. Lee, W. Choe, and H. Cho, "Progress and prospects of nanoscale emitter technology for AR/VR displays," Advanced Materials Technologies, vol. 8, no. 20, p. 2201070, 2023. [5] G. Dong, H. Wang, G. Chen, Q. Pan, and J. Qiu, "Quantum dot-doped glasses and fibers: fabrication and optical properties," Frontiers in materials, vol. 2, p. 13, 2015. [6] D. Bera, L. Qian, T.-K. Tseng, and P. H. Holloway, "Quantum dots and their multimodal applications: a review," Materials, vol. 3, no. 4, pp. 2260–2345, 2010. [7] E. Corcione et al., "Machine learning enhanced evaluation of semiconductor quantum dots," Scientific Reports, vol. 14, no. 1, p. 4154, 2024. [8] L. Sinatra, J. Pan, and O. M. Bakr, "Methods of synthesizing monodisperse colloidal quantum dots," Mater. Matters, vol. 12, no. 1, 2017. [9] H. S. Mansur, "Quantum dots and nanocomposites," Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, vol. 2, no. 2, pp. 113–129, 2010. [10] L. Kuusela et al., "High-power DBR lasers at elevated operation temperature," in Novel In-Plane Semiconductor Lasers XXIV, 2025, vol. 13385: SPIE, pp. 112–114. [11] J. Bean et al., "High-speed polysilicon resonant-cavity photodiode with SiO 2-Si Bragg reflectors," IEEE Photonics Technology Letters, vol. 9, no. 6, pp. 806–808, 1997. [12] L. S. Theurer et al., "Quantification of losses in bent waveguide distributed Bragg reflector diode lasers at 785 nm," in Novel In-Plane Semiconductor Lasers XXIV, 2025, vol. 13385: SPIE, pp. 57–63. [13] M. Cho et al., "Ultra-thin distributed Bragg reflectors via stacked single-crystal silicon nanomembranes," Applied Physics Letters, vol. 106, no. 18, 2015. [14] L. Zhang, Q. Cao, Y. Zuo, C. Xue, B. Cheng, and Q. Wang, "Wavelength-tunable Si-based InGaAs resonant cavity enhanced photodetectors using sol-gel wafer bonding technology," IEEE Photonics Technology Letters, vol. 23, no. 13, pp. 881–883, 2011. [15] K.-H. Yang and J.-Y. Yang, "The analysis of light trapping and internal quantum efficiency of a solar cell with DBR back reflector," Solar Energy, vol. 83, no. 11, pp. 2050–2058, 2009. [16] O. Isabella, S. Dobrovolskiy, G. Kroon, and M. Zeman, "Design and application of dielectric distributed Bragg back reflector in thin-film silicon solar cells," Journal of non-crystalline solids, vol. 358, no. 17, pp. 2295–2298, 2012. [17] R. Azzam and F. Sudradjat, "Quarter-wave layers with 50% reflectance for obliquely incident unpolarized light," Journal of the Optical Society of America A, vol. 24, no. 3, pp. 850–855, 2007. [18] T. Babeva, K. Lazarova, M. Vasileva, B. Gospodinov, and J. Dikova, "Fabrication and characterization of high refractive index optical coatings by sol-gel method for photonic applications," Bulgarian Chemical Communications, vol. 45, no. 13, pp. 28–32, 2013. [19] S. I. Abbas, S. R. Salman, and S. S. Hashim, "Modeling of High Performance Reflection Coatings for Visible Region," Australian Journal of Basic and Applied Sciences, vol. 11, no. 11, pp. 186–193, 2017. [20] I. E. Shaaban, A. S. Samra, S. Muhammad, and S. Wageh, "Design of Distributed Bragg Reflectors for Green Light-Emitting Devices Based on Quantum Dots as Emission Layer," Energies, vol. 15, no. 3, p. 1237, 2022. [21] C. Zhang et al., "Mesoporous GaN for Photonic Engineering Highly Reflective GaN Mirrors as an Example," ACS photonics, vol. 2, no. 7, pp. 980–986, 2015. [22] C. Zhang, R. ElAfandy, and J. Han, "Distributed Bragg reflectors for GaN-based vertical-cavity surface-emitting lasers," Applied Sciences, vol. 9, no. 8, p. 1593, 2019. [23] Y. Shu, X. Lin, H. Qin, Z. Hu, Y. Jin, and X. Peng, "Quantum dots for display applications," Angewandte Chemie, vol. 132, no. 50, pp. 22496–22507, 2020. [24] M. I. Ahamed, S. Ahamed, N. Prathap, M. N. Srinivasan, and C. Mathuvanesan, "Quantum dots and their applications in television display technologies," World journal of advanced research and reviews, vol. 16, no. 3, pp. 997–1000, 2022. [25] Z. Luo and J. Yurek, "Quantum dots: the technology platform for all future displays," in Light-Emitting Devices, Materials, and Applications, 2019, vol. 10940: SPIE, pp. 145–152. [26] P. Palomaki, "Quantum Dots+ OLED= Your Next TV: Formerly rival technologies will come together in new Samsung displays," IEEE Spectrum, vol. 59, no. 1, pp. 52–53, 2022. [27] J. Chen, V. Hardev, and J. Yurek, "Quantum-dot displays: giving LCDs a competitive edge through color," Information Display, vol. 29, no. 1, pp. 12–17, 2013. [28] J. Kim, J. Roh, M. Park, and C. Lee, "Recent advances and challenges of colloidal quantum dot light‐emitting diodes for display applications," Advanced Materials, vol. 36, no. 20, p. 2212220, 2024. [29] F. P. García de Arquer, D. V. Talapin, V. I. Klimov, Y. Arakawa, M. Bayer, and E. H. Sargent, "Semiconductor quantum dots: Technological progress and future challenges," Science, vol. 373, no. 6555, p. eaaz8541, 2021. [30] W. Sun et al., "Micropore filling fabrication of high resolution patterned PQDs with a pixel size less than 5 μm," Nanoscale, vol. 14, no. 16, pp. 5994–5998, 2022. [31] T.-J. Kuo, H.-Y. Chao, F.-C. Chen, H.-C. Kuo, and C.-C. Lin, "A Highly Reliable Color Conversion Layer Based on Colloidal Quantum Dots with High Resolution of 3628 Pixel-Per-Inch," in CLEO: Applications and Technology, 2024: Optica Publishing Group, p. ATh3O. 6. [32] S.-K. Huang, S.-Y. Weng, G.-Y. Lee, Y.-M. Huang, H.-C. Kuo, and C.-C. Lin, "An investigation on high-resolution color conversion layer based on colloidal quantum dots," in 2022 Conference on Lasers and Electro-Optics (CLEO), 2022: IEEE, pp. 1–2. [33] S.-K. Huang, S.-Y. Weng, G.-Y. Lee, Y.-M. Huang, H.-C. Kuo, and C.-C. Lin, "An investigation on high-resolution color conversion layer based on colloidal quantum dots," in CLEO: QELS_Fundamental Science, 2022: Optica Publishing Group, p. JW3B. 182. [34] T.-Y. Lee et al., "Ameliorating uniformity and color conversion efficiency in quantum dot-based micro-LED displays through blue–UV hybrid structures," Nanomaterials, vol. 13, no. 14, p. 2099, 2023. [35] R. Li, Z. Luo, and F. Papadimitrakopoulos, "Redox-assisted asymmetric Ostwald ripening of CdSe dots to rods," Journal of the American Chemical Society, vol. 128, no. 19, pp. 6280–6281, 2006. [36] X. Peng et al., "Shape control of CdSe nanocrystals," Nature, vol. 404, no. 6773, pp. 59–61, 2000. [37] J. Cheng et al., "Optically active CdSe-dot/CdS-rod nanocrystals with induced chirality and circularly polarized luminescence," ACS nano, vol. 12, no. 6, pp. 5341–5350, 2018. [38] T.-J. Kuo, "High-Resolution 2μm Red-Green Bicolor Quantum Dot Color Conversion Layer," 2025, doi: 10.6342/NTU202500951. [39] G.-Y. Lee et al., "Photonic characterization and modeling of highly efficient color conversion layers with external reflectors," IEEE Photonics Journal, vol. 15, no. 4, pp. 1–10, 2023. [40] S.-C. Hsu et al., "Highly stable and efficient hybrid quantum dot light-emitting diodes," IEEE Photonics Journal, vol. 7, no. 5, pp. 1–10, 2015. [41] C.-Y. Liu et al., "Color-conversion efficiency enhancement of quantum dots via selective area nano-rods light-emitting diodes," Optics Express, vol. 24, no. 17, pp. 19978–19987, 2016. [42] L. Tang et al., "Temperature-dependent photoluminescence of CdS/ZnS core/shell quantum dots for temperature sensors," Sensors, vol. 22, no. 22, p. 8993, 2022. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99600 | - |
| dc.description.abstract | 隨著科技的持續進步,顯示技術不斷邁向更高解析度、更廣色域與更小型化的發展目標,特別是在穿戴式裝置、微型顯示與近眼顯示(如AR/VR)等應用中,對高畫質與精確的色彩的需求日益提升。本研究針對此趨勢,開發出一套基於量子點的高解析度單色量子點色彩轉換層(monochromatic Quantum Dot Color Conversion Layer, QD CCL)製程技術。
我們利用玻璃基板搭配AZ-5214E光阻作為製程基底,成功製作出畫素尺寸為1.1 µm、間距1.1 µm的高密度量子點像素陣列,整體解析度高達12545 PPI,遠超過現有主流顯示器之規格。在色彩表現方面,導入量子點作為色彩轉換材料,充分展現其窄頻、高飽和度的光譜特性,有效實現廣色域的顯示需求。經光譜量測與效率分析,所製作之紅色量子點(RQD)與綠色量子點(GQD)分別達到最高41.5%與20.4%的色彩轉換效率(Color Conversion Efficiency, CCE),展現良好的轉換能力。 此外,我們進一步導入多層布拉格反射鏡(Distributed Bragg Reflector, DBR)結構,藉由反射未被吸收的UV激發光回至CCL層,提升激發效率。實驗結果顯示,紅光強度相較原始提升了1.174倍,綠光更提升至1.592倍,顯示DBR在提升輻射效率上的關鍵作用。 | zh_TW |
| dc.description.abstract | With the continuous advancement of technology, display systems are evolving toward higher resolution, wider color gamut, and greater miniaturization. In particular, emerging applications such as wearable devices, micro displays, and near-eye displays (AR/VR) demand high image quality and accurate color reproduction. In response to these trends, this study presents the development of a fabrication process for high-resolution monochromatic quantum dot color conversion layers (QD CCLs).
Using glass substrates coated with the AZ-5214E photoresist as the base structure, we successfully fabricated a quantum dot pixel array with a pixel size and pitch of 1.1 µm, achieving an ultra-high resolution of 12545 PPI—well beyond the specifications of current mainstream displays. In terms of color performance, quantum dots were employed as the color conversion material, demonstrating narrow spectral bandwidths and high color saturation, which are essential for wide color gamut applications. Spectral and efficiency measurements show that the fabricated red and green quantum dots (RQD and GQD) achieved peak color conversion efficiencies (CCE) of 41.5% and 20.4%, respectively, indicating excellent conversion capability. Furthermore, we integrated multilayer distributed Bragg reflector (DBR) structures to reflect unabsorbed UV excitation light back into the CCL, thereby enhancing excitation efficiency. Experimental results showed that the emission intensity of RQD was increased by a factor of 1.174, while that of GQD was enhanced by 1.592, confirming the crucial role of DBRs in improving radiative output. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:06:17Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:06:17Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝....................................................................i
摘要....................................................................ii ABSTRACT................................................................iii CONTENT.................................................................iv LIST OF FIGURES.........................................................vi CHAPTER1 INTRODUCTION AND LITERATURE REVIEW......................1 1.1 INTRODUCTION..................................................1 1.2 QUANTUM DOT.....................................................2 1.3 DISTRIBUTED BRAGG REFLECTOR (DBR)...............................4 1.4 APPLICATIONS OF QUANTUM DOTS IN DISPLAY TECHNOLOGY.............6 1.5 LITERATURE REVIEW..............................................8 CHAPTER2 EXPERIMENTAL INSTRUMENT.................................14 2.1 ULTRASONIC CLEANER..............................................14 2.2 HOT PLATE.......................................................15 2.3 SPIN COATER....................................................16 2.4 MASK ALIGNER (MA6).............................................17 2.5 PROBE PROFILE..................................................18 2.6 FLUORESCENCE OPTICAL MICROSCOPE (FLOM).........................19 2.7 ATOMIC LAYER DEPOSITION (ALD)..................................20 2.8 INTEGRATING SPHERE SYSTEM......................................21 2.9 MINIATURE SPECTROMETER.........................................22 CHAPTER 3 EXPERIMENTAL PROCESS....................................23 3.1 SUBSTRATE PRETREATMENT.........................................23 3.2 PHOTOLITHOGRAPHY...............................................25 3.3 DRIPPING AND WIPING QD.........................................28 3.4 PACKAGING......................................................31 3.5 BONDING........................................................31 CHAPTER 4 QD CCL MEASUREMENT......................................33 4.1 ANALYSIS OF PHOTORESIST STRUCTURAL PROFILES....................33 4.2 INTEGRATING SPHERE SYSTEM MEASUREMENT SETUP....................38 4.3 CCE RESULTS OF LED+CCL.........................................40 4.4 SPECTRAL RED SHIFT TRENDS UNDER ELEVATED CURRENT INJECTION.....47 4.6 THE MEASUREMENT RESULTS OF THE LED+CCL+DBR.....................53 4.7 RELIABILITY TESTING OF THE COLOR CONVERSION LAYER..............64 CHAPTER 5 CONCLUSION AND FUTURE WORK..............................70 REFERENCE...............................................................72 | - |
| dc.language.iso | en | - |
| dc.subject | 高解析顯示器 | zh_TW |
| dc.subject | 量子點 | zh_TW |
| dc.subject | 顏色轉換層 | zh_TW |
| dc.subject | High-Resolution | en |
| dc.subject | Quantum Dot | en |
| dc.subject | color conversion layer | en |
| dc.title | 高解析度之一微米子畫素單色量子點顏色轉換層製作 | zh_TW |
| dc.title | Fabrication of Micron-Scale High-Resolution Monochromatic Quantum Dot Color Conversion Subpixels | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃建璋;劉如熹 | zh_TW |
| dc.contributor.oralexamcommittee | Jian-Jang Huang;Ru-Shi Liu | en |
| dc.subject.keyword | 量子點,顏色轉換層,高解析顯示器, | zh_TW |
| dc.subject.keyword | Quantum Dot,color conversion layer,High-Resolution, | en |
| dc.relation.page | 86 | - |
| dc.identifier.doi | 10.6342/NTU202503265 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-15 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 3.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
