Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99598
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張家銘zh_TW
dc.contributor.advisorChia-Ming Changen
dc.contributor.author卓建佑zh_TW
dc.contributor.authorRay Septian Togien
dc.date.accessioned2025-09-17T16:05:55Z-
dc.date.available2025-09-18-
dc.date.copyright2025-09-17-
dc.date.issued2025-
dc.date.submitted2025-08-11-
dc.identifier.citationHsu, S. H., Hung, H. T., Lin, Y. Q., & Chang, C. M. (2023). Defect inspection of indoor components in buildings using deep learning object detection and augmented reality. Earthquake Engineering and Engineering Vibration, 22(1), 41–54.
Hsu, S. H., Chang, T. W., & Chang, C. M. (2021). Concrete surface crack segmentation based on deep learning. In P. Rizzo & A. Milazzo (Eds.), European Workshop on Structural Health Monitoring (EWSHM 2020), Lecture Notes in Civil Engineering (Vol. 128). Springer.
Mascareñas, D. D., Ballor, J. P., McClain, O. L., et al. (2020). Augmented reality for next generation infrastructure inspections. Structural Health Monitoring, 20(4), 1957–1979.
Park, K. B., Choi, S. H., Kim, M., & Lee, J. Y. (2020). Deep learning-based mobile augmented reality for task assistance using 3D spatial mapping and snapshot-based RGB-D data. Computers & Industrial Engineering, 146, 106585.
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 779–788).
Tan, Y., Xu, W., Chen, P., & Zhang, S. (2024). Building defect inspection and data management using computer vision, augmented reality, and BIM technology. Automation in Construction, 160, 105318.
Bochkovskiy, A., Wang, C.-Y., & Liao, H.-Y. M. (2020). YOLOv4: Optimal speed and accuracy of object detection. arXiv preprint.
Wang S, Zargar SA, Yuan F-G. Augmented reality for enhanced visual inspection through knowledge-based deep learning. Structural Health Monitoring. 2020;20(1):426-442.
Stachniss, Cyrill & Leonard, John & Thrun, Sebastian. (2016). Simultaneous Localization and Mapping. 1153-1176. 10.1007/978-3-319-32552-1_46.
Taketomi, T., Uchiyama, H., & Ikeda, S. (2017). Visual SLAM algorithms: A survey from 2010 to 2016. IPSJ Transactions on Computer Vision and Applications, 9(16).
Weinmann, M., Wursthorn, S., Weinmann, M., & Hübner, P. (2021). Efficient 3D mapping and modelling of indoor scenes with the Microsoft HoloLens: A survey. PFG–Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 89.
Azuma, R., Billinghurst, M., & Klinker, G. (2011). Special section on mobile augmented reality. Computers & Graphics, 35, vii–viii.
Luetzenburg, G., Kroon, A., & Bjørk, A. A. (2021). Evaluation of the Apple iPhone 12 Pro LiDAR for an application in geosciences. Scientific Reports, 11, Article 22221.
Zaher, M., Greenwood, D., & Marzouk, M. (2018). Mobile augmented reality applications for construction projects. Construction Innovation, 18, 152–166.
Svensson, J., & Atles, J. (2018). A study on the use of ARKit to extract and geo-reference floorplans (Master’s thesis, Lund University, Faculty of Engineering, Department of Mathematics). Master’s Theses in Mathematical Sciences. https://lup.lub.lu.se/student-papers/search/publication/8964243
Siriwardhana, Y., Porambage, P., Liyanage, M., & Ylianttila, M. (2021). A survey on mobile augmented reality with 5G mobile edge computing: Architectures, applications, and technical aspects. IEEE Communications Surveys & Tutorials, 23(2), 1160–1192.
Klein, G., & Murray, D. (2007). Parallel tracking and mapping for small AR workspaces. In 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality (pp. 225–234).
Bochkovskiy, A., Wang, C.-Y., & Liao, H.-Y. M. (2020). YOLOv4: Optimal speed and accuracy of object detection. arXiv preprint. https://arxiv.org/abs/2004.10934
Apple Inc. (n.d.). ARKit. Apple Developer. https://developer.apple.com/documentation/arkit?language=objc
Apple Inc. (n.d.). ARConfiguration. Apple Developer. https://developer.apple.com/documentation/arkit/arconfiguration
Apple Inc. (n.d.). ARWorldTrackingConfiguration. Apple Developer. https://developer.apple.com/documentation/arkit/arworldtrackingconfiguration
Apple Inc. (n.d.). WorldAlignment. Apple Developer. https://developer.apple.com/documentation/arkit/arconfiguration/worldalignment
Larsson, N., & Runesson, H. (2021). A study on the use of ARKit to extract and geo-reference floor plans (Dissertation). Retrieved from https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-177619
Apple Inc. (n.d.). ARPlaneAnchor. Apple Developer. https://developer.apple.com/documentation/arkit/arplaneanchor
Apple Inc. (n.d.). Scene Reconstruction. Apple Developer. https://developer.apple.com/documentation/arkit/arworldtrackingconfiguration/scenereconstruction
Apple Inc. (n.d.). ARMeshAnchor. Apple Developer. https://developer.apple.com/documentation/arkit/armeshanchor
Apple Inc. (n.d.). ARMeshClassification. Apple Developer. https://developer.apple.com/documentation/arkit/armeshclassification
Apple Inc. (n.d.). ARSession. Apple Developer. https://developer.apple.com/documentation/arkit/arsession
Apple Inc. (n.d.). ARFrame. Apple Developer. https://developer.apple.com/documentation/arkit/arframe?language=objc
Apple Inc. (n.d.). ARSessionDelegate – session(_:didUpdate:). Apple Developer. https://developer.apple.com/documentation/arkit/arsessiondelegate/session(_:didupdate:)-9v2kw?language=objc
Apple Inc. (n.d.). ARSession – raycast(_:). Apple Developer. https://developer.apple.com/documentation/arkit/arsession/raycast(_:)
Apple Inc. (n.d.). ARSessionDelegate. Apple Developer. https://developer.apple.com/documentation/arkit/arsessiondelegate
Apple Inc. (n.d.). ARAnchor. Apple Developer. https://developer.apple.com/documentation/arkit/aranchor/
Apple Inc. (n.d.). RoomPlan. Apple Developer. https://developer.apple.com/documentation/roomplan/
Apple Inc. (n.d.). RoomPlan Research Overview. Apple Machine Learning Research. https://machinelearning.apple.com/research/roomplans
Apple Inc. (n.d.). CapturedRoom/objects. Apple Developer. https://developer.apple.com/documentation/roomplan/capturedroom/objects
Apple Inc. (n.d.). RoomCaptureView. Apple Developer. https://developer.apple.com/documentation/roomplan/roomcaptureview
Apple Inc. (n.d.). RoomCaptureSession. Apple Developer. https://developer.apple.com/documentation/roomplan/roomcapturesession
Apple Inc. (n.d.). CapturedRoom. Apple Developer. https://developer.apple.com/documentation/roomplan/capturedroom
Apple Inc. (n.d.). CapturedStructure. Apple Developer. https://developer.apple.com/documentation/roomplan/capturedstructure
Apple Inc. (n.d.). RoomBuilder. Apple Developer. https://developer.apple.com/documentation/roomplan/roombuilder/
Apple Inc. (n.d.). StructureBuilder. Apple Developer. https://developer.apple.com/documentation/roomplan/structurebuilder/
Nichols, J. A., Chan, H. W. H., & Baker, M. A. B. (2019). Machine learning: Applications of artificial intelligence to imaging and diagnosis. Biophysical Reviews, 11(1), 111–118.
Sarker, I. H. (2021). Machine learning: Algorithms, real-world applications and research directions. SN Computer Science, 2, 160.
Tufail, S., Riggs, H., Tariq, M., & Sarwat, A. I. (2023). Advancements and challenges in machine learning: A comprehensive review of models, libraries, applications, and algorithms. Electronics, 12(8), 1789.
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
Ersavas, T., Smith, M. A., & Mattick, J. S. (2024). Novel applications of convolutional neural networks in the age of transformers. Scientific Reports, 14, Article 10000.
Varsha, P. S. (2023). How can we manage biases in artificial intelligence systems – A systematic literature review. International Journal of Information Management Data Insights, 3(1), 100165.
Jocher, G., Chaurasia, A., & Qiu, J. (2023). YOLO by Ultralytics (Version 8.0.0) [Computer software]. https://github.com/ultralytics/ultralytics
Liao, C. J. & Chang, C. M. (2024). AI-inspired indoor inspection with integration of computer vision and YOLOv8 object detection.
Apple Inc. (n.d.). Core ML. Apple Developer. https://developer.apple.com/documentation/coreml
Apple Inc. (n.d.). Create ML. Apple Developer. https://developer.apple.com/machine-learning/create-ml/
Apple Inc. (n.d.). Core ML Tools Documentation. Apple. https://coremltools.readme.io
Ultralytics. (n.d.). Core ML Integration Installation Guide. https://docs.ultralytics.com/integrations/coreml/#installation
Apple Inc. (n.d.). RoomCaptureSession/instruction. Apple Developer. https://developer.apple.com/documentation/roomplan/roomcapturesession/instruction
Apple Inc. (n.d.). SCNView. Apple Developer. https://developer.apple.com/documentation/scenekit/scnview?language=objc
Apple Inc. (n.d.). RoomCaptureSessionDelegate. Apple Developer. https://developer.apple.com/documentation/roomplan/roomcapturesessiondelegate
Apple Inc. (n.d.). Understanding a dice roll with Vision and object detection. Apple Developer. https://developer.apple.com/documentation/coreml/understanding-a-dice-roll-with-vision-and-object-detection
Apple Inc. (n.d.). async(execute:). Apple Developer. https://developer.apple.com/documentation/dispatch/dispatchqueue/async(execute:)
Apple Inc. (n.d.). featureValue(for:). Apple Developer. https://developer.apple.com/documentation/coreml/mlfeatureprovider/featurevalue(for:)/
Apple Inc. (n.d.). Recognizing objects in live capture. Apple Developer. https://developer.apple.com/documentation/Vision/recognizing-objects-in-live-capture
Apple Inc. (n.d.). CapturedRoom.Surface.Category.door(isOpen:). Apple Developer. https://developer.apple.com/documentation/roomplan/capturedroom/surface/category-swift.enum/door(isopen:)/
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99598-
dc.description.abstract結構損傷的目視檢查被視為一種快速且具成本效益的建築狀況評估方法;但是,在實際操作中,目視檢查常因為其高度依賴人力與耗時的特性而效率低下,且經常導致測量不準確或損壞識別錯誤。此外,目視檢查也面臨許多挑戰,例如合格工程師人力短缺、工程師與屋主之間的排程衝突,以及居民對隱私的顧慮。這些問題綜合起來,導致維修作業延誤,並對公共安全構成潛在風險。為了解決上述限制,本研究提出一套整合機器學習(Machine Learning)與擴增實境(Augmented Reality)技術的工具,目的是提升室內結構構件目視檢查的準確性與效率。
擴增實境解決勞力密集、耗時與測量不準問題的問題。擴增實境能快速且有效地掃描室內空間,並即時生成精確的三維重建模型,取代傳統人工測量,不僅大幅減少檢查所需的時間與人力,也提高測量的準確度。透過建立沉浸式與可互動的數位環境模型,擴增實境讓檢查人員能快速評估場域並追蹤掃描進度。機器學習則用於彌補專業人員短缺的問題,透過自動辨識結構損壞,即使是缺乏經驗的實習人員也能執行初步檢查。本研究採用 YOLOv8 物件偵測模型,協助現場人員即時辨識潛在損壞並進行記錄。後續由合格工程師對檢查結果進行複核與驗證,以確保物件偵測模型所偵測之損壞準確無誤。此流程不僅提升了專業人力的使用效率,也提高了整體檢查流程的可靠性。
本工具專為 iOS 裝置開發,結合 Apple 的 ARKit 與 RoomPlan API,可建立精確的室內三維模型。並整合 YOLOv8 物件偵測模型,自動於擴增實境環境中辨識並標註結構損壞。檢查人員可於掃描過程中透過射線投影(Raycast)即時記錄損壞,並將其位置準確標示於根據三維模型所生成的二維平面圖上。擴增實境與 ML 的結合不僅簡化了檢查流程,減少人工測量與人力需求,也提升了損壞紀錄的精確度,例如損壞位置與長度的量測。根據實地測試結果,該工具可有效辨識並記錄如裂縫與混凝土剝落等結構損壞,與傳統方法相比,在檢查準確性、所需時間與整體工作流程方面皆顯著優化。
最後,本系統可將損壞照片、二維平面圖與三維模型整合儲存於同一資料夾中,實現無縫的紀錄與文件整理流程。未來研究將著重於提升裝置端報告自動生成能力、提升模型偵測準確率,以及擴展可辨識的損壞類型。此研究展示了 擴增實境與 ML 的結合如何革新傳統目視檢查流程,使其更加高效、精準與具擴展性。
zh_TW
dc.description.abstractVisual inspection for structural damage is regarded as a quick and cost-effective method to assess building conditions; however, in reality, visual inspections often pose inefficiencies due to their labor-intensive and time-consuming nature, frequently yielding inaccurate measurements and misidentifications. Additionally, these inspections face challenges such as a shortage of qualified engineers, scheduling conflicts between engineers and homeowners, and concerns about residents' privacy. Combined, these issues can result in delayed repairs and pose potential risks to public safety. To address these limitations, this research presents the development and implementation of a machine learning-powered augmented reality inspection tool that integrates augmented reality (AR) and machine learning (ML) to enhance the accuracy and efficiency of visual inspections for indoor structural members.
Augmented reality offers a solution to the problems of labor intensity, time consumption, and inaccurate measurements. AR enables the fast and efficient scanning of indoor environments, providing precise, real-time 3D reconstructions of spaces that eliminate the need for manual measurements, thereby reducing the time and effort required for inspections while simultaneously enhancing accuracy. By creating an immersive and interactive digital model of the environment, AR allows inspectors to quickly assess the area and track the progress of their scanning efforts. Machine learning addresses the shortage of qualified engineers by automating the identification of structural defects. This research utilizes YOLOv8, a widely adopted algorithm for real-time object detection, to assist staff members by identifying potential defects in real-time, enabling them to document and record the findings. After the inspection, qualified engineers can later review and cross-check the results for accuracy, ensuring that the defects identified by the ML model are correctly assessed. This approach not only optimizes the use of skilled personnel but also enhances the reliability of inspections.
The tool, designed for iOS devices, leverages Apple's ARKit and RoomPlan APIs to create accurate 3D reconstructions of indoor spaces. The YOLOv8 object detection model is integrated to automatically identify and anchor structural defects in the AR environment, allowing inspectors to raycast and document defects during the scanning process, accurately marking their locations on a 2D floor plan generated from the 3D model. The combination of AR and ML streamlines the inspection process by reducing the need for manual measurements, minimizing the number of personnel required, and enhancing the precision of defect documentation, such as the location and length measurements of defects. Field tests demonstrate the tool's practical effectiveness in identifying and documenting structural defects, such as cracks and spalls. These tests reveal improvements in inspection accuracy, reduced inspection time, and an overall more efficient workflow than traditional methods.
Additionally, the tool's ability to consolidate defect images, 2D floor plans, and 3D models into a single folder on the device ensures a seamless documentation process. Future work will focus on enhancing on-device report generation, increasing model accuracy, and expanding the tool's capabilities to detect a broader range of structural defects. This research highlights how the integration of AR and ML can revolutionize traditional visual inspections, making them more efficient, accurate, and scalable.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:05:55Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-17T16:05:55Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsMASTER'S THESIS ACCEPTANCE CERTIFICATE I
ACKNOWLEDGMENTS II
ABSTRACT III
摘要 V
TABLE OF CONTENTS VII
LIST OF FIGURES X
LIST OF TABLES XIII
CHAPTER 1. INTRODUCTION 1
1.1 Background 1
1.2 Literature Review 3
1.3 Research Objective 5
CHAPTER 2. AUGMENTED REALITY 6
2.1 ARKit 7
2.1.1 ARKit Initialization 8
2.1.2 ARSession 11
2.1.3 ARSessionDelegate 13
2.1.4 AR Anchors 14
2.2 RoomPlan 15
2.2.1 RoomCaptureView 16
2.2.2 RoomCaptureSession 16
2.2.3 CapturedRoom and CapturedStructure 17
2.3 Summary 19
CHAPTER 3. MACHINE LEARNING 21
3.1 Deep Learning 22
3.1.1 You Only Look Once (YOLO) 22
3.2 Integration with Augmented Reality 24
3.2.1 Core ML 25
3.2.2 Conversion of YOLOv8 Model to Core ML Format 27
3.3 Summary 28
CHAPTER 4. DESIGN OF THE DEMO APPLICATION 30
4.1 System Design 31
4.2 Augmented Reality 3D Mapping 32
4.2.1 ARSession and RoomCaptureSession Initialization 34
4.2.2 Instructions and Guide 35
4.2.3 RoomPreview 37
4.2.4 Relocalization 42
4.3 Real-Time Defect Detection 43
4.3.1 Setting Up the Core ML Model 44
4.3.2 Location-based Filter 45
4.3.3 Overlay and Layer Architecture 47
4.4 Defect Documentation 48
4.4.1 Snapshot 49
4.4.2 Defect Anchoring 50
4.5 Post-scan Processing 54
4.5.1 CSVData 54
4.5.2 RoomScanned 57
4.5.3 3D Model Processing 59
4.5.4 AutoCAD Integration 61
4.5.5 SpriteKit 65
4.6 Summary of Demo Application Design 71
CHAPTER 5. APPLICATION IMPLEMENTATION AND VERIFICATION 74
5.1 Hallway 75
5.1.1 Verification of the Proposed Method 75
5.1.2 Results Comparison 78
5.1.3 Performance Assessment 80
5.1.4 Discussion 82
5.2 Dance Studio 83
5.2.1 Verification of the Proposed Method 84
5.2.2 Results Comparison 86
5.2.3 Performance Assessment 88
5.2.4 Discussion 90
5.3 Apartment I 92
5.3.1 Verification of the Proposed Method 92
5.3.2 Results Comparison 95
5.3.3 Performance Assessment 98
5.3.4 Discussion 100
5.4 Apartment II 100
5.4.1 Verification of the Proposed Method 101
5.4.2 Results Comparison 103
5.4.3 Performance Assessment 105
5.4.4 Discussion 106
5.5 Summary of Field Implementation 108
CHAPTER 6. CONCLUSIONS AND FUTURE WORK 111
6.1 Conclusions 111
6.2 Future Work 113
REFERENCES 115
-
dc.language.isoen-
dc.subject目視檢查zh_TW
dc.subject擴增實境zh_TW
dc.subject即時缺陷偵測zh_TW
dc.subject損傷定位zh_TW
dc.subject二維平面圖生成zh_TW
dc.subject損傷量化zh_TW
dc.subjectReal-time Defect Detectionen
dc.subjectVisual Inspectionen
dc.subjectDamage Quantificationen
dc.subject2D Floor Plan Generationen
dc.subjectDefect Localizationen
dc.subjectAugmented Realityen
dc.title室內建築檢測用機器學習驅動擴增實境工具之開發與實作zh_TW
dc.titleDevelopment and Implementation of a Machine Learning-Powered Augmented Reality Tool for Indoor Building Inspectionen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張書瑋;林之謙;楊卓諺zh_TW
dc.contributor.oralexamcommitteeShu-Wei Chang;Je-Chian Lin;Cho-Yen Yangen
dc.subject.keyword目視檢查,擴增實境,即時缺陷偵測,損傷定位,二維平面圖生成,損傷量化,zh_TW
dc.subject.keywordVisual Inspection,Augmented Reality,Real-time Defect Detection,Defect Localization,2D Floor Plan Generation,Damage Quantification,en
dc.relation.page121-
dc.identifier.doi10.6342/NTU202503733-
dc.rights.note未授權-
dc.date.accepted2025-08-13-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
25.87 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved