請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99583完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林家齊 | zh_TW |
| dc.contributor.advisor | Chia-Chi Lin | en |
| dc.contributor.author | 陳玟伶 | zh_TW |
| dc.contributor.author | Wen ling Chen | en |
| dc.date.accessioned | 2025-09-16T16:11:25Z | - |
| dc.date.available | 2025-09-17 | - |
| dc.date.copyright | 2025-09-16 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-02 | - |
| dc.identifier.citation | 1. World Health Organization. Lung cancer [Internet]. Geneva: World Health Organization; 2023 Jun 26 [cited 2025 Oct 6]. Available from: https://www.who.int/news-room/fact-sheets/detail/lung-cancer
2. Yatabe Y, Kerr KM, Utomo A, Rajadurai P, Tran VK, Du X, Chou TY, Enriquez MLD, Lee GK, Iqbal J, Shuangshoti S, Chung JH, Hagiwara K, Liang Z, Normanno N, Park K, Toyooka S, Tsai CM, Waring P, Zhang L, McCormack R, Ratcliffe M, Itoh Y, Sugeno M, Mok T. EGFR mutation testing practices within the Asia Pacific region: results of a multicenter diagnostic survey. J Thorac Oncol. 2015 Mar 10(3):438-445. 3. Midha A, Dearden S, McCormack R. EGFR mutation incidence in non-small-cell lung cancer of adenocarcinoma histology: a systematic review and global map by ethnicity (mutMapII). Am J Cancer Res. 2015 Aug 15;5(9):2892-2911. 4. Kobayashi Y, Mitsudomi T. Not all epidermal growth factor receptor mutations in lung cancer are created equal: Perspectives for individualized treatment strategy. Cancer Sci 2016;107(9):1179–86. 5. Rangachari D, Yamaguchi N, VanderLaan PA, Folch E, Mahadevan A, Floyd SR, Uhlmann EJ, Wong ET, Dahlberg SE, Huberman MS, Costa DB. Brain metastases in patients with EGFR-mutated or ALK-rearranged non-small-cell lung cancers. Lung Cancer. 2015 Feb 4;88(1):108-111. doi: 10.1016/j.lungcan.2015.01.020. 6. Colclough N, Chen K, Johnström P, Strittmatter N, Yan Y, Wrigley GL, Schou M, Goodwin R, Varnäs K, Adua SJ, Zhao M, Nguyen DX, Maglennon G, Barton P, Atkinson J, Zhang L, Janefeldt A, Wilson J, Smith A, Takano A, Arakawa R, Kondrashov M, Malmquist J, Revunov E, Vazquez-Romero A, Moein MM, Windhorst AD, Karp NA, Finlay MRV, Ward RA, Yates JWT, Smith PD, Farde L, Cheng Z, Cross DAE. Preclinical comparison of the blood-brain barrier permeability of osimertinib with other EGFR TKIs. Clin Cancer Res. 2021 Jan 1;27(1):189-201. doi: 10.1158/1078-0432.CCR-19-1871. 7. Planchard D, Jänne PA, Cheng Y, Yang JCH, Yanagitani N, Kim SW, Sugawara S, Nakagawa K, Zhou C, Camidge DR, Tanaka H, Shah R, Kim JH, Takeda M, Lee KH, John T, Soo RA, Hodge DO, Brown AP, Mann H, Visseren-Grul C, Soria JC. Osimertinib with or without chemotherapy in EGFR-mutated advanced NSCLC. N Engl J Med. 2023 Nov 08;389(21):1935-1948. 8. Valdiviezo Lama NI, Okamoto I, Hughes BGM, Ahmed S, Wu L, Hu J, et al. First-line (1L) osimertinib (osi) ± platinum-pemetrexed in EGFR-mutated (EGFRm) advanced NSCLC: FLAURA2 post-progression outcomes. Ann Oncol. 2024;9(suppl_3):1-53. 9. Kanda S, Niho S, Kurata T, Nomura S, Kawashima Y, Yoneshima Y, Yokoyama T, Watanabe Y, Tanaka H, Fujiwara Y, Zenke Y, Azuma K, Yamaguchi H, Toyozawa R, Hosomi Y, Murakami H, Hara S, Bessho A, Yamamoto N, Ohe Y. A phase III study comparing EGFR tyrosine kinase inhibitor (EGFR-TKI) monotherapy and EGFR-TKI with inserted cisplatin (CDDP) plus pemetrexed (PEM) as a first-line treatment in patients with advanced non-squamous non–small-cell lung cancer harboring EGFR activating mutation (EGFR-NSqNSCLC): JCOG1404/WJOG8214L, AGAIN study. J Clin Oncol. 2023 Jun 7;41(17_suppl):LBA9009. 10. Cho BC, Lu S, Felip E, Spira AI, Girard N, Lee JS, Lee SH, Ostapenko Y, Danchaivijitr P, Liu B, Alip A, Korbenfeld E, Mourão Dias J, Besse B, Lee KH, Xiong H, How SH, Cheng Y, Chang GC, Yoshioka H, Yang JC, Thomas M, Nguyen D, Ou SI, Mukhedkar S, Prabhash K, D'Arcangelo M, Alatorre-Alexander J, Vázquez Limón JC, Alves S, Stroyakovskiy D, Peregudova M, Şendur MAN, Yazici O, Califano R, Gutiérrez Calderón V, de Marinis F, Passaro A, Kim SW, Gadgeel SM, Xie J, Sun T, Martinez M, Ennis M, Fennema E, Daksh M, Millington D, Leconte I, Iwasawa R, Lorenzini P, Baig M, Shah S, Bauml JM, Shreeve SM, Sethi S, Knoblauch RE, Hayashi H; MARIPOSA Investigators. Amivantamab plus Lazertinib in Previously Untreated EGFR-Mutated Advanced NSCLC. N Engl J Med. 2024 Oct 24;391(16):1486-1498 11. Felip E, Cho BC, Gutiérrez V, Alip A, Besse B, Lu S, Spira AI, Girard N, Califano R, Gadgeel SM, Yang JCH, Nogami N, Azuma K, Curtin JC, Zhang J, Panchal A, Ennis M, Sethi SN, Bauml JM, Lee SH. Amivantamab plus lazertinib vs osimertinib in first-line EGFR-mutant advanced non-small cell lung cancer (NSCLC) with biomarkers of high-risk disease: A secondary analysis from the phase 3 MARIPOSA study. J Clin Oncol. 2024;42(16_suppl):8504. doi:10.1200/JCO.2024.42.16_suppl.8504. 12. Nakahara Y, Kato T, Isomura R, Misumi T, Tamiya M, Yoh K, Furuya N, Ono A, Takiguchi Y, Koyama K, Ikeda S, Watanabe K, Tokito T, Seki N, Imai H, Shukuya T, Shibata Y, Hosokawa S, Kozuki T, Okamoto H. OSIRAM-1: A multicenter, open-label, randomized phase II study of osimertinib plus ramucirumab versus osimertinib alone as initial chemotherapy for EGFR mutation-positive non-squamous non-small cell lung cancer (TORG1833). Lung Cancer. 2023 Oct;34(Suppl 2):S1313. 13. Yoh K, Kato T, Nakahara Y, Isomura R, Misumi T, Tamiya M, Furuya N, Ono A, Takiguchi Y, Koyama K, Ikeda S, Watanabe K, Tokito T, Seki N, Imai H, Shukuya T, Shibata Y, Hosokawa S, Kozuki T, Okamoto H. OSIRAM-1/TORG1833: Overall survival results of a randomized phase II study of osimertinib plus ramucirumab versus osimertinib alone as initial chemotherapy for EGFR mutation-positive non-squamous non-small cell lung cancer. J Clin Oncol. 2024 May 29;42(16_suppl):8613. 14. Kenmotsu H, Wakuda K, Mori K, Kato T, Sugawara S, Kirita K, Yoneshima Y, Azuma K, Nishino K, Teraoka S, Shukuya T, Masuda K, Hayashi H, Toyozawa R, Miura S, Fujimoto D, Nakagawa K, Yamamoto N, Takahashi T. Randomized Phase 2 study of osimertinib plus bevacizumab versus osimertinib for untreated patients with nonsquamous NSCLC harboring EGFR mutations: WJOG9717L study. J Thorac Oncol. 2022 Sep;17(9):1098-1108. 15. Kenmotsu H, Sakai K, Mori K, Kato T, Sugawara S, Kirita K, Yoneshima Y, Azuma K, Nishino K, Teraoka S, Koyama R, Masuda K, Hayashi H, Toyozawa R, Miura S, Sato Y, Nakagawa K, Yamamoto N, Nishio K, Takahashi T. Final analysis data and exploratory biomarker analysis of a randomized Phase 2 study of osimertinib plus bevacizumab versus osimertinib monotherapy for untreated patients with nonsquamous NSCLC harboring EGFR mutations: The WJOG9717L study. J Thorac Oncol. 2024 Nov;5(11):100716. 16. Le X, Patel JD, Shum E, Baik C, Sanborn RE, Shu CA, Kim C, Fidler MJ, Hall R, Elamin YY, Tu J, Blumenschein G, Zhang J, Gibbons D, Gay C, Mohindra NA, Chae Y, Boumber Y, Sabari J, Santana-Davila R, Rogosin S, Herzberg B, Creelan B, Pellini B, Tanvetyanon T, Heeke S, Hernandez M, Gray JE, Saltos A, Heymach JV. A multicenter open-label randomized phase II study of osimertinib with and without ramucirumab in tyrosine kinase inhibitor-naïve EGFR-mutant metastatic non-small cell lung cancer (RAMOSE trial). J Clin Oncol. 2024, Oct. 8. 17. Cheng WC, Shen YC, Chen CL, Liao WC, Chen CH, Chen J, Tu CY, Hsia TC. Bevacizumab versus Ramucirumab in EGFR-Mutated Metastatic Non-Small-Cell Lung Cancer Patients: A Real-World Observational Study. Cancers (Basel). 2023 Jan 19;15(3):642. doi: 10.3390/cancers15030642. PMCID: PMC9913875. PMID: 36765600. 18. Lee SH, Cho BC, Hayashi H, Felip E, Spira AI, Girard N, et al. Lazertinib vs Osimertinib in 1L EGFR-mutant advanced NSCLC: a randomized, double-blind, exploratory analysis from MARIPOSA. J Thorac Oncol. 2024 Oct;19(10 Suppl):S12. doi:10.1016/j.jtho.2024.09.028 19. Jeon HL, Kwak M., Kim S., Yu HY, Shin JY, and Jung HA. Comparative effectiveness of lazertinib in patients with EGFR T790M-positive non-small-cell lung cancer using a real-world external control. Sci Rep. 2024 Jun 25;14:14659. doi: 10.1038/s41598-024-65220-z. PMCID: PMC11199632, PMID: 38918528. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99583 | - |
| dc.description.abstract | 一、背景
肺癌具有高發病率與高死亡率的特性,尤其早期肺癌通常缺乏明顯症狀,多數患者確診肺癌時已處於晚期。非小細胞肺癌(NSCLC)約占所有肺癌病例的85%[1],其中約20%的西方患者與40-50%的亞洲患者具有表皮生長因子受體(EGFR)基因突變,尤以外顯子19缺失(Ex19del)與外顯子21 L858R點突變最為常見。第三代EGFR標靶藥物(如Osimertinib)因具有優異的療效與較佳的安全性,已成為EGFR突變非小細胞癌患者的第一線標準治療。然而,約四分之一患者在接受標靶治療後仍出現疾病進展,且以腦部轉移最為常見[5]。為延緩抗藥性的產生,臨床上常考慮合併系統性治療(如化學治療、抗血管新生藥物或雙特異性抗體Amivantamab),但合併治療亦可能增加毒性風險。本研究旨在探討第三代EGFR TKI單獨或合併系統性治療於EGFR突變晚期NSCLC患者中的療效與安全性。 二、方法 本研究進行系統性文獻回顧、統合分析及網絡統合分析,檢索PubMed、Embase及Cochrane資料庫,納入六項隨機對照試驗(RCTs),比較第三代EGFR TKI單獨或合併化學治療、抗血管新生藥物與雙特異性抗體的治療效果。主要評估指標包括無進展生存期(PFS)、總生存期(OS)、客觀反應率(ORR)、三級以上不良事件(AE)發生率與治療中斷率,並進行亞組分析,探討基因型態、年齡、種族、體能狀態(ECOG)及是否合併腦部轉移對治療反應之影響。 三、結果 這項研究納入了 1,991 名患有 EGFR 突變的晚期非小細胞肺癌 (NSCLC) 患者。分析結果顯示,第三代EGFR TKI合併鉑類化療在延長無惡化存活期(PFS)方面最有效益(HR=0.69,95%CI:0.53-0.89),其中合併治療對中樞神經系統(CNS)轉移患者更具有PFS效益(HR=0.47)。第三代EGFR TKI合併Amivantamab亦能顯著改善PFS(HR = 0.70,95% CI: 0.58–0.85),尤以65歲以下患者受益最大(HR = 0.62)。值得注意的是,65歲以上患者使用第三代EGFR TKI合併化學治療亦觀察到PFS改善的趨勢(HR = 0.68,95% CI: 0.47–0.98),顯示年齡本身不應成為限制合併治療使用的因素。相較之下,第三代EGFR TKI與抗血管新生藥物合併治療僅帶來有限的PFS改善(HR=0.81,95%CI:0.56-1.17),且對控制CNS轉移的效果較弱。亞組分析顯示,外顯子19缺失患者(HR=0.615)的治療反應優於L858R突變患者; ECOG 體能評分為 1 的患者從聯合治療中獲益較少(HR = 0.80),而 ECOG 評分為 0 的患者獲益較少。在總存活期(OS)方面,僅第三代EGFR TKI合併化療顯示出統計學上顯著的優勢(HR=0.77,95%CI:0.60-0.97)。但合併治療也伴隨較高的不良事件風險,包括3級或以上不良事件(第三代EGFR TKI合併化療:RR=2.34;合併Amivantamab:RR=1.76)及較高的治療中止率(合併Amivantamab:RR=2.54)。 四、結論 第三代EGFR TKI合併治療對於EGFR突變晚期非小細胞肺癌患者,特別是具有腦部轉移或年齡較輕者,能有效延長PFS。然而,合併治療同時伴隨較高的不良事件與治療中斷率,需在療效與安全性間取得平衡。第三代EGFR標靶藥物合併抗血管新生治療雖毒性較低,但其PFS與OS效益有限。治療決策應根據個別患者之基因型、年齡、ECOG表現與轉移部位進行個別化考量。本研究以第三代EGFR標靶藥物為共同基準間接比較,並未進行合併治療間的直接性比較,藥物間可能存在潛在異質性。未來仍需更多高品質、直接比較之隨機對照試驗以驗證本研究結果,進一步優化EGFR突變NSCLC之個別化治療策略。 | zh_TW |
| dc.description.abstract | 1. Background
Lung cancer is characterized by high incidence and mortality, especially as early-stage lung cancer often presents with no symptoms, and most patients are diagnosed at an advanced stage. Due to its aggressive nature and difficulty in early diagnosis, lung cancer remains the leading cause of cancer-related death globally, with non-small cell lung cancer (NSCLC) comprising 85% of all lung cancers [1]. Among NSCLC patients, EGFR mutations occur in approximately 20% of Western populations, while the prevalence is higher in East Asia, affecting 40-50% of NSCLC cases. The most common EGFR mutations are exon 19 deletions (Ex19del) and exon 21 L858R point mutations, which account for 44.8% and 39.8% of EGFR mutations, respectively. Third-generation EGFR tyrosine kinase inhibitors (TKIs), such as Osimertinib, have become the first-line treatment for EGFR-mutated NSCLC due to their excellent efficacy and lower toxicity. However, approximately 25% of patients with EGFR-mutated NSCLC experience disease progression after a period of targeted therapy, with brain metastasis being the most common form of progression [5]. After treatment failure, these patients generally rely on chemotherapy or other systemic medications. Common systemic therapies include chemotherapy, anti-angiogenic agents, and bispecific antibodies, which, when added during first-line targeted therapy, may delay resistance but could also increase toxicity. This study aims to explore the efficacy and safety of using third-generation EGFR TKIs alone or in combination with systemic treatments as first-line therapy for patients with EGFR-mutated NSCLC. 2. Methods This study conducted a systematic review, meta-analysis, and network meta-analysis to evaluate the efficacy and safety of third-generation EGFR TKIs combined with various systemic treatments, particularly in EGFR-mutated metastatic NSCLC. Relevant trials were identified through searches of PubMed, Embase, and Cochrane, and six randomized clinical trials were selected for analysis. The outcomes assessed included progression-free survival (PFS), objective response rate (ORR), adverse events (AEs), discontinuation rate, overall survival (OS), and correlations between these outcomes and subgroups, such as CNS metastasis, EGFR mutation subtypes, race, age, and ECOG performance status. 3. Results This study analyzed six randomized controlled trials (RCTs) involving 1,991 patients with EGFR-mutated metastatic NSCLC. To facilitate comparative evaluation, treatment strategies were categorized into three groups based on therapeutic mechanisms and clinical usage patterns: platinum-based chemotherapy combined with third-generation EGFR TKIs, anti-angiogenic (anti-VEGF) agents combined with third-generation EGFR TKIs, and third-generation EGFR TKI plus amivantamab combinations. Combination treatments significantly improved progression-free survival (PFS), with the most pronounced benefit observed in third-generation EGFR TKI plus chemotherapy (HR: 0.69, 95% CI: 0.53–0.89) and third-generation EGFR TKI plus amivantamab (HR: 0.70, 95% CI: 0.58–0.85). Younger patients (<65 years), patients with CNS metastases, and those harboring exon 19 deletions demonstrated the greatest benefit. Notably, older patients (≥65 years) also experienced favorable outcomes with chemotherapy-based combinations (HR: 0.68, 95% CI: 0.47–0.98), indicating that age alone should not preclude the use of combination therapies. In contrast, combinations with anti-VEGF therapy showed limited PFS improvement (HR: 0.81, 95% CI: 0.56–1.17) and no overall survival (OS) advantage. Combination therapies were associated with higher risks of grade ≥3 adverse events (RR: 2.34 for chemotherapy, RR: 1.76 for amivantamab) and increased treatment discontinuation rates (RR: 2.54 for amivantamab combinations). 4. Conclusion Third-generation EGFR TKI combination therapies, particularly with chemotherapy or amivantamab, provide meaningful clinical benefits in EGFR-mutated metastatic NSCLC, especially among younger patients, those with CNS metastases, and patients harboring exon 19 deletions. However, these combinations are associated with increased toxicity, emphasizing the need for careful patient selection based on age, ECOG performance status, and mutation subtype. Given the methodological limitations of network meta-analysis and potential biases from pharmacologic classification, further large-scale randomized trials are needed to confirm these findings and optimize individualized therapeutic strategies. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-16T16:11:25Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-16T16:11:25Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRAC Tiv CONTENTS vii Chapter 1 Introduction 1 Chapter 2 Method 3 2.1 Literature Search Strategies 3 2.2 Quality Assessment 4 2.3 Network Meta Analysis and Statistics 4 Chapter 3 Results 6 3.1 Systematic Review6 3.2 Risk and Bias 6 3.3 Treatment Categories 8 3.3.1 Platinum chemotherapy 8 3.3.2 Anti-Angiogenic Agent/Anti-VEGF 9 3.3.3 Third-Generation EGFR TKI 10 3.4 Network Meta Analysis 11 3.4.1 Progression-Free Survival (PFS) 11 3.4.2 Objective Response Rate (ORR) 12 3.4.3 Overall Survival (OS) 13 3.4.4 Adverse Event (AE) incidence of grade 3 or higher 14 3.4.5 Treatment discontinuation rates 15 3.5 PFS Subgroup Meta Analysis 15 3.5.1 PFS With Baseline CNS Metastasis Versus Without CNS metastasis 16 3.5.2 PFS With Exon 19 Deletion Versus Exon 21 L858R Mutations 16 3.5.3 PFS With ECOG Performance Status 0 Versus ECOG Performance status 1 17 3.5.4 PFS With Asian Versus Non Asian 18 3.5.5 PFS With Age younger than 65 years versus 65 years or older 18 Chapter 4 Discussion 20 Chapter 5 Conclusion 22 Chapter 6 Tables and Figures 23 Table 1. Studies characteristic 23 Table 2.1. Summary of Meta-Analysis-1 24 Table 2.2. Summary of Meta-Analysis-2 25 Table 2.3. Overview of Clinical Outcomes in 3rd EGFR-TKI Combination Trials 26 Table 3. Overview of Adverse Event Details in 3rd EGFR-TKI combination Trials 26 Table 4. Overview of Clinical Outcomes in 3rd EGFR-TKI Combination Trials 27 Figure 1. Study select flow diagram 28 Figure 2. Risk of Bias (RoB 2) assessment table 28 Figure 3.1 Progression-Free Survival (PFS) 29 Figure 3.2 NMA diagram and Forest Plot PFS comparison between different treatments 29 Figure 4. Objective Response Rate (ORR) 29 Figure 5. Overall Survival (OS) 30 Figure 6. Adverse Event (AE) incidence of grade 3 or higher 30 Figure 6.1 NMA Forest Plot for Adverse Event (AE) incidence of grade 3 or higher 30 Figure 6.2 Adverse Event Incidence Heatmap 31 Figure 7. Treatment discontinuation rates 31 Figure 8.1 Subgroup Analysis: PFS With Baseline CNS Metastasis Versus Without CNS Metastasis 32 Figure 8.2 NMA Forest Plot for PFS HR in Baseline With or Without CNS Metastasis 32 Figure 9.1 Subgroup Analysis: PFS With Exon 19 Deletion Versus Exon 21 L858R Mutation 33 Figure 9.2 NMA Forest Plot for PFS HR in L858R and Del19 33 Figure 10 Subgroup Analysis: PFS With ECOG Performance Status 0 Versus ECOG Performance status 1 34 Figure 11. Subgroup Analysis: PFS With Asian Versus Non Asian 34 Figure 12. Subgroup Analysis: PFS With Age younger than 65 years versus 65 years or older 35 Chapter 7 References 36 Appendix 1: Clinical Protocol 1 1. STUDY SYNOPSIS 5 2. INTRODUCTION 11 2.1 Background 11 2.2 Rationale 11 2.3 Risk and Benefit 13 3. OBJECTIVES AND ENDPOINTS 14 3.1 Safety Run In 14 3.2 Randomization Phase 15 4. STUDY DESIGN 17 4.1 Study Overview 17 4.2 Study Schema 18 4.3 Randomization and Stratification 21 4.4 Study Timeline 22 4.5 Study Assessments for Participants in the Safety Run-in Period 22 4.6 Study Assessments for Participants in the Randomization Period 23 5. SUBJECT ELIGIBILITY 24 5.1 Inclusion Criteria 24 5.2 Exclusion Criteria 26 6. STUDY TREATMENT 29 6.1 Osimertinib 29 6.2 Osimertinib Plus Chemotherapy 30 6.3 Osimertinib Plus Amivantamab 31 7. DOSE MODIFICATIONS 33 7.1 Dose Adjustments for Osimertinib 33 7.2 Dose Adjustments for Platinum-Based Chemotherapy 35 7.2.1 General Principles and Timing for Dose Adjustments 35 7.2.2 Day 1 Criteria for Chemotherapy Administration 35 7.2.3 Hematologic Toxicity Dose Modifications 36 7.2.4 Non-Hematologic Toxicity Adjustments 36 7.2.5 Additional Guidance 37 7.3.2 Dose Adjustments for Amivantamab 38 7.3.1 Dose Timing and Missed Doses 38 7.3.2 General Adverse Event Management 38 7.3.3 Amivantamab Dose Levels by Body Weight 39 7.3.4 Specific Adverse Event Management for Amivantamab 39 7.3.5 Management of Overlapping Toxicities for Osimertinib and Amivantamab 40 7.3.6 Management of Specific Adverse Events 41 7.3.7 Consolidated Dose Modification 42 8. STUDY PROCEDURES 43 8.1 Screening Period 43 8.2 Treatment Period 43 8.3 End of Treatment 44 8.4 Post-Treatment Follow-Up 44 8.5 Survival Follow-Up 44 8.6 Study Discontinuation 44 8.7 Visit Schedule 45 9. CRITERIA FOR EVALUATION 46 9.1 Efficacy Assessment 46 9.1.1 Imaging Acquisition 47 9.1.2 Blinded Independent Central Review 47 9.1.3 RECIST v1.1 Criteria 48 9.1.4 RANO-BM Criteria 49 9.2 Safety Assessment 51 9.2.1 Clinical Laboratory Tests 51 9.2.2 Physical Examinations 52 9.2.3 Vital Signs 52 9.2.4 Electrocardiogram (ECG) 52 9.2.5 Echocardiogram / MUGA Scan 52 9.2.6 WHO Performance Status 52 9.2.7 Concomitant Medications 53 9.3 Quality of Life Assessment 53 10. SAFETY MONITORING AND REPORTING 54 10.1 Adverse Events (AEs) 56 10.2 Serious Adverse Events (SAEs) 57 310.3 Adverse Events of Special Interest (AESIs) 58 11. STATISTICAL METHODS 60 11.1 Safety Run-in Phase 60 11.2 Statistical Hypotheses for Safety Run-in Phase 60 11.3 Hypotheses for Randomized Phase 61 11.4 Sample Size Estimation 61 11.5 Full Analysis Set 64 11.6 Safety Analysis 65 11.7 Efficacy Analysis 66 12. ETHICS 66 12.1 Informed Consent Form 67 12.2 Risk-Benefit Considerations and Safety Monitoring . 68 12.3 Study Conduct Mitigation Plan 68 12.4 Source Documents and Case Report Forms (CRFs) 69 12.5 Data Protection and Confidentiality 69 12.6 Subject Compensation and Insurance 70 13. REFERENCE 71 14. APPENDICES 75 Appendix A: List of Abbreviations 75 Appendix B: Recist 1.1 criteria (Revised Response Evaluation Criteria in Solid Tumours). 78 Appendix C: RANO-BM (Response Assessment in Neuro-Oncology for Brain Metastases) criteria 81 Appendix D: LIST OF PROHIBITED MEDICATIONS 84 Appendix E: Statistical Design and Sample Size Estimation 85 Appendix F: Patient-Reported Outcome Instruments 90 | - |
| dc.language.iso | en | - |
| dc.subject | 網絡統合性分析 | zh_TW |
| dc.subject | 第三代EGFR標靶藥 | zh_TW |
| dc.subject | 系統性治療 | zh_TW |
| dc.subject | 合併治療 | zh_TW |
| dc.subject | 無進展生存期 | zh_TW |
| dc.subject | EGFR突變非小細胞肺癌 | zh_TW |
| dc.subject | 系統性回顧 | zh_TW |
| dc.subject | 雙特異性抗體 | zh_TW |
| dc.subject | 抗血管新生治療 | zh_TW |
| dc.subject | 總生存期 | zh_TW |
| dc.subject | network meta-analysis | en |
| dc.subject | EGFR-mutated non-small cell lung cancer | en |
| dc.subject | third-generation EGFR TKIs | en |
| dc.subject | advanced non-small cell lung cancer | en |
| dc.subject | systemic therapy | en |
| dc.subject | combination therapy | en |
| dc.subject | targeted therapy | en |
| dc.subject | progression-free survival | en |
| dc.subject | overall survival | en |
| dc.subject | chemotherapy | en |
| dc.subject | bispecific antibodies | en |
| dc.subject | anti-VEGF therapies | en |
| dc.subject | systematic review | en |
| dc.subject | meta-analysis | en |
| dc.title | 第三代酪胺酸激酶抑制劑合併全身治療與單用第三代酪胺酸激酶抑制劑在帶有表皮生長因子受體突變之第IV期非小細胞肺癌第一線治療中的比較:系統性回顧、網絡統合分析與臨床試驗計劃書 | zh_TW |
| dc.title | Third-generation EGFR TKI plus Systemic Therapy vs. Third-generation EGFR TKI in EGFR-mutant Stage IV Non-small Cell Lung cancer: A Systematic Review, Network Meta-analysis, and Clinical Trial Protocol | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 邵文逸;何肇基 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Yi Shau;Chao-Chi Ho | en |
| dc.subject.keyword | EGFR突變非小細胞肺癌,第三代EGFR標靶藥,系統性治療,合併治療,無進展生存期,總生存期,抗血管新生治療,雙特異性抗體,系統性回顧,網絡統合性分析, | zh_TW |
| dc.subject.keyword | EGFR-mutated non-small cell lung cancer,third-generation EGFR TKIs,advanced non-small cell lung cancer,systemic therapy,combination therapy,targeted therapy,progression-free survival, overall survival,chemotherapy,bispecific antibodies,anti-VEGF therapies,systematic review,meta-analysis,network meta-analysis, | en |
| dc.relation.page | 144 | - |
| dc.identifier.doi | 10.6342/NTU202501021 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-03 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 臨床醫學研究所 | - |
| dc.date.embargo-lift | 2025-09-17 | - |
| 顯示於系所單位: | 臨床醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 10.59 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
