請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99582完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳文超 | zh_TW |
| dc.contributor.advisor | Wen-Chau Wu | en |
| dc.contributor.author | 陳世頴 | zh_TW |
| dc.contributor.author | Shih-Ying Chen | en |
| dc.date.accessioned | 2025-09-16T16:11:14Z | - |
| dc.date.available | 2025-09-17 | - |
| dc.date.copyright | 2025-09-16 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-31 | - |
| dc.identifier.citation | 2. Lawrence JS, Disc degeneration. Its frequency and relationship to symptoms. Ann Rheum Dis. 1969;28:121-138.
3. Slaar A et al., Triage tools for detecting cervical spine injury in pediatric trauma patients (Review). Cochrane Database of Systematic Reviews 2017, Issue 12. Art. No.: CD011686. 4. Marc D. Benayoun et al., Utility of computed tomographic imaging of the cervical spine in trauma evaluation of ground-level fall. J Trauma Acute Care Surg. 2016;81: 339–344. 5. Kazuma Murata et al., Artificial intelligence for the detection of vertebral fractures on plain spinal radiography. Scientific Reports (2020) 10:20031. 6. S. Yang et al., Diagnostic accuracy of deep learning in orthopaedic fractures: a systematic review and meta-analysis. Clinical Radiology 75 (2020) 713.e17e713.e28. 7. David Baur et al., Analysis of the paraspinal muscle morphology of the lumbar spine using a convolutional neural network (CNN). European Spine Journal (2022) 31:774–782. 8. Lee‑Ren Yeh et al., A deep learning‑based method for the diagnosis of vertebral fractures on spine MRI: retrospective training and validation of ResNet. European Spine Journal (2022) 31:2022–2030. 9. Sung Hye Kong et al., Development of a Spine X-Ray-Based Fracture Prediction Model Using a Deep Learning Algorithm. Endocrinol Metab 2022;37:674-683. 10. Malaika Mushtaq et al., Localization and Edge-Based Segmentation of Lumbar Spine Vertebrae to Identify the Deformities Using Deep Learning Models. Sensors 2022, 22, 1547. 11. Bo Yang et al., Application of supervised machine learning algorithms to predict the risk of hidden blood loss during the perioperative period in thoracolumbar burst fracture patients complicated with neurological compromise. Front. Public Health 10:969919. 12. Cheng et al., Application of a deep learning algorithm for detection and visualization of hip fractures on plain pelvic radiographs. Eur Radiol (2019)29:5469–5477 13. Gan et al., Artificial intelligence detection of distal radius fractures: a comparison between the convolutional neural network and professional assessments. Acta Orthopaedica 2019; 90 (4): 394–400 14. Guillermo Sánchez Rosenberg et al., Artificial Intelligence Accurately Detects Traumatic Thoracolumbar Fractures on Sagittal Radiographs. Medicina 2022, 58, 998. 15. Weijuan Chen et al., A deep‑learning model for identifying fresh vertebral compression fractures on digital radiography. European Radiology (2022) 32:1496–1505. 16. David W. G. Langerhuizen et al., What Are the Applications and Limitations of Artificial Intelligence for Fracture Detection and Classification in Orthopaedic Trauma Imaging? A Systematic Review. Clin Orthop Relat Res (2019) 477:2482-2491. 17. Barret A. Monchka et al., Development of a manufacturer-independent convolutional neural network for the automated identification of vertebral compression fractures in vertebral fracture assessment images using active learning. Bone 161 (2022) 116427. 18. Li et al., Can a Deep-learning Model for the Automated Detection of Vertebral Fractures Approach the Performance Level of Human Subspecialists? Clin Orthop Relat Res (2021) 479:1598-1612 19. Po-Hsin Chou et al., Ground truth generalizability affects performance of the artificial intelligence model in automated vertebral fracture detection on plain lateral radiographs of the spine. The Spine Journal 22 (2022) 511−523. 20. Small et al., CT Cervical Spine Fracture Detection Using a Convolutional Neural Network. AJNR Am J Neuroradiol 2021(42)1341–47 21. A.F. Voter et al., Diagnostic Accuracy and Failure Mode Analysis of a Deep Learning Algorithm for the Detection of Cervical Spine Fractures. AJNR Am J Neuroradiol 42:1550–56 Aug 2021. 22. Joseph E. Burns et al., Vertebral Body Compression Fractures and Bone Density: Automated Detection and Classification on CT Images. Radiology: Volume 284: Number 3—September 2017. 23. Pengfei Cheng et al., Automatic vertebrae localization and segmentation in CT with a two‑stage Dense‑U‑Net. Scientific Reports (2021) 11:22156. 24. Hsuan-Yu Chen et al., Application of deep learning algorithm to detect and visualize vertebral fractures on plain frontal radiographs. PLoS ONE 16(1): e0245992. 25. Yang‑Tse Lin et al., Using Transfer Learning of Convolutional Neural Network on Neck Radiographs to Identify Acute Epiglottitis. Journal of Digital Imaging January 2023. 26. Jae Won Seo et al., A deep learning algorithm for automated measurement of vertebral body compression from X‑ray images. Scientific Reports (2021) 11:13732. 27. Yuan Li et al., Differential Diagnosis of Benign and Malignant Vertebral Fracture on CT Using Deep Learning. Eur Radiol. 2021 December ; 31(12): 9612–9619. 28. ujjwalkarn, An Intuitive Explanation of Convolutional Neural Networks. August 11, 2016. https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/ 29. Brandon Rohrer, How Convolutional Neural Networks work. https://e2eml.school/how_convolutional_neural_networks_work.html 30. Joseph Redmon et al., Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 779-788. 31. Joseph Redmon and Ali Farhadi, Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767, 2018. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99582 | - |
| dc.description.abstract | 背景
退化性頸椎疾病是常見的老化現象,主要影響中壯年人,可能導致頸部、肩膀或手臂的疼痛、麻木與肌力下降,嚴重者甚至會失能,對個人生活與社會生產力造成影響。影像學檢查是診斷的關鍵工具,X-ray能顯示骨性變化但難以準確評估神經壓迫,MRI雖能清楚呈現椎間盤與神經結構,但受限於醫療資源與長時間等待,可能延誤治療時機,導致病情惡化。CT在骨性病變診斷上具一定準確性,但對軟組織敏感度不及MRI。依據目前研究顯示人工智慧(AI)影像分析逐漸成為改善診斷效率與準確性的潛在解決方案,有望減少人為誤判與診斷延誤,並提升醫療資源的運用效率。 實驗方法 本研究為回溯性病歷研究,分析2012年1月至2016年12月間在新光醫院因頸椎疾病就診之803位年齡介於18至80歲之患者,收集其X-ray、CT與MRI影像資料,並應用深度卷積神經網路中的YOLOv3模型進行頸椎病變影像的自動化偵測與預測。本研究已獲新光醫院倫理審查委員會核准(IRB: 20220121R)。模型訓練聚焦於分析患者的頸椎側面X-ray影像,針對C3至C7椎體進行病變判讀,包括椎體變形、骨刺形成及鈣化等特徵,藉由影像資料標註與模型訓練建立能辨識有臨床意義的退化性病灶之AI系統,作為臨床決策之輔助依據。 結果 本研究所訓練之機器學習模型於頸椎影像病灶偵測上展現中上程度的分類效能,整體AUC值為0.78,95%信賴區間介於0.73至0.83,且P值小於0.001,與隨機預測相比具有顯著統計差異,顯示模型在病灶辨識上具實用價值。就模型於不同頸椎節段之表現而言,皆展現出一定程度的判別力,能有效從影像中辨認出可能存在病變的位置與類型。該結果支持AI模型在X光影像中進行初步篩檢或輔助診斷的潛力,可提升醫療判讀效率並減少人為疏漏。 結論 本研究驗證了深度學習模型於退化性頸椎病變影像判讀上的可行性,特別是在頸椎後韌帶鈣化物偵測與病灶節段定位方面展現不錯效能,未來具作為輔助診斷工具的潛力。惟本研究仍受限於樣本數量、影像標註品質與模型泛化能力等因素,未來可透過擴增資料量、導入可解釋性AI、多模態融合與強化學習等技術加以改善,並進一步評估其在不同醫療環境下之實用性與成本效益。本研究證實AI模型可有效辨識頸椎影像中之關鍵病變特徵,並提供具參考價值之標註資訊,為AI輔助診斷於脊椎醫學領域奠定實務應用基礎。 | zh_TW |
| dc.description.abstract | Background
Degenerative cervical spine disease is a common age-related condition predominantly affecting middle-aged adults, potentially leading to neck, shoulder, or arm pain, numbness, muscle weakness, and even disability. These impairments may compromise individuals’ quality of life and societal productivity. Imaging plays a crucial role in diagnosis: X-rays can reveal bony changes but have limited capacity to assess neural compression; MRI offers detailed visualization of soft tissue and neural structures but is often hindered by long wait times due to limited resources; CT provides good resolution for bone but lacks sensitivity for soft tissue. Recent studies suggest that artificial intelligence (AI)-based imaging analysis may enhance diagnostic efficiency and accuracy, reducing misinterpretation and delays, while optimizing resource utilization. Methods This retrospective study analyzed imaging data from 803 patients aged 18 to 80 years who presented with cervical spine disorders at Shin Kong Hospital between January 2012 and December 2016. Cervical spine X-ray, CT, and MRI images were collected. A deep convolutional neural network using the YOLOv3 architecture was trained to automatically detect and predict degenerative changes on lateral cervical spine X-rays, specifically targeting the C3 to C7 vertebral levels. The model was designed to identify clinically significant abnormalities such as vertebral deformities, osteophyte formation, and calcification. Institutional review board approval was obtained (IRB: 20220121R). Results The developed AI model demonstrated moderate-to-good diagnostic performance, achieving an overall area under the curve (AUC) of 0.78 (95% CI: 0.73–0.83; P < 0.001), indicating statistically significant improvement over random prediction. The model effectively identified potential pathological segments across C3–C7 and showed promising classification capabilities. These findings support the potential utility of AI models as preliminary screening or assistive diagnostic tools for cervical spine disorders. Conclusion This study confirmed the feasibility of using deep learning models for interpreting degenerative cervical spine changes on X-ray images. The model showed favorable performance in detecting posterior longitudinal ligament calcification and in localizing affected vertebral segments, with potential to assist clinical decision-making. Limitations include the sample size, annotation quality, and generalizability of the model. Future improvements may involve expanding data sets, incorporating explainable AI techniques, multimodal integration, and reinforcement learning. Overall, the findings highlight the clinical applicability of AI-assisted diagnosis in spinal medicine and establish a foundation for further development in this domain. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-16T16:11:14Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-16T16:11:14Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書……………………………………………………….i
誌謝……………………………………………………………………….ii 中文摘要及關鍵詞……………………………………………………….iii 英文摘要及關鍵詞……………………………………………………….v 目次……………………………………………………………………….vii 圖次……………………………………………………………………….x 表次……………………………………………………………………….xi 第一章、緒論…………………………………………………………… 1 1.1 背景………………………………………………………………. 1 1.1.1 退化性頸椎疾病與影像診斷……………………………………... 1 1.1.2 人工智慧於影像辨識上發展與應用………………………………. 3 1.2 目的………………………………………………………………. 4 1.3 假說………………………………………………………………. 5 第二章、研究方法……………………………………………………… 6 2.1 實驗設計………………………………………………………… 6 2.2 子題一:AI頸椎後鈣化物偵測……………………………….. 6 2.3 子題二:AI病變頸椎偵測…………………………………….. 6 2.3.1 子題二-1 無進行性別及陽性比例之分層分組建立模型…………. 7 2.3.2 子題二-2 有進行性別及陽性比例之分層分組建立模型…………. 7 2.4 機器學習之卷積神經網路……………………………………... 8 2.5 利用機器學習物件偵測進行模型訓練與建立……………….. 9 2.6 影像標註軟體………………………………………………….. 9 2.7 儀器與統計分析……………………………………………….. 10 2.8 比較兩個ROC曲線是否具有統計顯著差異的檢定………… 10 第三章、研究結果…………………………………………………… 12 3.1 頸椎後鈣化物偵測之結果……………………………………. 12 3.2 病變頸椎偵測之模型表現結果………………………………. 12 3.2.1 子題二-1 無進行性別及陽性比例之分層分組建立模型………… 13 3.2.2 子題二-2 有進行性別及陽性比例之分層分組建立模型………… 15 3.2.3 比較無及有進行性別及陽性比例之分層分組模型表現…………. 16 第四章、討論………………………………………………………... 17 4.1 機器學習頸椎後鈣化物偵測………………………………… 17 4.2 機器學習病變頸椎偵測……………………………………… 18 4.2.1 子題二-1 無進行性別及陽性比例之分層分組建立模型………... 18 4.2.2 子題二-2 有進行性別及陽性比例之分層分組建立模型………... 19 4.2.3 比較無及有進行性別及陽性比例之分層分組模型表現………… 19 4.3 研究限制……………………………………………………... 21 4.4 未來研究發展與方向………………………………………... 21 第五章、結論……………………………………………………….. 22 第六章、圖片……………………………………………………….. 23 第七章、表格……………………………………………………….. 41 第八章、參考文獻………………………………………………….. 45 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 頸椎退化性疾病 | zh_TW |
| dc.subject | 影像判讀 | zh_TW |
| dc.subject | 人工智慧 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | YOLO模型 v3 | zh_TW |
| dc.subject | 自動偵測系統 | zh_TW |
| dc.subject | Artificial Intelligence | en |
| dc.subject | Degenerative Cervical Spine Disease | en |
| dc.subject | Automated Detection System | en |
| dc.subject | YOLO Model v3 | en |
| dc.subject | Machine Learning | en |
| dc.subject | Imaging Interpretation | en |
| dc.title | 臨床應用機器學習於退化性頸椎疾病之影像判讀 | zh_TW |
| dc.title | Machine Learning Assistance for Diagnosis and Detection for Cervical Spondylosis with Disk Degeneration in Radiography | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡明達;林聖峰 | zh_TW |
| dc.contributor.oralexamcommittee | Ming-Dar Tsai;Sheng-Feng Lin | en |
| dc.subject.keyword | 頸椎退化性疾病,影像判讀,人工智慧,機器學習,YOLO模型 v3,自動偵測系統, | zh_TW |
| dc.subject.keyword | Degenerative Cervical Spine Disease,Imaging Interpretation,Artificial Intelligence,Machine Learning,YOLO Model v3,Automated Detection System, | en |
| dc.relation.page | 48 | - |
| dc.identifier.doi | 10.6342/NTU202503144 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-01 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 臨床醫學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 臨床醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 4.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
