請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99581完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 賴鴻緒 | zh_TW |
| dc.contributor.advisor | Hong-Shiee Lai | en |
| dc.contributor.author | 陳一心 | zh_TW |
| dc.contributor.author | Yi-Hsin Chen | en |
| dc.date.accessioned | 2025-09-16T16:11:04Z | - |
| dc.date.available | 2025-09-17 | - |
| dc.date.copyright | 2025-09-16 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-06-06 | - |
| dc.identifier.citation | 1 Villanueva, A. Hepatocellular Carcinoma. N Engl J Med 380, 1450-1462 (2019).
2 Rosenberg, N. et al. Combined hepatocellular-cholangiocarcinoma derives from liver progenitor cells and depends on senescence and IL-6 trans-signaling. Journal of hepatology 77, 1631-1641 (2022). 3 Sagnelli, E., Macera, M., Russo, A., Coppola, N. & Sagnelli, C. Epidemiological and etiological variations in hepatocellular carcinoma. Infection 48, 7-17 (2020). 4 Acharyya, S. et al. A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell 150, 165-178 (2012). 5 Guo, X. et al. Advanced Hepatocellular Carcinoma with Bone Metastases: Prevalence, Associated Factors, and Survival Estimation. Med Sci Monit 25, 1105-1112 (2019). 6 Motyka, J. et al. Plasma levels of CXC motif chemokine 1 (CXCL1) and chemokine 8 (CXCL8) as diagnostic biomarkers in luminal A and B breast cancer. Journal of Clinical Medicine 11, 6694 (2022). 7 Korbecki, J., Maruszewska, A., Bosiacki, M., Chlubek, D. & Baranowska-Bosiacka, I. The potential importance of CXCL1 in the physiological state and in noncancer diseases of the cardiovascular system, respiratory system and skin. International Journal of Molecular Sciences 24, 205 (2022). 8 Kinzler, M. N. et al. CXCL1 and CXCL6 are potential predictors for HCC response to TACE. Current oncology 30, 3516-3528 (2023). 9 Liu, J. F. et al. FPTB, a novel CA‐4 derivative, induces cell apoptosis of human chondrosarcoma cells through mitochondrial dysfunction and endoplasmic reticulum stress pathways. Journal of Cellular Biochemistry 112, 453-462 (2011). 10 Liu, J.-F., Huang, Y.-L., Yang, W.-H., Chang, C.-S. & Tang, C.-H. 1-Benzyl-2-phenylbenzimidazole (BPB), a benzimidazole derivative, induces cell apoptosis in human chondrosarcoma through intrinsic and extrinsic pathways. International journal of molecular sciences 13, 16472-16488 (2012). 11 Issekutz, T. B. Lymphocyte homing to sites of inflammation. Current opinion in immunology 4, 287-293 (1992). 12 Zhang, Z. et al. Prognostic and clinicopathological significance of CXCL1 in cancers: a systematic review and meta-analysis. Cancer biology & therapy 20, 1380-1388 (2019). 13 Wang, D., Sun, H., Wei, J., Cen, B. & DuBois, R. N. CXCL1 is critical for premetastatic niche formation and metastasis in colorectal cancer. Cancer research 77, 3655-3665 (2017). 14 Keeley, E. C., Mehrad, B. & Strieter, R. M. Chemokines as mediators of tumor angiogenesis and neovascularization. Experimental cell research 317, 685-690 (2011). 15 Payne, A. S. & Cornelius, L. A. The role of chemokines in melanoma tumor growth and metastasis. Journal of Investigative Dermatology 118, 915-922 (2002). 16 Zou, A. et al. Elevated CXCL1 expression in breast cancer stroma predicts poor prognosis and is inversely associated with expression of TGF-β signaling proteins. BMC cancer 14, 1-16 (2014). 17 Benelli, R., Stigliani, S., Minghelli, S., Carlone, S. & Ferrari, N. Impact of CXCL1 overexpression on growth and invasion of prostate cancer cell. The Prostate 73, 941-951 (2013). 18 Lee, C.-W. et al. A role of CXCL1 drives osteosarcoma lung metastasis via VCAM-1 production. Frontiers in Oncology 11, 735277 (2021). 19 Guo, X. et al. Advanced hepatocellular carcinoma with bone metastases: prevalence, associated factors, and survival estimation. Medical science monitor: international medical journal of experimental and clinical research 25, 1105 (2019). 20 Benedicto, A., Romayor, I. & Arteta, B. Role of liver ICAM-1 in metastasis. Oncology letters 14, 3883-3892 (2017). 21 Sun, J.-J. et al. Invasion and metastasis of liver cancer: expression of intercellular adhesion molecule 1. Journal of cancer research and clinical oncology 125, 28-34 (1999). 22 Momosaki, S. et al. Expression of intercellular adhesion molecule 1 in human hepatocellular carcinoma. Hepatology 22, 1708-1713 (1995). 23 Chen, V. L. et al. Soluble intercellular adhesion molecule-1 is associated with hepatocellular carcinoma risk: multiplex analysis of serum markers. Scientific Reports 7, 11169 (2017). 24 Gu, W. et al. MiR-15p-5p mediates the coordination of ICAM-1 and FAK to promote endothelial cell proliferation and migration. Inflammation 45, 1402-1417 (2022). 25 Salminen, A. T. et al. In vitro studies of transendothelial migration for biological and drug discovery. Frontiers in Medical Technology 2, 600616 (2020). 26 Neuchrist, C., Kornfehl, J. & Lassmann, H. Migration-associated adhesion molecules in squamous cell carcinomas of the head and neck. Oncology Research and Treatment 23, 157-163 (2000). 27 Yang, C. et al. CXCL1 stimulates migration and invasion in ER‑negative breast cancer cells via activation of the ERK/MMP2/9 signaling axis. International journal of oncology 55, 684-696 (2019). 28 Jiang, M. et al. HMGB1-activated tumor-associated macrophages promote migration and invasion via NF-κB/IL-6 signaling in oral squamous cell carcinoma. International Immunopharmacology 126, 111200 (2024). 29 Lu, Z. et al. Prognostic potential of preoperative circulating tumor cells to predict the early progression recurrence in hepatocellular carcinoma patients after hepatectomy. BMC cancer 23, 1150 (2023). 30 Jin, Y. & Xu, A. Clinical value of serum AFP and PIVKA‐II for diagnosis, treatment and prognosis of hepatocellular carcinoma. Journal of Clinical Laboratory Analysis 38, e25016 (2024). 31 Yuan, M. et al. Tumor‐derived CXCL1 promotes lung cancer growth via recruitment of tumor‐associated neutrophils. Journal of immunology research 2016, 6530410 (2016). 32 Geissmann, F., Jung, S. & Littman, D. R. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19, 71-82 (2003). 33 Miyake, M. et al. Monoclonal antibody against CXCL1 (HL2401) as a novel agent in suppressing IL6 expression and tumoral growth. Theranostics 9, 853 (2019). 34 Wang, L. et al. CXCL1 gene silencing inhibits HGC803 cell migration and invasion and acts as an independent prognostic factor for poor survival in gastric cancer. Molecular medicine reports 14, 4673-4679 (2016). 35 Spaks, A. et al. Diagnostic value of circulating CXC chemokines in non-small cell lung cancer. Anticancer Research 35, 6979-6983 (2015). 36 Lo, H.-M., Shieh, J.-M., Chen, C.-L., Tsou, C.-J. & Wu, W.-B. Vascular endothelial growth factor induces CXCL1 chemokine release via JNK and PI-3K-dependent pathways in human lung carcinoma epithelial cells. International journal of molecular sciences 14, 10090-10106 (2013). 37 Keshamouni, V. G. et al. PPAR-γ activation inhibits angiogenesis by blocking ELR+ CXC chemokine production in non-small cell lung cancer. Neoplasia 7, 294-301 (2005). 38 van den Engel, N. K., Heidenthal, E., Vinke, A., Kolb, H. & Martin, S. Circulating forms of intercellular adhesion molecule (ICAM)-1 in mice lacking membranous ICAM-1. Blood, The Journal of the American Society of Hematology 95, 1350-1355 (2000). 39 Yin, Z., Jiang, G., Fung, J. J., Lu, L. & Qian, S. ICAM‐1 expressed on hepatic stellate cells plays an important role in immune regulation. Microsurgery: Official Journal of the International Microsurgical Society and the European Federation of Societies for Microsurgery 27, 328-332 (2007). 40 Pluskota, E. & D'Souza, S. E. Fibrinogen interactions with ICAM‐1 (CD54) regulate endothelial cell survival. European Journal of Biochemistry 267, 4693-4704 (2000). 41 Witkowska, A. M. & Borawska, M. H. Soluble intercellular adhesion molecule-1 (sICAM-1): an overview. Eur Cytokine Netw 15, 91-98 (2004). 42 Wu, M., Tong, X., Wang, D., Wang, L. & Fan, H. Soluble intercellular cell adhesion molecule-1 in lung cancer: A meta-analysis. Pathol Res Pract 216, 153029 (2020). 43 Yin, Z., Jiang, G., Fung, J. J., Lu, L. & Qian, S. ICAM-1 expressed on hepatic stellate cells plays an important role in immune regulation. Microsurgery 27, 328-332 (2007). 44 Oudar, O., Moreau, A., Feldmann, G. & Scoazec, J. Y. Expression and regulation of intercellular adhesion molecule-1 (ICAM-1) in organotypic cultures of rat liver tissue. J Hepatol 29, 901-909 (1998). 45 Guan, W., Chen, Y. & Fan, Y. miR-26a is a Key Therapeutic Target with Enormous Potential in the Diagnosis and Prognosis of Human Disease. Curr Med Chem 31, 2550-2570 (2024). 46 Zhang, L., Chen, W., Hou, Z. G., Yang, X. & Liu, M. H. [miR-200a involvement in the biological behavior of hepatoma carcinoma cells by targeting the regulatory expression of mesenchymal-epithelial transition factor]. Zhonghua Gan Zang Bing Za Zhi 31, 1176-1181 (2023). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99581 | - |
| dc.description.abstract | 背景
肝細胞癌(Hepatocellular Carcinoma, HCC)是全球癌症相關死亡的主要原因之一,主要由於其高度侵襲性、高轉移潛能以及缺乏早期檢測標誌物。儘管外科手術、標靶治療和免疫療法不斷進步,HCC患者的總體存活率仍然偏低。肺部、淋巴結和門靜脈的轉移是導致治療失敗和預後不良的主要因素。趨化因子(C-X-C Motif Chemokine Ligand 1, CXCL1)在免疫調節和腫瘤進展中發揮關鍵作用,並透過與其受體(C-X-C Motif Chemokine Receptor 2, CXCR2)及下游訊號通路的互動促進癌細胞的轉移。先前的研究顯示,CXCL1可透過活化CXCR2 /Focal Adhesion Kinase (FAK) /Phosphatidylinositol-3-Kinase (PI3K) /Akt /Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB)訊號級聯反應,促進骨肉瘤中血管細胞黏附分子1(Vascular Cell Adhesion Molecule-1, VCAM-1)的表達,進而促使肺部轉移。類似地,在肝細胞癌(HCC)中,CXCL1亦被證實能透過上調細胞間黏附分子1(Intercellular Adhesion Molecule-1, ICAM-1)來增強癌細胞的遷移能力。值得注意的是,ICAM-1作為免疫球蛋白超家族的一員,在腫瘤–內皮細胞互動及促進免疫逃逸過程中扮演了關鍵角色。此外,除了蛋白質層級的調控外,微小核糖核酸(Micro Ribonucleic Acid, miRNA)亦逐漸被認為是ICAM-1表達的重要調節因子,進而影響腫瘤的轉移潛能。其中,miR-30b-5p被鑑定為ICAM-1的負向調控者,而其表達在接受CXCL1刺激後顯著下調,提示可能存在一種進一步增強ICAM-1介導之腫瘤進展的反饋機制。綜合上述發現,CXCL1–ICAM-1軸在線上癌轉移中扮演了關鍵角色,並突顯了針對CXCL1、ICAM-1及其相關訊號路徑進行治療干預,可能作為抑制腫瘤進展及改善臨床預後的潛在策略。 研究目標 本研究旨在探討HCC轉移的分子機制,重點關注CXCL1在炎症及腫瘤進展中的作用。我們希望釐清CXCL1如何調控ICAM-1的表達,並進一步研究其與microRNA-30b-5p(miR-30b-5p)及PI3K/Akt/NF-κB訊號通路之間的關聯。 研究方法 我們透過實驗分析CXCL1對HCC細胞遷移與轉移的影響,並測量不同轉移潛能HCC細胞株與組織樣本中的CXCL1表達量。透過西方點墨法(Western blot)與免疫螢光染色(Immunofluorescence)評估CXCL1對ICAM-1表達的影響。此外,使用藥理抑制劑與小分子干擾核糖核酸(Small Interfering Ribonucleic Acid, siRNA)介導的基因靜默技術,探討PI3K/Akt/NF-κB訊號通路的參與機制。此外,透過定量聚合酶連鎖反應(Quantitative Polymerase Chain Reaction, qPCR)與螢光素酶報導基因分析(luciferase reporter assay),研究CXCL1對miR-30b-5p的調控作用。 研究結果 本研究結果顯示,CXCL1可透過PI3K/Akt/NF-κB訊號通路上調ICAM-1表達,在HCC晚期組織中,CXCL1表達量升高與較差的預後和高轉移風險密切相關。此外,CXCL1促進ICAM-1表達後,HCC細胞的遷移能力顯著增強,進一步證實其在腫瘤轉移中的關鍵作用。同時,我們發現CXCL1可下調miR-30b-5p,而miR-30b-5p原本可抑制ICAM-1表達。miR-30b-5p的喪失導致ICAM-1表達進一步升高,顯示CXCL1可能透過破壞miRNA調控機制來促進HCC轉移。 結論 本研究揭示了CXCL1–ICAM-1軸在HCC轉移中的關鍵作用,該途徑受PI3K/Akt/NF-κB訊號調控,並受到miR-30b-5p的影響。CXCL1可作為抑制HCC轉移的重要治療標的,未來應著重於發展CXCL1的標靶抑制劑PI3K/Akt/NF-κB,以及恢復miR-30b-5p表達的策略。此外,將這些新興治療方式與現有療法結合,可能有助於降低HCC轉移風險,並提升患者的存活率及治療效果。 | zh_TW |
| dc.description.abstract | Background
Hepatocellular Carcinoma (HCC) is a leading cause of cancer-related mortality worldwide, primarily due to its aggressive progression, high metastatic potential, and lack of early detection biomarkers. Despite advances in surgical techniques, targeted therapies, and immunotherapies, the overall survival rate for HCC patients remains dismal. Metastasis, particularly to the lungs, lymph nodes, and portal vein, is a primary factor contributing to treatment failure and poor prognosis. C-X-C Motif Chemokine Ligand 1 (CXCL1) , a chemokine involved in immune regulation and tumor progression, has been identified as a key player in cancer metastasis through its interaction with C-X-C Motif Chemokine Receptor 2 (CXCR2) and downstream signaling pathways. Previous investigations have demonstrated that CXCL1 facilitates pulmonary metastasis in osteosarcoma by upregulating Vascular Cell Adhesion Molecule-1 (VCAM-1) expression through activation of the CXCR2 /Focal Adhesion Kinase (FAK) /Phosphatidylinositol-3-Kinase (PI3K) /Akt /Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling cascade. Similarly, in HCC, CXCL1 has been shown to enhance cancer cell migration via the upregulation of Intercellular Adhesion Molecule-1 (ICAM-1). Notably, ICAM-1, a member of the immunoglobulin superfamily, plays a critical role in mediating tumor–endothelial cell interactions and contributes substantially to immune evasion. Moreover, in addition to protein-level regulation, Micro Ribonucleic Acids (miRNAs) have emerged as key modulators of ICAM-1 expression, thereby influencing metastatic potential. In particular, microRNA-30b-5p (miR-30b-5p) has been identified as a negative regulator of ICAM-1, and its expression was found to be significantly downregulated following CXCL1 stimulation, suggesting a potential feedback mechanism that amplifies ICAM-1-mediated tumor progression. Collectively, these findings underscore the pivotal role of the CXCL1–ICAM-1 axis in tumor metastasis and highlight the therapeutic potential of targeting CXCL1, ICAM-1, and their associated signaling pathways to inhibit cancer progression and improve clinical outcomes. Objective This study seeks to investigate the molecular mechanisms responsible for HCC metastasis, focusing on the chemokine CXCL1, which is involved in inflammation and tumor progression. Specifically, we aim to understand the role of CXCL1 in regulating the expression of ICAM-1 and its interaction with miR-30b-5p and the PI3K/Akt/NF-κB signaling pathway. Methods Our experiments were conducted to analyze the impact of CXCL1 on HCC cell migration and metastasis. CXCL1 levels were measured in HCC tissue samples and cell lines with varying metastatic potential. The effects of CXCL1 on ICAM-1 expression were assessed using Western blotting and immunofluorescence techniques. The involvement of the PI3K/Akt/NF-κB signaling pathway was investigated through pharmacological inhibitors and siRNA-mediated knockdown. Additionally, the regulation of miR-30b-5p by CXCL1 was analyzed using quantitative PCR (qPCR) and luciferase reporter assays. Results Our study demonstrated that CXCL1 upregulates ICAM-1 expression in HCC cells through the PI3K/Akt/NF-κB signaling pathway. Elevated CXCL1 expression in advanced-stage HCC tissues was associated with poor prognosis and metastasis. CXCL1-induced ICAM-1 expression was shown to enhance HCC cell migration, reinforcing its role in promoting metastatic dissemination. Furthermore, CXCL1 downregulated miR-30b-5p, which normally suppresses ICAM-1 expression. The loss of miR-30b-5p led to a further increase in ICAM-1 levels, suggesting that CXCL1 promotes HCC metastasis by disrupting this miRNA-mediated regulatory mechanism. Conclusion Our findings reveal that the CXCL1-ICAM-1 axis is a critical driver of HCC metastasis, facilitated by the PI3K/Akt/NF-κB signaling pathway and miR-30b-5p downregulation. This pathway highlights CXCL1 as a potential therapeutic target for inhibiting HCC metastasis. Future therapeutic strategies should focus on developing targeted inhibitors for CXCL1, the PI3K/Akt/NF-κB pathway, and restoring miR-30b-5p expression. Moreover, combining these approaches with existing treatments may improve patient outcomes and survival rates by reducing HCC metastasis and improving the effectiveness of current therapies. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-16T16:11:04Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-16T16:11:04Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 i
Abstract iv 目次 viii Chapter 1 INTRODUCTION 1 Section 1.1 Hepatocellular Carcinoma (HCC) 2 1.1.1 Epidemiology of HCC 2 1.1.2 Causes and progression of HCC 2 1.1.3 HCC Diagnosis and Examinations 2 1.1.4 HCC can metastasize through different pathways and exhibit a high degree of malignancy. 3 1.1.5 HCC Treatment 4 Section 1.2 C-X-C motif chemokine ligand 1 (CXCL1) 7 1.2.1 An Overview of Chemokines: Roles in Immunity and Cancer Progression 7 1.2.2 The Multifaceted Role of CXCL1 in Cell Migration, Immune Modulation, and Angiogenesis 8 1.2.3 CXCL1 in Cancer Metastasis and HCC 8 1.2.4 CXCL1 Overexpression Correlates with Metastasis and Poor Prognosis in HCC: A Meta-Analysis of GEO Datasets 9 1.2.5 CXCL1 as a Key Driver of Metastatic Progression in Osteosarcoma and HCC 9 Section 1.3 Intercellular Adhesion Molecule 1 (ICAM-1) 10 1.3.1 The Role of ICAM-1 in HCC Progression and Metastasis 10 1.3.2 The Role of MicroRNAs in Gene Regulation and ICAM-1-Mediated Cancer Metastasis 11 1.3.3 CXCL1 Enhances HCC Cell Migration Through miR-30b-5p Downregulation and ICAM-1 upregulation 13 Chapter 2 MATERIALS AND METHODS 14 2.1 Reagents 15 2.2 Immunohistochemistry (IHC) Staining 15 2.3 Analysis of Messenger RNA (mRNA) Expression Profiles from the GEO Database 16 2.4 Kaplan-Meier Plotter 16 2.5 Cell Culture 16 2.6 Cell Migration Assay 17 2.7 CXCL1 Knockdown in HCC Cell Lines 17 2.8 UALCAN Analysis in Hepatocellular Carcinoma 17 2.9 Bioinformatics Analysis 18 2.10 Western Blot Analysis 18 2.11 qPCR Analysis 19 2.12 Establishment of Migration-Prone Subline 19 2.13 Analysis of the LinkedOmics Database 20 2.14 CBioPortal Database 20 2.15 Cell Transfection 21 2.16 Reporter Assay 22 2.17 Statistical Analysis 22 Chapter 3 RESULTS 23 3.1 Elevated CXCL1 Expression Correlates with HCC Progression and Metastasis 24 3.2 Correlation Between Increased CXCL1 Expression and Enhanced Migration in Human HCC 25 3.3 Concentration-Dependent Promotion of HCC Cell Migration by CXCL1 26 3.4 Biological Processes Involving CXCL1 in HCC: Functional and Pathway Analysis 27 3.5 CXCL1 Induces ICAM-1 Expression and Promotes Cell Migration in HCC Cells 29 3.6 CXCL1 induces ICAM-1 expression and subsequently increases HCC cell motility via the PI3K and Akt signaling pathway 30 3.7 NF-κB as a Key Mediator of CXCL1-Induced HCC Cell Motility via PI3K/Akt/NF-κB Signaling Pathways 31 3.8 miR-30b-5p Suppresses CXCL1-Induced ICAM-1 Expression and Cell Migration in HCC Cells 32 Chapter 4 DISCUSSION 34 Chapter 5 CONCLUSIONS 42 Chapter 6 REFERENCES 44 Chapter 7 FIGURES AND LEGENDS 49 Figure 1. Overexpression of CXCL1 is Correlated with Poor Prognosis in HCC 50 Figure 2. CXCL1 Expression in Normal Liver and Hepatocellular Carcinoma: IHC Staining and Scoring 51 Figure 3. Association of CXCL1 Expression with Overall Survival and Metastasis in HCC 52 Figure 4. Detection of CXCL1 Expression in HCC Cell Lines by Western Blot and ELISA 53 Figure 5. Assessment of Cell Migration in HCC Cell Lines Using Transwell and Wound Healing Assays 54 Figure 6. Migratory ability and CXCL1 expression of the indicated cells 55 Figure 7. Effect of CXCL1 on HCC Cell Migration Assessed by Wound Healing Assay 56 Figure 8. CXCL1-Induced Migration of HCC Cells Assessed by Transwell Assay 57 Figure 9. Effect of CXCL1 on HCC Cell Proliferation and Migration 58 Figure 10. Function of CXCL1 in HCC from LinkedOmics 59 Figure 11. Gene Expression Profiling and Correlation Analysis in HCC 64 Figure 12. Exploration of CXCL1 expression correlated genes using cBioPortal 65 Figure 13. CXCL1-Induced Regulation of ICAM-1 Expression in HCC Cells 67 Figure 14. Impact of ICAM-1 Silencing and CXCL1 Modulation on HCC Cell Expression and Migration 69 Figure 15. PI3K and Akt signaling are involved in CXCL1-mediated cell movement. 71 Figure 16. CXCL1-mediated cell movement by activating NF-κB signaling. 75 Figure 17. CXCL1 promotes NF-κB transcriptional activation via PI3K and Akt in human HCC cells. 79 Figure 18. miR-30b-5p downregulates CXCL1-mediated ICAM-1 expression and cell migra-tion. 82 Figure 19. Schematic diagram illustrating the mechanisms of CXCL1 function in HCC metastasis. 84 | - |
| dc.language.iso | en | - |
| dc.subject | 轉移 | zh_TW |
| dc.subject | miR-30b-5p | zh_TW |
| dc.subject | 肝癌 | zh_TW |
| dc.subject | ICAM-1 | zh_TW |
| dc.subject | CXCL1 | zh_TW |
| dc.subject | NF-κB | zh_TW |
| dc.subject | Hepatocellular carcinoma | en |
| dc.subject | ICAM-1 | en |
| dc.subject | CXCL1 | en |
| dc.subject | miR-30b-5p | en |
| dc.subject | NF-κB | en |
| dc.subject | metastasis | en |
| dc.title | CXCL1-ICAM-1軸在肝細胞癌中的作用:腫瘤細胞遷移的關鍵推動因子及潛在治療靶點 | zh_TW |
| dc.title | CXCL1-ICAM-1 Axis in Hepatocellular Carcinoma: A Key Driver of Cell Migration and Potential Therapeutic Target | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 陳佑宗 | zh_TW |
| dc.contributor.coadvisor | You-Tzung Chen | en |
| dc.contributor.oralexamcommittee | 黃凱文;陳炯年;王誌謙;楊富吉 | zh_TW |
| dc.contributor.oralexamcommittee | Kai-Wen Huang;Chiung-Nien Chen;Chih-Chien Wang;Fu-Chi Yang | en |
| dc.subject.keyword | 肝癌,轉移,CXCL1,ICAM-1,NF-κB,miR-30b-5p, | zh_TW |
| dc.subject.keyword | Hepatocellular carcinoma,metastasis,CXCL1,ICAM-1,NF-κB,miR-30b-5p, | en |
| dc.relation.page | 84 | - |
| dc.identifier.doi | 10.6342/NTU202501031 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-06-06 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 臨床醫學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 臨床醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 4.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
