Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99577
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江伯倫zh_TW
dc.contributor.advisorBor-Luen Chiangen
dc.contributor.author范家寧zh_TW
dc.contributor.authorJia-Ning Fanen
dc.date.accessioned2025-09-16T16:10:20Z-
dc.date.available2025-09-17-
dc.date.copyright2025-09-16-
dc.date.issued2025-
dc.date.submitted2025-07-07-
dc.identifier.citation1. Sakaguchi S, Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol, 2004. 22: p. 531-562.
2. Chen X and Oppenheim JJ, Resolving the identity myth: key markers of functional CD4+FoxP3+ regulatory T cells. Int Immunopharmacol, 2011. 11(10): p. 1489-1496.
3. Bennett CL, Christie J, Ramsdell F, et al., The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet, 2001. 27(1): p. 20-21.
4. Hori S, Nomura T, and Sakaguchi S, Control of regulatory T cell development by the transcription factor Foxp3. Science, 2003. 299(5609): p. 1057-1061.
5. Pot C, Apetoh L, and Kuchroo VK, Type 1 regulatory T cells (Tr1) in autoimmunity. Semin Immunol, 2011. 23(3): p. 202-208.
6. Zeng H, Zhang R, Jin B, and Chen L, Type 1 regulatory T cells: a new mechanism of peripheral immune tolerance. Cell Mol Immunol, 2015. 12(5): p. 566-571.
7. Carrier Y, Yuan J, Kuchroo VK, and Weiner HL, Th3 cells in peripheral tolerance. I. Induction of Foxp3-positive regulatory T cells by Th3 cells derived from TGF-beta T cell-transgenic mice. J Immunol, 2007. 178(1): p. 179-185.
8. Long SA and Buckner JH, CD4+FOXP3+ T regulatory cells in human autoimmunity: more than a numbers game. J Immunol, 2011. 187(5): p. 2061-2066.
9. Sharabi A, Tsokos MG, Ding Y, et al., Regulatory T cells in the treatment of disease. Nat Rev Drug Discov, 2018: p. 823-844.
10. Tanaka A and Sakaguchi S, Regulatory T cells in cancer immunotherapy. Cell Res, 2017. 27(1): p. 109-118.
11. Hippen KL, Merkel SC, Schirm DK, et al., Generation and large-scale expansion of human inducible regulatory T cells that suppress graft-versus-host disease. Am J Transplant, 2011. 11(6): p. 1148-1157.
12. Chien CH and Chiang BL, Regulatory T cells induced by B cells: a novel subpopulation of regulatory T cells. J Biomed Sci, 2017. 24(1): p. 1-8.
13. Chien CH and Chiang BL, Recent advances in regulatory T cells induced by B cells. Cell Mol Immunol, 2018. 15(5): p. 539-541.
14. Chu KH and Chiang BL, A novel subset of regulatory T cells induced by B cells alleviate the severity of immunological diseases. Clin Rev Allergy Immunol, 2024. 67(1-3): p. 73-82.
15. Shao TY, Hsu LH, Chien CH, and Chiang BL, Novel Foxp3- IL-10- regulatory T-cells induced by B-cells alleviate intestinal inflammation in vivo. Sci Rep, 2016. 6: p. 32415.
16. Chien CH, Yu HH, and Chiang BL, Single allergen-induced oral tolerance inhibits airway inflammation in conjugated allergen immunized mice. J Allergy Clin Immunol, 2015. 136(4): p. 1110-1113.
17. Chien CH, Yu HC, Chen SY, and Chiang BL, Characterization of c-Maf+Foxp3- regulatory T cells induced by repeated stimulation of antigen-presenting B cells. Sci Rep, 2017. 7: p. 46348.
18. Hsu LH, Li KP, Chu KH, and Chiang BL, A B-1a cell subset induces Foxp3- T cells with regulatory activity through an IL-10-independent pathway. Cell Mol Immunol, 2015. 12(3): p. 354-365.
19. Chu KH and Chiang BL, Regulatory T cells induced by mucosal B cells alleviate allergic airway hypersensitivity. Am J Respir Cell Mol Biol, 2012. 46(5): p. 651-659.
20. Chu KH and Chiang BL, Characterization and functional studies of forkhead box protein 3− lymphocyte activation gene 3+ CD4+ regulatory T cells induced by mucosal B cells. Clin Exp Immunol, 2015. 180(2): p. 316-328.
21. Chen SY, Hsu WT, Chen YL, Chien CH, and Chiang BL, Lymphocyte-activation gene 3+ (LAG3+) forkhead box protein 3- (FOXP3-) regulatory T cells induced by B cells alleviates joint inflammation in collagen-induced arthritis. J Autoimmun, 2016. 68: p. 75-85.
22. Huang JH, Lin YL, Wang LC, and Chiang BL, M2-like macrophages polarized by Foxp3- Treg-of-B cells ameliorate imiquimod-induced psoriasis. J Cell Mol Med, 2023. 27(11): p. 1477-1492.
23. Reichardt P, Dornbach B, Rong S, et al., Naive B cells generate regulatory T cells in the presence of a mature immunologic synapse. Blood, 2007. 110(5): p. 1519-1529.
24. Huang JH and Chiang BL, Regulatory T cells induced by B cells suppress NLRP3 inflammasome activation and alleviate monosodium urate-induced gouty inflammation. iScience, 2021. 24(2): p. 102103.
25. Chen SY (2016). Study on the immunomodulatory potential of regulatory T cells induced by B cells in joint inflammation (Unpublished doctoral dissertation). National Taiwan University, Taipei, Taiwan.
26. Gershon RK and Kondo K, Infectious immunological tolerance. Immunology, 1971. 21(6): p. 903-914.
27. Gershon RK, Cohen P, Hencin R, and Liebhaber SA, Suppressor T cells. J Immunol, 1972. 108(3): p. 586-590.
28. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, and Toda M, Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol, 1995. 155(3): p. 1151-1164.
29. Mahic M, Henjum K, Yaqub S, et al., Generation of highly suppressive adaptive CD8+CD25+FOXP3+ regulatory T cells by continuous antigen stimulation. Eur J Immunol, 2008. 38(3): p. 640-646.
30. Chaput N, Louafi S, Bardier A, et al., Identification of CD8+CD25+Foxp3+ suppressive T cells in colorectal cancer tissue. Gut, 2009. 58(4): p. 520-529.
31. Zou Q, Wu B, Xue J, et al., CD8+ Treg cells suppress CD8+ T cell-responses by IL-10-dependent mechanism during H5N1 influenza virus infection. Eur J Immunol, 2014. 44(1): p. 103-114.
32. Sun J, Yang Y, Huo X, et al., Efficient therapeutic function and mechanisms of human polyclonal CD8+CD103+Foxp3+ regulatory T cells on collagen-induced arthritis in mice. J Immunol Res, 2019. 2019: p. 8575407.
33. Poggi A and Zocchi MR, Role of bone marrow stromal cells in the generation of human CD8+ regulatory T cells. Hum Immunol, 2008. 69(11): p. 755-759.
34. Notley CA, Mccann FE, Inglis JJ, and Williams RO, Anti-CD3 therapy expands the numbers of CD4+ and CD8+ Treg cells and induces sustained amelioration of collagen-induced arthritis. Arthritis Rheum, 2010. 62(1): p. 171-178.
35. Rifa'i M, Kawamoto Y, Nakashima I, and Suzuki H, Essential roles of CD8+CD122+ regulatory T cells in the maintenance of T cell homeostasis. J Exp Med, 2004. 200(9): p. 1123-1134.
36. Liu Z, Tugulea S, Cortesini R, and Suciu-Foca N, Specific suppression of T helper alloreactivity by allo-MHC class I-restricted CD8+CD28- T cells. Int Immunol, 1998. 10(6): p. 775-783.
37. Cosmi L, Liotta F, Lazzeri E, et al., Human CD8+CD25+ thymocytes share phenotypic and functional features with CD4+CD25+ regulatory thymocytes. Blood, 2003. 102(12): p. 4107-4114.
38. Mayer CT, Floess S, Baru AM, et al., CD8+ Foxp3+ T cells share developmental and phenotypic features with classical CD4+ Foxp3+ regulatory T cells but lack potent suppressive activity. Eur J Immunol, 2011. 41(3): p. 716-725.
39. Giaglis S and Hahn S, Reproductive immunology research: a tight interaction between diverse scientific and clinical disciplines including immunology, obstetrics, hematology, and endocrinology. Front Immunol, 2015. 6: p. 10.
40. Endharti AT, Rifa IM, Shi Z, et al., Cutting edge: CD8+CD122+ regulatory T cells produce IL-10 to suppress IFN-gamma production and proliferation of CD8+ T cells. J Immunol, 2005. 175(11): p. 7093-7097.
41. Konya C, Goronzy JJ, and Weyand CM, Treating autoimmune disease by targeting CD8+ T suppressor cells. Expert Opin Biol Ther, 2009. 9(8): p. 951-965.
42. Rifa'i M, Shi Z, Zhang S-Y, et al., CD8+ CD122+ regulatory T cells recognize activated T cells via conventional MHC class I–αβTCR interaction and become IL-10-producing active regulatory cells. Int Immunol, 2008. 20(7): p. 937-947.
43. Ruscher R, Kummer RL, Lee YJ, Jameson SC, and Hogquist KA, CD8αα intraepithelial lymphocytes arise from two main thymic precursors. Nat Immunol, 2017. 18(7): p. 771-779.
44. Filaci G, Fravega M, Negrini S, et al., Nonantigen specific CD8+ T suppressor lymphocytes originate from CD8+ CD28− T cells and inhibit both T-cell proliferation and CTL function. Hum Immunol, 2004. 65(2): p. 142-156.
45. Fenoglio D, Ferrera F, Fravega M, et al., Advancements on phenotypic and functional characterization of non-antigen-specific CD8+CD28- regulatory T cells. Hum Immunol, 2008. 69(11): p. 745-750.
46. Jarvis LB, Matyszak MK, Duggleby RC, et al., Autoreactive human peripheral blood CD8+ T cells with a regulatory phenotype and function. Eur J Immunol, 2005. 35(10): p. 2896-2908.
47. Gilliet M and Liu YJ, Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells. J Exp Med, 2002. 195(6): p. 695-704.
48. Bézie S, Picarda E, Ossart J, et al., IL-34 is a Treg-specific cytokine and mediates transplant tolerance. J Clin Invest, 2015. 125(10): p. 3952-3964.
49. Olson BM, Jankowska-Gan E, Becker JT, et al., Human prostate tumor antigen-specific CD8+ regulatory T cells are inhibited by CTLA-4 or IL-35 blockade. J Immunol, 2012. 189(12): p. 5590-5601.
50. Bézie S, Meistermann D, Boucault L, et al., Ex vivo expanded human non-cytotoxic CD8+CD45RClow/- Tregs efficiently delay skin graft rejection and GVHD in humanized mice. Front Immunol, 2017. 8: p. 2014.
51. Chen ML, Yan BS, Kozoriz D, and Weiner HL, Novel CD8+ Treg suppress EAE by TGF-beta- and IFN-gamma-dependent mechanisms. Eur J Immunol, 2009. 39(12): p. 3423-3435.
52. Najafian N, Chitnis T, Salama AD, et al., Regulatory functions of CD8+CD28- T cells in an autoimmune disease model. J Clin Invest, 2003. 112(7): p. 1037-1048.
53. Robb RJ, Lineburg KE, Kuns RD, et al., Identification and expansion of highly suppressive CD8+FoxP3+ regulatory T cells after experimental allogeneic bone marrow transplantation. Blood, 2012. 119(24): p. 5898-5908.
54. Lerret NM, Houlihan JL, Kheradmand T, et al., Donor-specific CD8+ Foxp3+ T cells protect skin allografts and facilitate induction of conventional CD4+ Foxp3+ regulatory T cells. Am J Transplant, 2012. 12(9): p. 2335-2347.
55. Akane K, Kojima S, Mak TW, Shiku H, and Suzuki H, CD8+CD122+CD49dlow regulatory T cells maintain T-cell homeostasis by killing activated T cells via Fas/FasL-mediated cytotoxicity. Proc Natl Acad Sci U S A, 2016. 113(9): p. 2460-2465.
56. Sheng H, Marrero I, Maricic I, et al., Distinct PLZF+CD8αα+ unconventional T cells enriched in liver use a cytotoxic mechanism to limit autoimmunity. J Immunol, 2019. 203(8): p. 2150-2162.
57. Kim HJ, Verbinnen B, Tang X, Lu L, and Cantor H, Inhibition of follicular T-helper cells by CD8+ regulatory T cells is essential for self tolerance. Nature, 2010. 467(7313): p. 328-332.
58. Deaglio S, Dwyer KM, Gao W, et al., Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med, 2007. 204(6): p. 1257-1265.
59. Goyal N, Rana A, Ahlawat A, Bijjem KR, and Kumar P, Animal models of inflammatory bowel disease: a review. Inflammopharmacology, 2014. 22(4): p. 219-233.
60. Wehkamp J, Götz M, Herrlinger K, Steurer W, and Stange EF, Inflammatory bowel disease: Crohn’s disease and ulcerative colitis. Dtsch Arztebl Int, 2016. 113(5): p. 72-82.
61. Zhang YZ and Li YY, Inflammatory bowel disease: pathogenesis. World J Gastroenterol, 2014. 20(1): p. 91-99.
62. Macdonald TT, Monteleone I, Fantini MC, and Monteleone G, Regulation of homeostasis and inflammation in the intestine. Gastroenterology, 2011. 140(6): p. 1768-1775.
63. Rescigno M and Di Sabatino A, Dendritic cells in intestinal homeostasis and disease. J Clin Invest, 2009. 119(9): p. 2441-2450.
64. Wang Y, Liu XP, Zhao ZB, Chen JH, and Yu CG, Expression of CD4+ forkhead box P3 (FOXP3)+ regulatory T cells in inflammatory bowel disease. J Dig Dis, 2011. 12(4): p. 286-294.
65. Casalegno Garduño R and Däbritz J, New insights on CD8+ T cells in inflammatory bowel disease and therapeutic approaches. Front Immunol, 2021. 12: p. 738762.
66. Cai Z, Wang S, and Li J, Treatment of inflammatory bowel disease: a comprehensive review. Front Med (Lausanne), 2021. 8: p. 765474.
67. Higashiyama M and Hokari R, New and emerging treatments for inflammatory bowel disease. Digestion, 2023. 104(1): p. 74-81.
68. Wu JF, Yen HH, Wang HY, et al., Management of Crohn's disease in Taiwan: consensus guideline of the Taiwan Society of Inflammatory Bowel Disease updated in 2023. Intest Res, 2024. 22(3): p. 250-285.
69. Yen HH, Wu JF, Wang HY, et al., Management of ulcerative colitis in Taiwan: consensus guideline of the Taiwan Society of Inflammatory Bowel Disease updated in 2023. Intest Res, 2024. 22(3): p. 213-249.
70. Ocansey DKW, Wang L, Wang J, et al., Mesenchymal stem cell-gut microbiota interaction in the repair of inflammatory bowel disease: an enhanced therapeutic effect. Clin Transl Med, 2019. 8(1): p. 31.
71. Pickard JM, Zeng MY, Caruso R, and Núñez G, Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev, 2017. 279(1): p. 70-89.
72. Forbes GM, Sturm MJ, Leong RW, et al., A phase 2 study of allogeneic mesenchymal stromal cells for luminal Crohn's disease refractory to biologic therapy. Clin Gastroenterol Hepatol, 2014. 12(1): p. 64-71.
73. Gonzalez-Rey E, Anderson P, González MA, et al., Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut, 2009. 58(7): p. 929-939.
74. Chen L, Ou Q, and Kou X, Extracellular vesicles and their indispensable roles in pathogenesis and treatment of inflammatory bowel disease: A comprehensive review. Life Sci, 2023. 327: p. 121830.
75. Negi S, Saini S, Tandel N, et al., Translating Treg therapy for inflammatory bowel disease in humanized mice. Cells, 2021. 10(8): p. 1847.
76. Cosovanu C and Neumann C, The many functions of Foxp3+ regulatory T cells in the intestine. Front Immunol, 2020. 11: p. 600973.
77. Eastaff-Leung N, Mabarrack N, Barbour A, Cummins A, and Barry S, Foxp3+ regulatory T cells, Th17 effector cells, and cytokine environment in inflammatory bowel disease. J Clin Immunol, 2010. 30(1): p. 80-89.
78. Boehm F, Martin M, Kesselring R, et al., Deletion of Foxp3+ regulatory T cells in genetically targeted mice supports development of intestinal inflammation. BMC Gastroenterol, 2012. 12: p. 97.
79. Ueno A, Jijon H, Chan R, et al., Increased prevalence of circulating novel IL-17 secreting Foxp3 expressing CD4+ T cells and defective suppressive function of circulating Foxp3+ regulatory cells support plasticity between Th17 and regulatory T cells in inflammatory bowel disease patients. Inflamm Bowel Dis, 2013. 19(12): p. 2522-2534.
80. Powrie F, Leach MW, Mauze S, Caddle LB, and Coffman RL, Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice. Int Immunol, 1993. 5(11): p. 1461-1471.
81. Powrie F, Correa-Oliveira R, Mauze S, and Coffman RL, Regulatory interactions between CD45RBhigh and CD45RBlow CD4+ T cells are important for the balance between protective and pathogenic cell-mediated immunity. J Exp Med, 1994. 179(2): p. 589-600.
82. Mottet C, Uhlig HH, and Powrie F, Cutting edge: cure of colitis by CD4+ CD25+ regulatory T cells. J Immunol, 2003. 170(8): p. 3939-3943.
83. Harrison OJ and Powrie FM, Regulatory T cells and immune tolerance in the intestine. Cold Spring Harb Perspect Biol, 2013. 5(7): p. a018341.
84. Chen J, Xie L, Toyama S, et al., The effects of Foxp3-expressing regulatory T cells expanded with CD28 superagonist antibody in DSS-induced mice colitis. Int Immunopharmacol, 2011. 11(5): p. 610-617.
85. Desreumaux P, Foussat A, Allez M, et al., Safety and efficacy of antigen-specific regulatory T-cell therapy for patients with refractory Crohn's disease. Gastroenterology, 2012. 143(5): p. 1207-1217. e1202.
86. Brimnes J, Allez M, Dotan I, et al., Defects in CD8+ regulatory T cells in the lamina propria of patients with inflammatory bowel disease. J Immunol, 2005. 174(9): p. 5814-5822.
87. Sun X, He S, Lv C, et al., Analysis of murine and human Treg subsets in inflammatory bowel disease. Mol Med Rep, 2017. 16(3): p. 2893-2898.
88. Ménager-Marcq I, Pomié C, Romagnoli P, and Van Meerwijk JP, CD8+CD28- regulatory T lymphocytes prevent experimental inflammatory bowel disease in mice. Gastroenterology, 2006. 131(6): p. 1775-1785.
89. Endharti AT, Okuno Y, Shi Z, et al., CD8+ CD122+ regulatory T cells (Tregs) and CD4+ Tregs cooperatively prevent and cure CD4+ cell-induced colitis. J Immunol, 2011. 186(1): p. 41-52.
90. Yao Y, Han W, Liang J, et al., Glatiramer acetate ameliorates inflammatory bowel disease in mice through the induction of Qa-1-restricted CD8⁺ regulatory cells. Eur J Immunol, 2013. 43(1): p. 125-136.
91. Leόn B, T cells in allergic asthma: key players beyond the Th2 pathway. Curr Allergy Asthma Rep, 2017. 17(7): p. 43.
92. Hammad H and Lambrecht BN, The basic immunology of asthma. Cell, 2021. 184(6): p. 1469-1485.
93. León B and Ballesteros-Tato A, Modulating Th2 cell immunity for the treatment of asthma. Front Immunol, 2021. 12: p. 637948.
94. Lambrecht BN, Hammad H, and Fahy JV, The cytokines of asthma. Immunity, 2019. 50(4): p. 975-991.
95. Steinke JW and Borish L, Th2 cytokines and asthma. Interleukin-4: its role in the pathogenesis of asthma, and targeting it for asthma treatment with interleukin-4 receptor antagonists. Respir Res, 2001. 2(2): p. 66-70.
96. Moser R, Fehr J, and Bruijnzeel PL, IL-4 controls the selective endothelium-driven transmigration of eosinophils from allergic individuals. J Immunol, 1992. 149(4): p. 1432-1438.
97. Shi H, Qin S, Huang G, et al., Infiltration of eosinophils into the asthmatic airways caused by interleukin 5. Am J Respir Cell Mol Biol, 1997. 16(3): p. 220-224.
98. Mcbrien CN and Menzies-Gow A, The biology of eosinophils and their role in asthma. Front Med (Lausanne), 2017. 4: p. 93.
99. Li L, Xia Y, Nguyen A, et al., Effects of Th2 cytokines on chemokine expression in the lung: IL-13 potently induces eotaxin expression by airway epithelial cells. J Immunol, 1999. 162(5): p. 2477-2487.
100. Grünig G, Warnock M, Wakil AE, et al., Requirement for IL-13 independently of IL-4 in experimental asthma. Science, 1998. 282(5397): p. 2261-2263.
101. Wills-Karp M, Luyimbazi J, Xu X, et al., Interleukin-13: central mediator of allergic asthma. Science, 1998. 282(5397): p. 2258-2261.
102. Barnes PJ, Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease. J Allergy Clin Immunol, 2013. 131(3): p. 636-645.
103. Humbert M, Busse W, Hanania NA, et al., Omalizumab in asthma: an update on recent developments. J Allergy Clin Immunol Pract, 2014. 2(5): p. 525-536.e521.
104. Haldar P, Brightling CE, Hargadon B, et al., Mepolizumab and exacerbations of refractory eosinophilic asthma. N Engl J Med, 2009. 360(10): p. 973-984.
105. Castro M, Zangrilli J, Wechsler ME, et al., Reslizumab for inadequately controlled asthma with elevated blood eosinophil counts: results from two multicentre, parallel, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet Respir Med, 2015. 3(5): p. 355-366.
106. Bleecker ER, Fitzgerald JM, Chanez P, et al., Efficacy and safety of benralizumab for patients with severe asthma uncontrolled with high-dosage inhaled corticosteroids and long-acting β2-agonists (SIROCCO): a randomised, multicentre, placebo-controlled phase 3 trial. Lancet, 2016. 388(10056): p. 2115-2127.
107. Castro M, Corren J, Pavord ID, et al., Dupilumab efficacy and safety in moderate-to-severe uncontrolled asthma. N Engl J Med, 2018. 378(26): p. 2486-2496.
108. Akbari O, Freeman GJ, Meyer EH, et al., Antigen-specific regulatory T cells develop via the ICOS-ICOS-ligand pathway and inhibit allergen-induced airway hyperreactivity. Nat Med, 2002. 8(9): p. 1024-1032.
109. Jheng MJ and Kita H, Control of asthma and allergy by regulatory T cells. Int Arch Allergy Immunol, 2025: p. 87-101.
110. Harb H and Chatila TA, Regulatory T-cells in asthma. Curr Opin Allergy Clin Immunol, 2023. 23(2): p. 151-157.
111. Bacher P, Heinrich F, Stervbo U, et al., Regulatory T cell specificity directs tolerance versus allergy against aeroantigens in humans. Cell, 2016. 167(4): p. 1067-1078.e1016.
112. Duan W, So T, Mehta AK, Choi H, and Croft M, Inducible CD4+LAP+Foxp3- regulatory T cells suppress allergic inflammation. J Immunol, 2011. 187(12): p. 6499-6507.
113. Faustino LD, Griffith JW, Rahimi RA, et al., Interleukin-33 activates regulatory T cells to suppress innate γδ T cell responses in the lung. Nat Immunol, 2020. 21(11): p. 1371-1383.
114. Arpaia N, Green JA, Moltedo B, et al., A distinct function of regulatory T cells in tissue protection. Cell, 2015. 162(5): p. 1078-1089.
115. Tang XY, Yu HP, Deng HJ, et al., Pathogenic mechanism of CD8+CD28-T cell and the effect of dexamethasone in asthmatic mouse. Zhonghua Yi Xue Za Zhi, 2011. 91(26): p. 1861-1865.
116. Eusebio M, Kraszula L, Kupczyk M, Kuna P, and Pietruczuk M, Comparison of changes in the percentages of CD8+CD28-TCRalpha beta+ T cell subpopulations in allergic asthma subjects vs controls before and after anti-CD3/anti-CD28/IL-2 stimulation in vitro. J Biol Regul Homeost Agents, 2013. 27(4): p. 969-979.
117. Zuśka-Prot M and Maślanka T, Inhaled glucocorticoid treatment prevents the response of CD8+ T cells in a mouse model of allergic asthma and causes their depletion outside the respiratory system. Int Immunopharmacol, 2017. 53: p. 63-72.
118. Eusebio M, Kuna P, Kraszula L, Kupczyk M, and Pietruczuk M, The relative values of CD8+CD25+Foxp3brigh Treg cells correlate with selected lung function parameters in asthma. Int J Immunopathol Pharmacol, 2015. 28(2): p. 218-226.
119. Renz H, Lack G, Saloga J, et al., Inhibition of IgE production and normalization of airways responsiveness by sensitized CD8 T cells in a mouse model of allergen-induced sensitization. J Immunol, 1994. 152(1): p. 351-360.
120. Tsai YG, Yang KD, Wen YS, et al., Allergen-specific immunotherapy enhances CD8+ CD25+ CD137+ regulatory T cells and decreases nasal nitric oxide. Pediatr Allergy Immunol, 2019. 30(5): p. 531-539.
121. Erben U, Loddenkemper C, Doerfel K, et al., A guide to histomorphological evaluation of intestinal inflammation in mouse models. Int J Clin Exp Pathol, 2014. 7(8): p. 4557-4576.
122. Tsitoura DC, Yeung VP, Dekruyff RH, and Umetsu DT, Critical role of B cells in the development of T cell tolerance to aeroallergens. Int Immunol, 2002. 14(6): p. 659-667.
123. Chen X and Jensen PE, Cutting edge: primary B lymphocytes preferentially expand allogeneic FoxP3+ CD4 T cells. J Immunol, 2007. 179(4): p. 2046-2050.
124. Churlaud G, Pitoiset F, Jebbawi F, et al., Human and mouse CD8+CD25+FOXP3+ regulatory T cells at steady state and during interleukin-2 therapy. Front Immunol, 2015. 6: p. 171.
125. Liang B, Workman C, Lee J, et al., Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II. J Immunol, 2008. 180(9): p. 5916-5926.
126. Workman CJ, Rice DS, Dugger KJ, Kurschner C, and Vignali DA, Phenotypic analysis of the murine CD4-related glycoprotein, CD223 (LAG-3). Eur J Immunol, 2002. 32(8): p. 2255-2263.
127. Joosten SA, Van Meijgaarden KE, Savage ND, et al., Identification of a human CD8+ regulatory T cell subset that mediates suppression through the chemokine CC chemokine ligand 4. Proc Natl Acad Sci U S A, 2007. 104(19): p. 8029-8034.
128. Löhning M, Hutloff A, Kallinich T, et al., Expression of ICOS in vivo defines CD4+ effector T cells with high inflammatory potential and a strong bias for secretion of interleukin 10. J Exp Med, 2003. 197(2): p. 181-193.
129. Li DY and Xiong XZ, ICOS+ Tregs: a functional subset of Tregs in immune diseases. Front Immunol, 2020. 11: p. 2104.
130. Kopf M, Ruedl C, Schmitz N, et al., OX40-deficient mice are defective in Th cell proliferation but are competent in generating B cell and CTL responses after virus infection. Immunity, 1999. 11(6): p. 699-708.
131. Fujita T, Ukyo N, Hori T, and Uchiyama T, Functional characterization of OX40 expressed on human CD8+ T cells. Immunol Lett, 2006. 106(1): p. 27-33.
132. Stephens GL, Mchugh RS, Whitters MJ, et al., Engagement of glucocorticoid-induced TNFR family-related receptor on effector T cells by its ligand mediates resistance to suppression by CD4+CD25+ T cells. J Immunol, 2004. 173(8): p. 5008-5020.
133. Vieyra-Lobato MR, Vela-Ojeda J, Montiel-Cervantes L, López-Santiago R, and Moreno-Lafont MC, Description of CD8+ regulatory T lymphocytes and their specific intervention in graft-versus-host and infectious diseases, autoimmunity, and cancer. J Immunol Res, 2018. 2018: p. 3758713.
134. Da M, Chen L, Enk A, Ring S, and Mahnke K, The multifaceted actions of CD73 during development and suppressive actions of regulatory T cells. Front Immunol, 2022. 13.
135. Liu Z, Tugulea S, Cortesini R, and Suciu-Foca N, Specific suppression of T helper alloreactivity by allo-MHC class I-restricted CD8+ CD28-T cells. Int Immunol, 1998. 10(6): p. 775-783.
136. Lee YH, Ishida Y, Rifa'i M, et al., Essential role of CD8+CD122+ regulatory T cells in the recovery from experimental autoimmune encephalomyelitis. J Immunol, 2008. 180(2): p. 825-832.
137. Shimokawa C, Kato T, Takeuchi T, et al., CD8+ regulatory T cells are critical in prevention of autoimmune-mediated diabetes. Nat Commun, 2020. 11(1): p. 1922.
138. Dai Z, Zhang S, Xie Q, et al., Natural CD8+CD122+ T cells are more potent in suppression of allograft rejection than CD4+CD25+ regulatory T cells. Am J Transplant, 2014. 14(1): p. 39-48.
139. Dai H, Wan N, Zhang S, et al., Cutting edge: programmed death-1 defines CD8+ CD122+ T cells as regulatory versus memory T cells. J Immunol, 2010. 185(2): p. 803-807.
140. Liu H, Wang Y, Zeng Q, et al., Suppression of allograft rejection by CD8+CD122+PD-1+ Tregs is dictated by their Fas ligand-initiated killing of effector T cells versus Fas-mediated own apoptosis. Oncotarget, 2017. 8(15): p. 24187-24195.
141. Saligrama N, Zhao F, Sikora MJ, et al., Opposing T cell responses in experimental autoimmune encephalomyelitis. Nature, 2019. 572(7770): p. 481-487.
142. Chen X, Ghanizada M, Mallajosyula V, et al., Differential roles of human CD4+ and CD8+ regulatory T cells in controlling self-reactive immune responses. Nat Immunol, 2025. 26(2): p. 230-239.
143. Breynaert C, Dresselaers T, Perrier C, et al., Unique gene expression and MR T2 relaxometry patterns define chronic murine dextran sodium sulphate colitis as a model for connective tissue changes in human Crohn's disease. PLoS One, 2013. 8(7): p. e68876.
144. Ostanin DV, Bao J, Koboziev I, et al., T cell transfer model of chronic colitis: concepts, considerations, and tricks of the trade. Am J Physiol Gastrointest Liver Physiol, 2009. 296(2): p. G135-146.
145. Aggeletopoulou I, Kalafateli M, Tsounis EP, and Triantos C, Exploring the role of IL-1β in inflammatory bowel disease pathogenesis. Front Med (Lausanne), 2024. 11: p. 1307394.
146. Coccia M, Harrison OJ, Schiering C, et al., IL-1β mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4+ Th17 cells. J Exp Med, 2012. 209(9): p. 1595-1609.
147. Di Giovangiulio M, Rizzo A, Franzè E, et al., Tbet expression in regulatory T cells is required to initiate Th1-mediated colitis. Front Immunol, 2019. 10: p. 2158.
148. Noval Rivas M and Chatila TA, Regulatory T cells in allergic diseases. J Allergy Clin Immunol, 2016. 138(3): p. 639-652.
149. Lee J, Yu H, Wang L, et al., The levels of CD4+ CD25+ regulatory T cells in paediatric patients with allergic rhinitis and bronchial asthma. Clin Exp Immunol, 2007. 148(1): p. 53-63.
150. Kraszula Ł, Eusebio MO, Kuna P, and Pietruczuk M, Relationship between CCR5+FoxP3+ Treg cells and forced expiratory volume in 1 s, peak expiratory flow in patients with severe asthma. Postepy Dermatol Alergol, 2021. 38(2): p. 262-268.
151. Bohle B, Kinaciyan T, Gerstmayr M, et al., Sublingual immunotherapy induces IL-10-producing T regulatory cells, allergen-specific T-cell tolerance, and immune deviation. J Allergy Clin Immunol, 2007. 120(3): p. 707-713.
152. Hogan SP, Matthaei KI, Young JM, et al., A novel T cell-regulated mechanism modulating allergen-induced airways hyperreactivity in BALB/c mice independently of IL-4 and IL-5. J Immunol, 1998. 161(3): p. 1501-1509.
153. Teixeira LK, Fonseca BP, Barboza BA, and Viola JP, The role of interferon-gamma on immune and allergic responses. Mem Inst Oswaldo Cruz, 2005. 100 Suppl 1: p. 137-144.
154. Marsland BJ, Harris NL, Camberis M, et al., Bystander suppression of allergic airway inflammation by lung resident memory CD8+ T cells. Proc Natl Acad Sci U S A, 2004. 101(16): p. 6116-6121.
155. Saxena V, Lakhan R, Iyyathurai J, and Bromberg JS, Mechanisms of exTreg induction. Eur J Immunol, 2021. 51(8): p. 1956-1967.
156. Harb H, Stephen-Victor E, Crestani E, et al., A regulatory T cell Notch4-GDF15 axis licenses tissue inflammation in asthma. Nat Immunol, 2020. 21(11): p. 1359-1370.
157. Harb H, Benamar M, Lai PS, et al., Notch4 signaling limits regulatory T-cell-mediated tissue repair and promotes severe lung inflammation in viral infections. Immunity, 2021. 54(6): p. 1186-1199.e1187.
158. Tom MR, Li J, Ueno A, et al., Novel CD8+ T-cell subsets demonstrating plasticity in patients with inflammatory bowel disease. Inflamm Bowel Dis, 2016. 22(7): p. 1596-1608.
159. Wang W, Hong T, Wang X, et al., Newly found peacekeeper: potential of CD8+ Tregs for graft-versus-host disease. Front Immunol, 2021. 12: p. 764786.
160. Nantes University Hospital, Eight-Treg Study: a phase I dose escalation trial of adoptive immunotherapy with autologous ex vivo expanded regulatory CD8+ T cells in living donor kidney transplant recipients. ClinicalTrials.gov identifier: NCT06777719. 2024. https://clinicaltrials.gov/study/NCT06777719.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99577-
dc.description.abstract調節性T細胞(Regulatory T cells, Tregs)是一群具有抑制功能的淋巴細胞,在維持體內免疫反應中扮演重要角色。先前我們實驗室發現B細胞可誘導CD4+CD25- T細胞轉變為一群CD25+FOXP3-調節性T細胞(Treg-of-B cell),在自體免疫疾病與過敏模型中皆證明其免疫抑制功能。除了典型的CD4+調節性T細胞,許多研究也顯示CD8+ T細胞中也存在具有免疫抑制活性的族群。因此本研究的目的為探討B細胞誘導產生的CD8+調節性T細胞(CD8+ Treg-of-B cell)的特徵,並進一步研究其在小鼠發炎性疾病模型中的免疫調節作用。
此一研究結果發現,CD8+ Treg-of-B細胞表現CD25、ICOS、LAG3、OX40、GITR、PD-1、CTLA-4等分子,但並不表達轉錄因子Foxp3。與CD8+CD25- T細胞相比,活化後的CD8+ Treg-of-B細胞可分泌更多的IL-10、IFN-γ和TNF-α。此外CD8+ Treg-of-B細胞需透過細胞接觸機制對CD4+和CD8+ T細胞發揮抑制能力。為了探討CD8+ Treg-of-B細胞在體內的免疫調節功能,我們透過葡聚糖硫酸鈉(dextran sulfate sodium salt, DSS)與CD4+CD45RBhi T細胞建立小鼠結腸炎模式,以及利用卵清蛋白(ovalbumin, OVA)誘發小鼠氣喘模型。在發炎性腸道疾病模型中,CD8+ Treg-of-B細胞降低促發炎細胞因子IL-1β與IL-17的表現,並減輕DSS結腸炎的病理特徵。在CD4+CD45RBhi T細胞誘導的結腸炎中,接受CD8+ Treg-of-B細胞治療的小鼠也降低其結腸組織中IFN-γ的表現。此外CD8+ Treg-of-B細胞在體外也抑制第二型輔助性T細胞(T helper 2 cells, Th2)增生,並降低Th2細胞因子IL-4、IL-5和IL-13的產生。在OVA引發的氣喘小鼠中,以 CD8+ Treg-of-B細胞治療顯著下調呼吸道過度反應,並減少支氣管肺泡灌洗液中嗜酸性白血球的浸潤。此外,CD8+ Treg-of-B細胞與CD8+CD122+調節性T細胞具有相似表型特徵,且比起天然CD8+CD122+調節性T細胞表達更高水平的IL-10。
總結以上結果,我們的研究為CD8+調節性T細胞領域提供了新的發現。CD8+ Treg-of-B細胞是一種新型的CD8+調節性T細胞,在體外透過細胞接觸發揮抑制效果。我們也證明了CD8+ Treg-of-B細胞能減緩小鼠實驗性結腸炎與呼吸道發炎。這些數據可能支持CD8+ Treg-of-B細胞在發炎疾病中的治療潛力。
zh_TW
dc.description.abstractRegulatory T cells (Tregs) play a crucial role in maintaining homeostasis and mediating suppressive functions. In the previous studies, our laboratory found that naïve B cells facilitate the conversion of CD4+CD25- T cells into forkhead box protein 3 (Foxp3)-CD25+ regulatory T cells, named Treg-of-B cells. The immunosuppressive function of Treg-of-B cells has been demonstrated in a variety of allergic and autoimmune disease models. In addition to classical CD4+ Tregs, many studies have also revealed suppressive functions in CD8+ T cells. Hence, this study aimed to characterize CD8+ regulatory T cells induced by B cells (CD8+ Treg-of-B cells) and investigate their regulatory effects in murine models of inflammatory disease.
In this study, CD8+ Treg-of-B cells were characterized by expression of CD25, lymphocyte activation gene 3 (LAG3), inducible co-stimulator (ICOS), tumor necrosis factor receptor superfamily member 4 (OX40), glucocorticoid-induced TNFR-related protein (GITR), programmed cell death protein 1 (PD-1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), but did not express Foxp3. Activated-CD8+ Treg-of-B cells secreted higher levels of interleukin (IL)-10, interferon gamma (IFN-γ), and tumor necrosis factor alpha (TNF-α) compared to CD8+CD25- T cells. In addition, CD8+ Treg-of-B cells exerted suppressive ability on both CD4+ and CD8+ T cells through a cell-cell contact-dependent mechanism in vitro. To further investigate the immunomodulatory function of CD8+ Treg-of-B cells in vivo, chronic dextran sulfate sodium salt (DSS)-induced colitis, CD4+CD45RBhi T cell transfer colitis, and ovalbumin (OVA)-induced asthma models were used. Significant reductions in the levels of pro-inflammatory cytokine IL-1β and IL-17 were observed following treatment with CD8+ Treg-of-B cells, which also attenuated the pathological features of DSS-induced colitis. In addition, the level of IFN-γ was decreased in the colonic tissue of T cell transfer colitis mice. Moreover, CD8+ Treg-of-B cells effectively inhibited the proliferation and cytokine secretion of IL-4, IL-5, and IL-13 by T helper (Th) 2 cells in vitro. In asthmatic mice, CD8+ Treg-of-B cells down-regulated airway hyperresponsiveness and decreased eosinophilic infiltration in bronchoalveolar lavage. In addition, CD8+ Treg-of-B cells shared a similar phenotype with CD8+CD122+ Tregs and expressed a higher level of IL-10 than CD8+CD122+ Tregs.
In conclusion, our study provided new insight into the characterization of CD8+ Tregs. CD8+ Treg-of-B cell is a novel Foxp3-CD8+ Treg subset with suppressive effects through cell contact in vitro. We also demonstrated that CD8+ Treg-of-B cells attenuated the severity of experimental colitis and airway inflammation in vivo. These data might suggest the therapeutic potential of CD8+ Treg-of-B cells in inflammatory diseases.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-16T16:10:20Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-16T16:10:20Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目次
謝辭 I
中文摘要 II
Abstract IV
Abbreviations VI
目次 X
圖次 XV
表次 XVII
Chapter 1. Introduction 1
Section 1. Regulatory T cells 2
1.1 Classification of regulatory T cells 2
1.2 Treg-of-B cells 3
1.3 CD8+ Tregs 5
Section 2. Inflammatory bowel diseases 7
2.1 Pathogenesis of IBD 7
2.2 Medical treatments of IBD 9
2.3 Tregs and IBD 10
Section 3. Asthma 12
3.1 Pathogenesis of asthma 12
3.2 Treatments of asthma 13
3.3 Tregs and asthma 14
Section 4. Study aims 15
Chapter 2. Materials & Methods 16
Section 1. Materials 17
1.1 Animals 17
1.2 Culture medium and reagents 17
1.3 Flow cytometry 19
1.4 Enzyme-linked immunosorbent assay (ELISA) 20
1.5 RNA extraction and reverse transcription-polymerase chain reaction (RT-PCR) 21
1.6 Quantitative polymerase chain reaction (qPCR) 21
1.7 Cell sorting 21
1.8 IBD model 22
1.9 Asthma model 22
Section 2. Methods 23
2.1 Characterization of CD8+ Treg-of-B cells 23
2.1.1 Cell isolation 23
2.1.2 CD8+ Treg-of-B cells generation 23
2.1.3 Flow cytometry 23
2.1.4 Cytokine analysis 24
2.1.5 Reverse-transcription and qPCR 24
2.2 Functional assays of CD8+ Treg-of-B cells 25
2.2.1 Suppression assay and antibody blocking experiments 25
2.2.2 Transwell experiments 25
2.3 Cell sorting 26
2.3.1 CD4+CD45RBhi T cell purification 26
2.3.2 CD8+CD122+ T cell purification 26
2.4 Establishment of IBD model 27
2.4.1 DSS-induced colitis and adoptive transfer 27
2.4.2 T cell transfer model of colitis and adoptive transfer 27
2.5 Evaluation of colonic tissue 28
2.5.1 Histological evaluation 28
2.5.2 Ex vivo culture of colonic tissue and cytokine detection 29
2.6 Culture of Th2 cells 29
2.7 Asthma model 30
2.7.1 OVA-induced allergic asthma and adoptive transfer 30
2.7.2 Evaluation of airway function 30
2.7.3 Detection of anti-OVA-specific antibodies 30
2.7.4 Bronchoalveolar lavage fluid (BALF) collection and analysis 31
2.7.5 Detection of pro-inflammatory cytokines in lung tissue 31
2.7.6 Histopathology evaluation 31
2.8 Statistical analysis 32
Chapter 3. Results 33
Section 1. Characterization of CD8+ Treg-of-B cells 34
1.1 The generation of CD8+ Treg-of-B cells 34
1.2 The phenotypical characterization of CD8+ Treg-of-B cells 34
1.3 Cytokine production by CD8+ Treg-of-B cells 35
1.4 Cytotoxic factor expression in CD8+ Treg-of-B cells 35
1.5 The suppressive capacity of CD8+ Treg-of-B cells 36
1.6 CD8+ Treg-of-B cells exerted the suppressive function through a cell-cell contact manner 36
1.7 The function of surface molecules in CD8+ Treg-of-B cells-mediated suppression 37
Section 2. The immunomodulatory function of CD8+ Treg-of-B cells in IBD 38
2.1 DSS-induced colitis model 38
2.1.1 Adoptive transfer of CD8+ Treg-of-B cells slightly alleviated weight loss 38
2.1.2 Adoptive transfer of CD8+ Treg-of-B cells reduced pro-inflammatory cytokines in the colonic tissue of DSS-induced colitis mice 38
2.1.3 Adoptive transfer of CD8+ Treg-of-B cells alleviated DSS-induced colitis 39
2.2 T cell transfer colitis model 39
2.2.1 CD8+ Treg-of-B cells suppressed CD4+CD45RBhi T cell proliferation in vitro 39
2.2.2 Adoptive transfer of CD8+ Treg-of-B cells in T cell transfer colitis 40
2.2.3 Adoptive transfer of CD8+ Treg-of-B cells reduced pro-inflammatory cytokines in the colonic tissue of T cell transfer colitis 41
2.2.4 Adoptive transfer of CD8+ Treg-of-B cells did not alleviate histologic changes in T cell transfer colitis 41
Section 3. The immunomodulatory function of CD8+ Treg-of-B cells in asthma 42
3.1 CD8+ Treg-of-B cells suppressed Th2 proliferation and cytokine secretion in vitro 42
3.2 CD8+ Treg-of-B cells regulated airway hyperresponsiveness 43
3.3 Adoptive transfer of CD8+ Treg-of-B cells did not alter OVA-specific antibody levels in the asthma model 43
3.4 CD8+ Treg-of-B cells decreased eosinophil accumulations in BALF 44
3.5 The impact of CD8+ Treg-of-B cells on inflammatory cytokines in the asthma model 45
3.6 Adoptive transfer of CD8+ Treg-of-B cells could not alleviate pulmonary inflammation 45
Section 4. Identification of CD8+ Treg-of-B cells and natural CD8+ Tregs 46
4.1 CD8+ Treg-of-B cells expressed CD122 46
4.2 The transcriptional levels of CD8+ Treg-related genes in CD8+CD122+ cells and CD8+ Treg-of-B cells 46
Chapter 4. Discussion 48
Chapter 5. Perspectives 59
Chapter 6. References 62
Chapter 7. Figures 81
Chapter 8. Tables 109
-
dc.language.isoen-
dc.subjectB細胞誘導調節性T細胞zh_TW
dc.subjectCD8+調節性T細胞zh_TW
dc.subject細胞治療zh_TW
dc.subject氣喘zh_TW
dc.subject發炎性腸道疾病zh_TW
dc.subjectinflammatory bowel diseaseen
dc.subjectasthmaen
dc.subjectcell therapyen
dc.subjectTreg-of-B cellsen
dc.subjectCD8+ Tregsen
dc.title研究B細胞誘導的調節性CD8+ T細胞特徵及其在小鼠發炎疾病模型中的免疫調節功能zh_TW
dc.titleCharacterization of CD8+ Treg-of-B Cells and Their Modulatory Effect in Murine Inflammatory Disease Modelsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee王弘毅;沈家瑞;楊皇煜;樹金忠zh_TW
dc.contributor.oralexamcommitteeHurng-Yi Wang;Chia-Rui Shen;Huang-Yu Yang;Chin-Chung Shuen
dc.subject.keywordCD8+調節性T細胞,B細胞誘導調節性T細胞,發炎性腸道疾病,氣喘,細胞治療,zh_TW
dc.subject.keywordCD8+ Tregs,Treg-of-B cells,inflammatory bowel disease,asthma,cell therapy,en
dc.relation.page114-
dc.identifier.doi10.6342/NTU202501552-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-09-
dc.contributor.author-college醫學院-
dc.contributor.author-dept臨床醫學研究所-
dc.date.embargo-lift2030-07-03-
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
4.89 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved