Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99569
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor余家利zh_TW
dc.contributor.advisorChia-Li Yuen
dc.contributor.author呂政勳zh_TW
dc.contributor.authorCheng-Hsun Luen
dc.date.accessioned2025-09-16T16:08:51Z-
dc.date.available2025-09-17-
dc.date.copyright2025-09-16-
dc.date.issued2025-
dc.date.submitted2025-07-29-
dc.identifier.citation1. Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol. 2014; 5:520.
2. Nauseef WM, Borregaard N. Neutrophils at work. Nat Immunol. 2014 Jul; 15(7):602-611.
3. Ravindran M, Khan MA, Palaniyar N. Neutrophil Extracellular Trap Formation: Physiology, Pathology, and Pharmacology. Biomolecules. 2019 Aug 14; 9(8).
4. Mortaz E, Alipoor SD, Adcock IM, Mumby S, Koenderman L. Update on Neutrophil Function in Severe Inflammation. Front Immunol. 2018; 9:2171.
5. Kobayashi SD, Malachowa N, DeLeo FR. Influence of Microbes on Neutrophil Life and Death. Frontiers in cellular and infection microbiology. 2017; 7:159.
6. Lawrence SM, Corriden R, Nizet V. How Neutrophils Meet Their End. Trends Immunol. 2020 Jun; 41(6):531-544.
7. Ovadia S, Özcan A, Hidalgo A. The circadian neutrophil, inside-out. J Leukoc Biol. 2023 Jun 1; 113(6):555-566.
8. Eash KJ, Greenbaum AM, Gopalan PK, Link DC. CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow. J Clin Invest. 2010 Jul; 120(7):2423-2431.
9. Zhang F, Xia Y, Su J, Quan F, Zhou H, Li Q, et al. Neutrophil diversity and function in health and disease. Signal Transduct Target Ther. 2024 Dec 6; 9(1):343.
10. Rosales C. Neutrophil: A Cell with Many Roles in Inflammation or Several Cell Types? Front Physiol. 2018; 9:113.
11. Blanter M, Gouwy M, Struyf S. Studying Neutrophil Function in vitro: Cell Models and Environmental Factors. Journal of inflammation research. 2021; 14:141-162.
12. Coffelt SB, Wellenstein MD, de Visser KE. Neutrophils in cancer: neutral no more. Nat Rev Cancer. 2016 Jul; 16(7):431-446.
13. Herrero-Cervera A, Soehnlein O, Kenne E. Neutrophils in chronic inflammatory diseases. Cell Mol Immunol. 2022 Feb; 19(2):177-191.
14. Marwick JA, Mills R, Kay O, Michail K, Stephen J, Rossi AG, et al. Neutrophils induce macrophage anti-inflammatory reprogramming by suppressing NF-κB activation. Cell Death Dis. 2018 Jun 4; 9(6):665.
15. Hsu AY, Huang Q, Pi X, Fu J, Raghunathan K, Ghimire L, et al. Neutrophil-derived vesicles control complement activation to facilitate inflammation resolution. Cell. 2025 Mar 20; 188(6):1623-1641.e1626.
16. Ohms M, Möller S, Laskay T. An Attempt to Polarize Human Neutrophils Toward N1 and N2 Phenotypes in vitro. Front Immunol. 2020; 11:532.
17. Piccard H, Muschel RJ, Opdenakker G. On the dual roles and polarized phenotypes of neutrophils in tumor development and progression. Crit Rev Oncol Hematol. 2012 Jun; 82(3):296-309.
18. Antuamwine BB, Bosnjakovic R, Hofmann-Vega F, Wang X, Theodosiou T, Iliopoulos I, et al. N1 versus N2 and PMN-MDSC: A critical appraisal of current concepts on tumor-associated neutrophils and new directions for human oncology. Immunol Rev. 2023 Mar; 314(1):250-279.
19. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: "N1" versus "N2" TAN. Cancer Cell. 2009 Sep 8; 16(3):183-194.
20. Mihaila AC, Ciortan L, Macarie RD, Vadana M, Cecoltan S, Preda MB, et al. Transcriptional Profiling and Functional Analysis of N1/N2 Neutrophils Reveal an Immunomodulatory Effect of S100A9-Blockade on the Pro-Inflammatory N1 Subpopulation. Front Immunol. 2021; 12:708770.
21. Sansores-España LD, Melgar-Rodríguez S, Vernal R, Carrillo-Ávila BA, Martínez-Aguilar VM, Díaz-Zúñiga J. Neutrophil N1 and N2 Subsets and Their Possible Association with Periodontitis: A Scoping Review. Int J Mol Sci. 2022 Oct 11; 23(20).
22. Lu F, Verleg S, Groven RVM, Poeze M, van Griensven M, Blokhuis TJ. Is there a role for N1-N2 neutrophil phenotypes in bone regeneration? A systematic review. Bone. 2024 Apr; 181:117021.
23. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004 Mar 5; 303(5663):1532-1535.
24. Urban CF, Ermert D, Schmid M, Abu-Abed U, Goosmann C, Nacken W, et al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog. 2009 Oct; 5(10):e1000639.
25. Yipp BG, Kubes P. NETosis: how vital is it? Blood. 2013 Oct 17; 122(16):2784-2794.
26. Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol. 2018 Feb; 18(2):134-147.
27. Panda R, Castanheira FV, Schlechte JM, Surewaard BG, Shim HB, Zucoloto AZ, et al. A functionally distinct neutrophil landscape in severe COVID-19 reveals opportunities for adjunctive therapies. JCI insight. 2021 Dec 15.
28. Kinnare N, Hook JS, Patel PA, Monson NL, Moreland JG. Neutrophil Extracellular Trap Formation Potential Correlates with Lung Disease Severity in COVID-19 Patients. Inflammation. 2021 Oct 31:1-12.
29. Ackermann M, Anders HJ, Bilyy R, Bowlin GL, Daniel C, De Lorenzo R, et al. Patients with COVID-19: in the dark-NETs of neutrophils. Cell Death Differ. 2021 Nov; 28(11):3125-3139.
30. Apel F, Zychlinsky A, Kenny EF. The role of neutrophil extracellular traps in rheumatic diseases. Nat Rev Rheumatol. 2018 Jun 21.
31. Kessenbrock K, Krumbholz M, Schonermarck U, Back W, Gross WL, Werb Z, et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med. 2009 Jun; 15(6):623-625.
32. Hakkim A, Furnrohr BG, Amann K, Laube B, Abed UA, Brinkmann V, et al. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci U S A. 2010 May 25; 107(21):9813-9818.
33. Kaplan MJ. Neutrophils in the pathogenesis and manifestations of SLE. Nat Rev Rheumatol. 2011 Dec; 7(12):691-699.
34. Knight JS, Kaplan MJ. Lupus neutrophils: 'NET' gain in understanding lupus pathogenesis. Curr Opin Rheumatol. 2012 Sep; 24(5):441-450.
35. Khandpur R, Carmona-Rivera C, Vivekanandan-Giri A, Gizinski A, Yalavarthi S, Knight JS, et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci Transl Med. 2013 Mar 27; 5(178):178ra140.
36. Wright HL, Lyon M, Chapman EA, Moots RJ, Edwards SW. Rheumatoid Arthritis Synovial Fluid Neutrophils Drive Inflammation Through Production of Chemokines, Reactive Oxygen Species, and Neutrophil Extracellular Traps. Front Immunol. 2020; 11:584116.
37. Folco EJ, Mawson TL, Vromman A, Bernardes-Souza B, Franck G, Persson O, et al. Neutrophil Extracellular Traps Induce Endothelial Cell Activation and Tissue Factor Production Through Interleukin-1α and Cathepsin G. Arterioscler Thromb Vasc Biol. 2018 Aug; 38(8):1901-1912.
38. Maugeri N, Capobianco A, Rovere-Querini P, Ramirez GA, Tombetti E, Valle PD, et al. Platelet microparticles sustain autophagy-associated activation of neutrophils in systemic sclerosis. Sci Transl Med. 2018 Jul 25; 10(451).
39. Chrysanthopoulou A, Mitroulis I, Apostolidou E, Arelaki S, Mikroulis D, Konstantinidis T, et al. Neutrophil extracellular traps promote differentiation and function of fibroblasts. J Pathol. 2014 Jul; 233(3):294-307.
40. Peng Y, Wu X, Zhang S, Deng C, Zhao L, Wang M, et al. The potential roles of type I interferon activated neutrophils and neutrophil extracellular traps (NETs) in the pathogenesis of primary Sjögren's syndrome. Arthritis Res Ther. 2022 Jul 19; 24(1):170.
41. Podolska MJ, Mahajan A, Knopf J, Hahn J, Boeltz S, Munoz L, et al. Autoimmune, rheumatic, chronic inflammatory diseases: Neutrophil extracellular traps on parade. Autoimmunity. 2018 Sep; 51(6):281-287.
42. Tsai CY, Li KJ, Hsieh SC, Liao HT, Yu CL. What's wrong with neutrophils in lupus? Clin Exp Rheumatol. 2018 Nov 19.
43. Nakazawa D, Marschner JA, Platen L, Anders HJ. Extracellular traps in kidney disease. Kidney Int. 2018 Dec; 94(6):1087-1098.
44. Kumar SV, Kulkarni OP, Mulay SR, Darisipudi MN, Romoli S, Thomasova D, et al. Neutrophil Extracellular Trap-Related Extracellular Histones Cause Vascular Necrosis in Severe GN. J Am Soc Nephrol. 2015 Oct; 26(10):2399-2413.
45. Nakazawa D, Shida H, Tomaru U, Yoshida M, Nishio S, Atsumi T, et al. Enhanced formation and disordered regulation of NETs in myeloperoxidase-ANCA-associated microscopic polyangiitis. J Am Soc Nephrol. 2014 May; 25(5):990-997.
46. McKinney EF, Willcocks LC, Broecker V, Smith KG. The immunopathology of ANCA-associated vasculitis. Semin Immunopathol. 2014 Jul; 36(4):461-478.
47. Nakazawa D, Tomaru U, Suzuki A, Masuda S, Hasegawa R, Kobayashi T, et al. Abnormal conformation and impaired degradation of propylthiouracil-induced neutrophil extracellular traps: implications of disordered neutrophil extracellular traps in a rat model of myeloperoxidase antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheum. 2012 Nov; 64(11):3779-3787.
48. Aleyd E, van Hout MW, Ganzevles SH, Hoeben KA, Everts V, Bakema JE, et al. IgA enhances NETosis and release of neutrophil extracellular traps by polymorphonuclear cells via Fcalpha receptor I. J Immunol. 2014 Mar 1; 192(5):2374-2383.
49. Aleyd E, Al M, Tuk CW, van der Laken CJ, van Egmond M. IgA Complexes in Plasma and Synovial Fluid of Patients with Rheumatoid Arthritis Induce Neutrophil Extracellular Traps via FcalphaRI. J Immunol. 2016 Dec 15; 197(12):4552-4559.
50. Carmona-Rivera C, Kaplan MJ. Low-density granulocytes: a distinct class of neutrophils in systemic autoimmunity. Semin Immunopathol. 2013 Jul; 35(4):455-463.
51. Jariwala MP, Laxer RM. NETosis in Rheumatic Diseases. Curr Rheumatol Rep. 2021 Jan 28; 23(2):9.
52. Tay SH, Celhar T, Fairhurst AM. Low-Density Neutrophils in Systemic Lupus Erythematosus. Arthritis & rheumatology (Hoboken, NJ). 2020 Oct; 72(10):1587-1595.
53. Hartl J, Serpas L, Wang Y, Rashidfarrokhi A, Perez OA, Sally B, et al. Autoantibody-mediated impairment of DNASE1L3 activity in sporadic systemic lupus erythematosus. J Exp Med. 2021 May 3; 218(5).
54. Hakkim A, Fuchs TA, Martinez NE, Hess S, Prinz H, Zychlinsky A, et al. Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation. Nat Chem Biol. 2011 Feb; 7(2):75-77.
55. Frangou E, Chrysanthopoulou A, Mitsios A, Kambas K, Arelaki S, Angelidou I, et al. REDD1/autophagy pathway promotes thromboinflammation and fibrosis in human systemic lupus erythematosus (SLE) through NETs decorated with tissue factor (TF) and interleukin-17A (IL-17A). Ann Rheum Dis. 2018 Dec 18.
56. Yalavarthi S, Gould TJ, Rao AN, Mazza LF, Morris AE, Nunez-Alvarez C, et al. Release of neutrophil extracellular traps by neutrophils stimulated with antiphospholipid antibodies: a newly identified mechanism of thrombosis in the antiphospholipid syndrome. Arthritis & rheumatology (Hoboken, NJ). 2015 Nov; 67(11):2990-3003.
57. Didier K, Giusti D, Le Jan S, Terryn C, Muller C, Pham BN, et al. Neutrophil Extracellular Traps Generation Relates with Early Stage and Vascular Complications in Systemic Sclerosis. Journal of clinical medicine. 2020 Jul 7; 9(7).
58. Peng Y, Zhang S, Zhao Y, Liu Y, Yan B. Neutrophil extracellular traps may contribute to interstitial lung disease associated with anti-MDA5 autoantibody positive dermatomyositis. Clin Rheumatol. 2018 Jan; 37(1):107-115.
59. Boero E, Carducci M, Keeley AJ, Berlanda Scorza F, Iturriza-Gómara M, Moriel DG, et al. A flow cytometry-based assay to determine the ability of anti-Streptococcus pyogenes antibodies to mediate monocytic phagocytosis in human sera. J Immunol Methods. 2024 May; 528:113652.
60. Bhakta SB, Lundgren SM, Sesti BN, Flores BA, Akdogan E, Collins SR, et al. Neutrophil-like cells derived from the HL-60 cell-line as a genetically-tractable model for neutrophil degranulation. PLoS One. 2024; 19(2):e0297758.
61. Smirnov A, Daily KP, Gray MC, Ragland SA, Werner LM, Brittany Johnson M, et al. Phagocytosis via complement receptor 3 enables microbes to evade killing by neutrophils. J Leukoc Biol. 2023 Jul 1; 114(1):1-20.
62. Collins SJ, Ruscetti FW, Gallagher RE, Gallo RC. Normal functional characteristics of cultured human promyelocytic leukemia cells (HL-60) after induction of differentiation by dimethylsulfoxide. J Exp Med. 1979 Apr 1; 149(4):969-974.
63. Collins SJ. The HL-60 promyelocytic leukemia cell line: proliferation, differentiation, and cellular oncogene expression. Blood. 1987 Nov; 70(5):1233-1244.
64. Kawakami T, He J, Morita H, Yokoyama K, Kaji H, Tanaka C, et al. Rab27a is essential for the formation of neutrophil extracellular traps (NETs) in neutrophil-like differentiated HL60 cells. PLoS One. 2014; 9(1):e84704.
65. Teimourian S, Moghanloo E. Role of PTEN in neutrophil extracellular trap formation. Mol Immunol. 2015 Aug; 66(2):319-324.
66. Nakayama T, Saitoh N, Morotomi-Yano K, Yano K, Nakao M, Saitoh H. Nuclear extrusion precedes discharge of genomic DNA fibers during tunicamycin-induced neutrophil extracellular trap-osis (NETosis)-like cell death in cultured human leukemia cells. Cell Biol Int. 2016 May; 40(5):597-602.
67. Guo Y, Gao F, Wang Q, Wang K, Pan S, Pan Z, et al. Differentiation of HL-60 cells in serum-free hematopoietic cell media enhances the production of neutrophil extracellular traps. Exp Ther Med. 2021 Apr; 21(4):353.
68. Yaseen R, Blodkamp S, Lüthje P, Reuner F, Völlger L, Naim HY, et al. Antimicrobial activity of HL-60 cells compared to primary blood-derived neutrophils against Staphylococcus aureus. J Negat Results Biomed. 2017 Feb 19; 16(1):2.
69. Manda-Handzlik A, Bystrzycka W, Wachowska M, Sieczkowska S, Stelmaszczyk-Emmel A, Demkow U, et al. The influence of agents differentiating HL-60 cells toward granulocyte-like cells on their ability to release neutrophil extracellular traps. Immunol Cell Biol. 2018 Apr; 96(4):413-425.
70. Bournazos S, Gupta A, Ravetch JV. The role of IgG Fc receptors in antibody-dependent enhancement. Nat Rev Immunol. 2020 Oct; 20(10):633-643.
71. Behnen M, Leschczyk C, Moller S, Batel T, Klinger M, Solbach W, et al. Immobilized immune complexes induce neutrophil extracellular trap release by human neutrophil granulocytes via FcgammaRIIIB and Mac-1. J Immunol. 2014 Aug 15; 193(4):1954-1965.
72. Aleman OR, Mora N, Cortes-Vieyra R, Uribe-Querol E, Rosales C. Differential Use of Human Neutrophil Fcgamma Receptors for Inducing Neutrophil Extracellular Trap Formation. Journal of immunology research. 2016; 2016:2908034.
73. Fonseca Z, Diaz-Godinez C, Mora N, Aleman OR, Uribe-Querol E, Carrero JC, et al. Entamoeba histolytica Induce Signaling via Raf/MEK/ERK for Neutrophil Extracellular Trap (NET) Formation. Frontiers in cellular and infection microbiology. 2018; 8:226.
74. Pradhan V, Patwardhan M, Ghosh K. Fc gamma receptor polymorphisms in systemic lupus erythematosus and their correlation with the clinical severity of the disease. Indian J Hum Genet. 2008 Sep; 14(3):77-81.
75. Jovanovic V, Dai X, Lim YT, Kemeny DM, MacAry PA. Fc gamma receptor biology and systemic lupus erythematosus. Int J Rheum Dis. 2009 Dec; 12(4):293-298.
76. Carreno LJ, Pacheco R, Gutierrez MA, Jacobelli S, Kalergis AM. Disease activity in systemic lupus erythematosus is associated with an altered expression of low-affinity Fc gamma receptors and costimulatory molecules on dendritic cells. Immunology. 2009 Nov; 128(3):334-341.
77. Li X, Kimberly RP. Targeting the Fc receptor in autoimmune disease. Expert Opin Ther Targets. 2014 Mar; 18(3):335-350.
78. Bosques CJ, Manning AM. Fc-gamma receptors: Attractive targets for autoimmune drug discovery searching for intelligent therapeutic designs. Autoimmun Rev. 2016 Nov; 15(11):1081-1088.
79. Nagelkerke SQ, Kuijpers TW. Immunomodulation by IVIg and the Role of Fc-Gamma Receptors: Classic Mechanisms of Action after all? Front Immunol. 2014; 5:674.
80. Ballow M. Mechanisms of immune regulation by IVIG. Curr Opin Allergy Clin Immunol. 2014 Dec; 14(6):509-515.
81. Reber LL, Hernandez JD, Galli SJ. The pathophysiology of anaphylaxis. J Allergy Clin Immunol. 2017 Aug; 140(2):335-348.
82. Jönsson F, de Chaisemartin L, Granger V, Gouel-Chéron A, Gillis CM, Zhu Q, et al. An IgG-induced neutrophil activation pathway contributes to human drug-induced anaphylaxis. Sci Transl Med. 2019 Jul 10; 11(500).
83. Goldmann O, Medina E. The expanding world of extracellular traps: not only neutrophils but much more. Front Immunol. 2012; 3:420.
84. Fanouriakis A, Kostopoulou M, Cheema K, Anders HJ, Aringer M, Bajema I, et al. 2019 Update of the Joint European League Against Rheumatism and European Renal Association-European Dialysis and Transplant Association (EULAR/ERA-EDTA) recommendations for the management of lupus nephritis. Ann Rheum Dis. 2020 Jun; 79(6):713-723.
85. Fanouriakis A, Kostopoulou M, Andersen J, Aringer M, Arnaud L, Bae SC, et al. EULAR recommendations for the management of systemic lupus erythematosus: 2023 update. Ann Rheum Dis. 2024 Jan 2; 83(1):15-29.
86. Vincent FB, Morand EF, Schneider P, Mackay F. The BAFF/APRIL system in SLE pathogenesis. Nat Rev Rheumatol. 2014 Jun; 10(6):365-373.
87. Huang W, Quach TD, Dascalu C, Liu Z, Leung T, Byrne-Steele M, et al. Belimumab promotes negative selection of activated autoreactive B cells in systemic lupus erythematosus patients. JCI insight. 2018 Sep 6; 3(17).
88. Tak T, Tesselaar K, Pillay J, Borghans JA, Koenderman L. What's your age again? Determination of human neutrophil half-lives revisited. J Leukoc Biol. 2013 Oct; 94(4):595-601.
89. Neogi T. Clinical practice. Gout. N Engl J Med. 2011 Feb 3; 364(5):443-452.
90. Abhishek A, Roddy E, Doherty M. Gout - a guide for the general and acute physicians. Clin Med (Lond). 2017 Feb; 17(1):54-59.
91. Dalbeth N, Choi HK, Joosten LAB, Khanna PP, Matsuo H, Perez-Ruiz F, et al. Gout. Nature reviews Disease primers. 2019 Sep 26; 5(1):69.
92. Khanna P. Remission in Gout: Concepts From a Patient Perspective. J Rheumatol. 2022 Mar; 49(3):242-243.
93. Ea HK, Kischkel B, Chirayath TW, Klück V, Aparicio C, Loeung HU, et al. Systemic inflammatory cytokine profiles in patients with gout during flare, intercritical and treat-to-target phases: TNFSF14 as new biomarker. Ann Rheum Dis. 2024 Feb 28.
94. Joosten LAB, Crişan TO, Bjornstad P, Johnson RJ. Asymptomatic hyperuricaemia: a silent activator of the innate immune system. Nat Rev Rheumatol. 2020 Feb; 16(2):75-86.
95. Dalbeth N, Gosling AL, Gaffo A, Abhishek A. Gout. Lancet. 2021 May 15; 397(10287):1843-1855.
96. Eggebeen AT. Gout: an update. Am Fam Physician. 2007 Sep 15; 76(6):801-808.
97. Richette P, Doherty M, Pascual E, Barskova V, Becce F, Castañeda-Sanabria J, et al. 2016 updated EULAR evidence-based recommendations for the management of gout. Ann Rheum Dis. 2017 Jan; 76(1):29-42.
98. Ortiz-Bravo E, Sieck MS, Schumacher HR, Jr. Changes in the proteins coating monosodium urate crystals during active and subsiding inflammation. Immunogold studies of synovial fluid from patients with gout and of fluid obtained using the rat subcutaneous air pouch model. Arthritis Rheum. 1993 Sep; 36(9):1274-1285.
99. Liu W, Peng J, Wu Y, Ye Z, Zong Z, Wu R, et al. Immune and inflammatory mechanisms and therapeutic targets of gout: An update. Int Immunopharmacol. 2023 Aug; 121:110466.
100. Xue YY, Liu HJ, Sun ZJ, Xiang T, Shao P. H19 is involved in the regulation of inflammatory responses in acute gouty arthritis by targeting miR-2-3p. Immunol Res. 2022 Jun; 70(3):392-399.
101. Shi M, Luo J, Ding L, Duan L. Spontaneous resolution of acute gout: mechanisms and therapeutic targets. RMD open. 2023 Sep; 9(3).
102. Steiger S, Harper JL. Mechanisms of spontaneous resolution of acute gouty inflammation. Curr Rheumatol Rep. 2014 Jan; 16(1):392.
103. Martin WJ, Shaw O, Liu X, Steiger S, Harper JL. Monosodium urate monohydrate crystal-recruited noninflammatory monocytes differentiate into M1-like proinflammatory macrophages in a peritoneal murine model of gout. Arthritis Rheum. 2011 May; 63(5):1322-1332.
104. Chen YH, Hsieh SC, Chen WY, Li KJ, Wu CH, Wu PC, et al. Spontaneous resolution of acute gouty arthritis is associated with rapid induction of the anti-inflammatory factors TGFβ1, IL-10 and soluble TNF receptors and the intracellular cytokine negative regulators CIS and SOCS3. Ann Rheum Dis. 2011 Sep; 70(9):1655-1663.
105. Jeong JH, Choi SJ, Ahn SM, Oh JS, Kim YG, Lee CK, et al. Neutrophil extracellular trap clearance by synovial macrophages in gout. Arthritis Res Ther. 2021 Mar 19; 23(1):88.
106. So A. How to regulate neutrophils in gout. Arthritis Res Ther. 2013; 15(5):118.
107. Schorn C, Janko C, Krenn V, Zhao Y, Munoz LE, Schett G, et al. Bonding the foe - NETting neutrophils immobilize the pro-inflammatory monosodium urate crystals. Front Immunol. 2012; 3:376.
108. Chatfield SM, Grebe K, Whitehead LW, Rogers KL, Nebl T, Murphy JM, et al. Monosodium Urate Crystals Generate Nuclease-Resistant Neutrophil Extracellular Traps via a Distinct Molecular Pathway. J Immunol. 2018 Mar 1; 200(5):1802-1816.
109. Schauer C, Janko C, Munoz LE, Zhao Y, Kienhöfer D, Frey B, et al. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat Med. 2014 May; 20(5):511-517.
110. Chen T, Zhou J, Dang W. Mechanism of neutrophil extracellular traps in the pathogenesis of gout. Clin Exp Rheumatol. 2024 Nov; 42(11):2272-2279.
111. Liu L, Shan L, Wang H, Schauer C, Schoen J, Zhu L, et al. Neutrophil Extracellular Trap-Borne Elastase Prevents Inflammatory Relapse in Intercritical Gout. Arthritis & rheumatology (Hoboken, NJ). 2023 Jun; 75(6):1039-1047.
112. Hahn J, Schauer C, Czegley C, Kling L, Petru L, Schmid B, et al. Aggregated neutrophil extracellular traps resolve inflammation by proteolysis of cytokines and chemokines and protection from antiproteases. FASEB J. 2019 Jan; 33(1):1401-1414.
113. Garcia-Gonzalez E, Gamberucci A, Lucherini OM, Alì A, Simpatico A, Lorenzini S, et al. Neutrophil extracellular traps release in gout and pseudogout depends on the number of crystals regardless of leukocyte count. Rheumatology (Oxford). 2021 Oct 2; 60(10):4920-4928.
114. Schett G, Schauer C, Hoffmann M, Herrmann M. Why does the gout attack stop? A roadmap for the immune pathogenesis of gout. RMD open. 2015; 1(Suppl 1):e000046.
115. Li Y, Cao X, Liu Y, Zhao Y, Herrmann M. Neutrophil Extracellular Traps Formation and Aggregation Orchestrate Induction and Resolution of Sterile Crystal-Mediated Inflammation. Front Immunol. 2018; 9:1559.
116. Rincón E, Rocha-Gregg BL, Collins SR. A map of gene expression in neutrophil-like cell lines. BMC Genomics. 2018 Aug 1; 19(1):573.
117. Ozeki M, Shively JE. Differential cell fates induced by all-trans retinoic acid-treated HL-60 human leukemia cells. J Leukoc Biol. 2008 Sep; 84(3):769-779.
118. Fukushima A, Noguchi M, Tsuda H, Matsumoto T. Arachidonic Acid Metabolism and Granulocytic Differentiation Stages of Human Promyelocytic Leukemia (HL-60) Cells. TISSUE CULTURE RESEARCH COMMUNICATIONS. 1991; 10(2):41-45.
119. Wu CH, Li KJ, Yu CL, Tsai CY, Hsieh SC. Sjögren's Syndrome Antigen B Acts as an Endogenous Danger Molecule to Induce Interleukin-8 Gene Expression in Polymorphonuclear Neutrophils. PLoS One. 2015; 10(4):e0125501.
120. Noguchi T, Shinji C, Kobayashi H, Makishima M, Miyachi H, Hashimoto Y. Enhancement of all-trans retinoic acid-induced HL-60 cell differentiation by thalidomide and its metabolites. Biol Pharm Bull. 2005 Mar; 28(3):563-564.
121. Gianní M, Terao M, Zanotta S, Barbui T, Rambaldi A, Garattini E. Retinoic acid and granulocyte colony-stimulating factor synergistically induce leukocyte alkaline phosphatase in acute promyelocytic leukemia cells. Blood. 1994 Apr 1; 83(7):1909-1921.
122. 豊田 淑, 山口 照, 押澤 正, 内田 恵, 早川 堯. 好中球の機能分化と増殖の制御. 炎症・再生. 2001; 21(3):199-207.
123. Lu CH, Li KJ, Wu CH, Shen CY, Kuo YM, Hsieh SC, et al. The FcγRIII Engagement Augments PMA-Stimulated Neutrophil Extracellular Traps (NETs) Formation by Granulocytes Partially via Cross-Talk between Syk-ERK-NF-κB and PKC-ROS Signaling Pathways. Biomedicines. 2021 Sep 1; 9(9).
124. Lu CH, Shen CY, Li KJ, Wu CH, Chen YH, Kuo YM, et al. Resolution of acute inflammation induced by monosodium urate crystals (MSU) through neutrophil extracellular trap-MSU aggregate-mediated negative signaling. Journal of inflammation (London, England). 2024 Nov 27; 21(1):50.
125. Rebernick R, Fahmy L, Glover C, Bawadekar M, Shim D, Holmes CL, et al. DNA Area and NETosis Analysis (DANA): a High-Throughput Method to Quantify Neutrophil Extracellular Traps in Fluorescent Microscope Images. Biol Proced Online. 2018; 20:7.
126. Silva LM, Moutsopoulos N, Bugge TH, Doyle A. Live Imaging and Quantification of Neutrophil Extracellular Trap Formation. Current protocols. 2021 Jul; 1(7):e157.
127. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012 Jun 28; 9(7):676-682.
128. Chen Q, Wu H, Guo X, Gu K, Wang W, Chen X, et al. The Change of Systemic Immune-Inflammation Index Independently Predicts Survival of Colorectal Cancer Patients after Curative Resection. Mediators Inflamm. 2020; 2020:4105809.
129. Shi L, Wang X, Yan C. Prognostic Value of Systemic Inflammation Score for Esophageal Cancer Patients Undergoing Surgery: A Systematic Review and Meta-Analysis. J Invest Surg. 2023 Dec; 36(1):2197058.
130. Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol. 2010 Nov 1; 191(3):677-691.
131. Stoiber W, Obermayer A, Steinbacher P, Krautgartner WD. The Role of Reactive Oxygen Species (ROS) in the Formation of Extracellular Traps (ETs) in Humans. Biomolecules. 2015 May 4; 5(2):702-723.
132. Okubo K, Brenner MD, Cullere X, Saggu G, Patchen ML, Bose N, et al. Inhibitory affinity modulation of FcγRIIA ligand binding by glycosphingolipids by inside-out signaling. Cell reports. 2021 May 18; 35(7):109142.
133. Heneberg P, Dráber P. Nonreceptor protein tyrosine and lipid phosphatases in type I fc(epsilon) receptor-mediated activation of mast cells and basophils. Int Arch Allergy Immunol. 2002 Aug; 128(4):253-263.
134. Gray RD, Lucas CD, MacKellar A, Li F, Hiersemenzel K, Haslett C, et al. Activation of conventional protein kinase C (PKC) is critical in the generation of human neutrophil extracellular traps. Journal of inflammation (London, England). 2013 Mar 21; 10(1):12.
135. Durandy A, Kaveri SV, Kuijpers TW, Basta M, Miescher S, Ravetch JV, et al. Intravenous immunoglobulins--understanding properties and mechanisms. Clin Exp Immunol. 2009 Dec; 158 Suppl 1(Suppl 1):2-13.
136. Shields RL, Lai J, Keck R, O'Connell LY, Hong K, Meng YG, et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem. 2002 Jul 26; 277(30):26733-26740.
137. Golay J, Da Roit F, Bologna L, Ferrara C, Leusen JH, Rambaldi A, et al. Glycoengineered CD20 antibody obinutuzumab activates neutrophils and mediates phagocytosis through CD16B more efficiently than rituximab. Blood. 2013 Nov 14; 122(20):3482-3491.
138. de Buhr N, von Köckritz-Blickwede M. How Neutrophil Extracellular Traps Become Visible. Journal of immunology research. 2016; 2016:4604713.
139. Yuo A, Kitagawa S, Suzuki I, Urabe A, Okabe T, Saito M, et al. Tumor necrosis factor as an activator of human granulocytes. Potentiation of the metabolisms triggered by the Ca2+-mobilizing agonists. J Immunol. 1989 Mar 1; 142(5):1678-1684.
140. Brown GE, Stewart MQ, Bissonnette SA, Elia AE, Wilker E, Yaffe MB. Distinct ligand-dependent roles for p38 MAPK in priming and activation of the neutrophil NADPH oxidase. J Biol Chem. 2004 Jun 25; 279(26):27059-27068.
141. Larson RS, Tallman MS. Retinoic acid syndrome: manifestations, pathogenesis, and treatment. Best Pract Res Clin Haematol. 2003 Sep; 16(3):453-461.
142. Gasparovic L, Weiler S, Higi L, Burden AM. Incidence of Differentiation Syndrome Associated with Treatment Regimens in Acute Myeloid Leukemia: A Systematic Review of the Literature. Journal of clinical medicine. 2020 Oct 18; 9(10).
143. Stahl M, Tallman MS. Differentiation syndrome in acute promyelocytic leukaemia. Br J Haematol. 2019 Oct; 187(2):157-162.
144. Lee KH, Lee J, Bae JS, Kim YJ, Kang HA, Kim SH, et al. Analytical similarity assessment of rituximab biosimilar CT-P10 to reference medicinal product. mAbs. 2018 Apr; 10(3):380-396.
145. Montacir O, Montacir H, Eravci M, Springer A, Hinderlich S, Saadati A, et al. Comparability study of Rituximab originator and follow-on biopharmaceutical. J Pharm Biomed Anal. 2017 Jun 5; 140:239-251.
146. Miranda-Hernández MP, López-Morales CA, Ramírez-Ibáñez ND, Piña-Lara N, Pérez NO, Molina-Pérez A, et al. Assessment of physicochemical properties of rituximab related to its immunomodulatory activity. Journal of immunology research. 2015; 2015:910763.
147. Fetz AE, Radic MZ, Bowlin GL. Human Neutrophil FcγRIIIb Regulates Neutrophil Extracellular Trap Release in Response to Electrospun Polydioxanone Biomaterials. Acta Biomater. 2021 Jun 8.
148. Golay J, Valgardsdottir R, Musaraj G, Giupponi D, Spinelli O, Introna M. Human neutrophils express low levels of FcγRIIIA, which plays a role in PMN activation. Blood. 2019 Mar 28; 133(13):1395-1405.
149. Fanger MW, Shen L, Graziano RF, Guyre PM. Cytotoxicity mediated by human Fc receptors for IgG. Immunol Today. 1989 Mar; 10(3):92-99.
150. Wang Y, Jonsson F. Expression, Role, and Regulation of Neutrophil Fcgamma Receptors. Front Immunol. 2019; 10:1958.
151. Alemán OR, Mora N, Cortes-Vieyra R, Uribe-Querol E, Rosales C. Transforming Growth Factor-β-Activated Kinase 1 Is Required for Human FcγRIIIb-Induced Neutrophil Extracellular Trap Formation. Front Immunol. 2016; 7:277.
152. Guo W, Gong Q, Zong X, Wu D, Li Y, Xiao H, et al. GPR109A controls neutrophil extracellular traps formation and improve early sepsis by regulating ROS/PAD4/Cit-H3 signal axis. Exp Hematol Oncol. 2023 Jan 31; 12(1):15.
153. Xu L, Jiang Y, Zhao X, Zhuang J, Chen H, Li T, et al. Veillonella parvula outer membrane vesicles increase ICAM-1(+) neutrophils exhibiting elevated NET formation via ROS-PAD4 signaling. Frontiers in cellular and infection microbiology. 2025; 15:1540634.
154. Hamam HJ, Khan MA, Palaniyar N. Histone Acetylation Promotes Neutrophil Extracellular Trap Formation. Biomolecules. 2019 Jan 18; 9(1).
155. Thiam HR, Wong SL, Qiu R, Kittisopikul M, Vahabikashi A, Goldman AE, et al. NETosis proceeds by cytoskeleton and endomembrane disassembly and PAD4-mediated chromatin decondensation and nuclear envelope rupture. Proc Natl Acad Sci U S A. 2020 Mar 31; 117(13):7326-7337.
156. Nguyen GT, Green ER, Mecsas J. Neutrophils to the ROScue: Mechanisms of NADPH Oxidase Activation and Bacterial Resistance. Frontiers in cellular and infection microbiology. 2017; 7:373.
157. Belambri SA, Rolas L, Raad H, Hurtado-Nedelec M, Dang PM, El-Benna J. NADPH oxidase activation in neutrophils: Role of the phosphorylation of its subunits. Eur J Clin Invest. 2018 Nov; 48 Suppl 2:e12951.
158. Li RHL, Tablin F. A Comparative Review of Neutrophil Extracellular Traps in Sepsis. Frontiers in veterinary science. 2018; 5:291.
159. de Buhr N, von Köckritz-Blickwede M. The Balance of Neutrophil Extracellular Trap Formation and Nuclease Degradation: an Unknown Role of Bacterial Coinfections in COVID-19 Patients? mBio. 2021 Feb 16; 12(1).
160. Trofimenko AS, Mozgovaya EE, Bedina SA, Spasov AA. Ambiguities in Neutrophil Extracellular Traps. Ongoing Concepts and Potential Biomarkers for Rheumatoid Arthritis: A Narrative Review. Curr Rheumatol Rev. 2019 Nov 27.
161. Li T, Zhang Z, Li X, Dong G, Zhang M, Xu Z, et al. Neutrophil Extracellular Traps: Signaling Properties and Disease Relevance. Mediators Inflamm. 2020; 2020:9254087.
162. Arcanjo A, Logullo J, Menezes CCB, de Souza Carvalho Giangiarulo TC, Dos Reis MC, de Castro GMM, et al. The emerging role of neutrophil extracellular traps in severe acute respiratory syndrome coronavirus 2 (COVID-19). Sci Rep. 2020 Nov 12; 10(1):19630.
163. Granger V, Peyneau M, Chollet-Martin S, de Chaisemartin L. Neutrophil Extracellular Traps in Autoimmunity and Allergy: Immune Complexes at Work. Front Immunol. 2019; 10:2824.
164. Leffler J, Martin M, Gullstrand B, Tyden H, Lood C, Truedsson L, et al. Neutrophil extracellular traps that are not degraded in systemic lupus erythematosus activate complement exacerbating the disease. J Immunol. 2012 Apr 1; 188(7):3522-3531.
165. Orbach H, Katz U, Sherer Y, Shoenfeld Y. Intravenous immunoglobulin: adverse effects and safe administration. Clin Rev Allergy Immunol. 2005 Dec; 29(3):173-184.
166. Kivity S, Katz U, Daniel N, Nussinovitch U, Papageorgiou N, Shoenfeld Y. Evidence for the use of intravenous immunoglobulins--a review of the literature. Clin Rev Allergy Immunol. 2010 Apr; 38(2-3):201-269.
167. Roberge CJ, de Médicis R, Dayer JM, Rola-Pleszczynski M, Naccache PH, Poubelle PE. Crystal-induced neutrophil activation. V. Differential production of biologically active IL-1 and IL-1 receptor antagonist. J Immunol. 1994 Jun 1; 152(11):5485-5494.
168. Arend WP, Malyak M, Guthridge CJ, Gabay C. Interleukin-1 receptor antagonist: role in biology. Annu Rev Immunol. 1998; 16:27-55.
169. Arend WP. Inhibiting the effects of cytokines in human diseases. Adv Intern Med. 1995; 40:365-394.
170. Ma Y, Yabluchanskiy A, Iyer RP, Cannon PL, Flynn ER, Jung M, et al. Temporal neutrophil polarization following myocardial infarction. Cardiovasc Res. 2016 May 1; 110(1):51-61.
171. Pohar J, Lainšček D, Ivičak-Kocjan K, Cajnko MM, Jerala R, Benčina M. Short single-stranded DNA degradation products augment the activation of Toll-like receptor 9. Nature communications. 2017 May 22; 8:15363.
172. Apel F, Andreeva L, Knackstedt LS, Streeck R, Frese CK, Goosmann C, et al. The cytosolic DNA sensor cGAS recognizes neutrophil extracellular traps. Sci Signal. 2021 Mar 9; 14(673).
173. Aubé FA, Bidias A, Pépin G. Who and how, DNA sensors in NETs-driven inflammation. Front Immunol. 2023; 14:1190177.
174. Pisetsky DS. Gout, tophi and the wonders of NETs. Arthritis Res Ther. 2014; 16(5):431.
175. Ben Mkaddem S, Benhamou M, Monteiro RC. Understanding Fc Receptor Involvement in Inflammatory Diseases: From Mechanisms to New Therapeutic Tools. Front Immunol. 2019; 10:811.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99569-
dc.description.abstract在人體免疫系統中,多形核嗜中性白血球(polymorphonuclear neutrophils)是循環中數量最為豐富的白血球,也是先天免疫的重要防線。除了已被廣泛認可的促發炎功能外,多形核嗜中性白血球亦逐漸被視為發炎終止及組織修復的主動調節者。在適當刺激下,多形核嗜中性白血球能經由嗜中性球胞外陷阱形成(neutrophil extracellular trap formation)釋放嗜中性球胞外陷阱(neutrophil extracellular traps, NETs),其結構包含了以抗菌蛋白裝飾之網狀染色質,可協助清除病原並調節發炎反應。為了解析 NETosis 的分子機制,我們以全反式視黃酸(all‑trans retinoic acid)聯合顆粒性白血球生長因子(granulocyte colony‑stimulating factor)將 HL‑60 細胞分化為具嗜中性球特性的細胞(neutrophil‑like cells),並作為 多形核嗜中性白血球的替代模型。隨後,我們建立以HL‑60 細胞模擬臨床中單鈉尿酸晶體(monosodium urate crystal)誘發之急性痛風性關節炎(acute gouty arthritis)之模型,探討 嗜中性球胞外陷阱可能的調控功能;該疾病通常於 7至10 日內自限性緩解。藉由此細胞模式,我們得以剖析 嗜中性球胞外陷阱誘導與終止途徑,並進一步瞭解嗜中性球於痛風病理生理中兼具促發炎與緩解發炎的雙重角色。
先前研究顯示,全反式視黃酸誘導分化之 HL‑60 細胞在以佛波醇-12-十四烷醯-13-乙酸酯(phorbol 12-myristate 13-acetate)刺激時,相較於原代嗜中性球,呈現較弱的 NETosis 及較低的活性氧(reactive oxygen species)產生量。可能被忽略的一個變因為實驗室中標準培養基與人體血漿成分之差異甚大,例如培養基缺乏人類免疫球蛋白 G(immunoglobulin G),可能減弱依賴 Fc γ 受體(Fc gamma receptor, FcγR)的訊號傳遞及下游效應功能。免疫球蛋白 G為人體血清中含量最高之免疫球蛋白,對適應性免疫反應具有關鍵角色。在本研究中,人類單體免疫球蛋白 G,特別是免疫球蛋白 G1 與免疫球蛋白 G2 亞類,本身對分化之HL-60細胞誘發之 NETosis 影響甚微;然而,當 免疫球蛋白 G 與 FcγRIII 結合並再以 佛波醇-12-十四烷醯-13-乙酸酯刺激時,會以劑量相依方式顯著增強 嗜中性球胞外陷阱形成。此增強現象與脾臟酪胺酸激酶(spleen tyrosine kinase)及細胞外訊號調節激酶(extracellular signal‑regulated kinase)磷酸化增加、細胞內活性氧產生上升,以及促發炎細胞激素介白素‑8(interleukin‑8)與腫瘤壞死因子‑α(tumor necrosis factor‑alpha)分泌增加有關。值得注意的是,使用專一性中和抗體阻斷 FcγRIII 後,此增強之嗜中性球胞外陷阱形成顯著減弱,更加證實該受體在免疫球蛋白 G驅動嗜中性球活化中的關鍵調控角色。以上結果突顯免疫球蛋白 G透過 FcγRIII 之免疫調節潛力,並強調此途徑在調控嗜中性球媒介之發炎反應中的重要性;同時,也再次驗證分化之HL-60細胞作為探討嗜中性球胞外陷阱形成之分子機制是便利且具生理相關性的模型。
為探討嗜中性球之抗發炎功能,我們以 單鈉尿酸晶體活化分化之HL-60細胞並確認其釋放嗜中性球胞外陷阱;這些 嗜中性球胞外陷阱可捕捉 單鈉尿酸晶體形成大型、有組織的嗜中性球胞外陷阱-單鈉尿酸晶體聚集體。促發炎細胞激素介白素‑8與腫瘤壞死因子‑α以及抗發炎的介白素‑1受體拮抗劑(interleukin‑1 receptor antagonist)皆為急性痛風性關節炎之關鍵調節因子。我們定義相應的估計發炎嚴重度評分指數(estimated inflammation score;詳見材料與方法、第 13 節),計算方式為有/無單鈉尿酸晶體刺激時細胞激素濃度之比值。在此急性痛風細胞模型中,對聚集體的量化分析顯示,培養 22 小時後估計發炎嚴重度評分指數可達 19.40,反映顯著的發炎反應。有趣的是,延長培養時間或加入新的分化之HL-60細胞及 MSU 晶體以模擬臨床痛風發作中嗜中性球持續募集的現象,雖能導致嗜中性球胞外陷阱面積增加,估計發炎嚴重度評分指數卻顯著下降至 1.53,指出急性痛風發炎反應已趨於緩解。
而此轉向抗發炎狀態之變化,被發現伴隨著細胞外訊號調節激酶(extracellular signal‑regulated kinase)磷酸化降低,以及 Src 同源區域 2 結構域的蛋白質酪氨酸磷酸酶‑1(Src homology region 2 domain-containing phosphatase-1)磷酸化增加,同時細胞激素訊號負向調節子 CISH、SOCS2、SOCS3 之信使核糖核酸(mRNA)表現上調。此外,自該培養液收集之上清液體亦可增強細胞對單鈉尿酸晶體刺激之抗發炎反應。更進一步,大型嗜中性球胞外陷阱-單鈉尿酸晶體聚集體的形成促進嗜中性球由促發炎 N1 表型(CD54highCD182low)轉變為抗發炎 N2 表型(CD54lowCD182high)。可認為此表型極化之轉變在促成急性痛風發炎之自發性緩解中扮演關鍵角色,並有助於揭示體內限制發炎時組織損傷之內生調控機制。
綜合而言,我們的結果顯示,由 FcγRIII 結合所驅動之脾臟酪胺酸激酶–細胞外訊號調節激酶訊號與佛波醇-12-十四烷醯-13-乙酸酯活化之蛋白質激酶 C(protein kinase C)間的交互作用,對 嗜中性球胞外陷阱形成具關鍵調控作用。此外,免疫球蛋白 G在佛波醇-12-十四烷醯-13-乙酸酯刺激過程中可幫助維持分化之HL-60細胞更具模擬嗜中性白血球表現之能力,從而有效率地促成嗜中性球胞外陷阱形成。另一方面,單鈉尿酸晶體誘導之嗜中性球胞外陷阱-單鈉尿酸晶體聚集體所引發的動態變化,於發炎的快速展及隨後而來之發炎主動緩解中,皆扮演核心角色。嗜中性球胞外陷阱兼具促進急性發炎及促進其終止的雙重功能,凸顯其複雜的免疫調節特性。這些發現不僅深度揭示嗜中性球行為及細胞激素訊號調控機制,亦顯示針對嗜中性球胞外陷阱相關途徑的治療策略,可能對調控過度或失衡的發炎反應之炎症與自體免疫疾病具臨床潛力。
zh_TW
dc.description.abstractPolymorphonuclear neutrophils (PMNs) are the most abundant leukocytes in human circulation and are critical effectors of innate immunity. Beyond their well‑established proinflammatory roles, they are increasingly recognized as active mediators of inflammatory resolution and tissue repair. Upon appropriate stimulation, PMNs can undergo neutrophil extracellular trap formation (NETosis), releasing neutrophil extracellular traps (NETs), which are web-like chromatin structures decorated with antimicrobial proteins that aid in pathogen clearance and modulate inflammation. To dissect the molecular mechanisms of NETosis, we differentiated HL‑60 cells into neutrophil‑like cells using all‑trans retinoic acid (ATRA) together with granulocyte colony‑stimulating factor and employed them as surrogate PMNs. We then interrogated the putative regulatory functions of NETs in the clinically relevant context of monosodium urate (MSU) crystal–induced acute gouty arthritis, a self‑limiting inflammatory condition that typically resolves spontaneously within 7–10 days. By using this cell-based model, we aimed to dissect the pathways involved in NET induction and resolution, offering insights into both the proinflammatory and inflammation-resolving roles.
Prior studies have shown that ATRA-induced differentiated HL‑60 (dHL‑60) cells exhibit weaker NETosis and reduced ROS generation than primary neutrophils upon phorbol 12-myristate 13-acetate (PMA) stimulation. An often‑overlooked variable is that standard culture media differ substantially from human plasma, for example, they lack human Immunoglobulin G (IgG) which may dampen Fc gamma receptor (FcγR)‑dependent signaling and downstream effector functions. IgG is the most abundant immunoglobulin in human serum and plays a key role in adaptive immune responses. In our experiments, human monomeric IgG by itself induced negligible NETosis in dHL‑60 cells. However, their engagement with FcγRIII significantly enhanced NET formation when co-stimulated with PMA, in a dose-dependent manner. This enhancement was mechanistically associated with increased phosphorylation of spleen tyrosine kinase (Syk) and extracellular signal-regulated kinase (ERK), elevated intracellular reactive oxygen species (ROS) production, and upregulated secretion of pro-inflammatory cytokines such as interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-α). Importantly, this augmented NET formation was attenuated by blocking FcγRIII engagement using a specific neutralizing antibody, further confirming the receptor's pivotal role in modulating IgG-driven neutrophil activation. These findings highlight the immunomodulatory potential of IgG subclasses through FcγRIII and underscore the relevance of this pathway in regulating neutrophil-mediated inflammation. They further validate dHL‑60 cells as a convenient and physiologically relevant model for mechanistic studies of NETosis.
To investigate the anti-inflammatory functions of neutrophils, we activated dHL-60 cells by MSU crystals and confirmed the release of NETs, which entrapped MSU crystals and formed large, structured NET-MSU aggregates. The pro‑inflammatory cytokines IL‑8 and TNF‑α, together with the anti‑inflammatory interleukin‑1 receptor antagonist (IL‑1RA), are key mediators in acute gouty arthritis. We defined a corresponding estimated inflammation score (EIS, detailed in Section 13 of the Materials and Methods) was calculated as the ratio of cytokine concentrations measured with versus without MSU stimulation. Using this cell model of acute gouty arthritis, the quantitative analysis of these aggregates revealed a pronounced inflammatory response, with a peak EIS of 19.40 after 22 hours of incubation. Interestingly, extending the incubation period or introducing fresh dHL-60 cells and MSU crystals into the culture—an approach designed to mimic the ongoing recruitment of neutrophils seen in clinical gout flares—resulted in increased NET area but markedly declined EIS to 1.53, suggesting resolution of acute gouty inflammation. This transition toward an anti-inflammatory state was associated with a decrease in phosphorylated ERK1/2 and a concomitant increase in phosphorylated Src homology region 2 domain-containing phosphatase-1, along with upregulation of negative regulators of cytokine signaling such as CISH, SOCS2, and SOCS3 mRNA expression. Furthermore, the supernatant derived from these cultures was found to amplify the anti‑inflammatory response to MSU stimulation. In addition, the formation of large NET-MSU aggregates also promoted neutrophil phenotypic switching from the pro-inflammatory N1 (CD54highCD182low) to the anti-inflammatory N2 (CD54lowCD182high) phenotype. This polarization of phenotype is believed to play a pivotal role in facilitating the spontaneous resolution of inflammation observed in acute gout, offering potential insights into endogenous regulatory mechanisms that limit tissue damage during inflammation.
In conclusion, our data indicate that cross‑talk between FcγRIII‑engagement–driven Syk–ERK signaling and PMA‑activated protein kinase C critically regulates NETosis. Moreover, IgG sustains the neutrophil‑like phenotype of dHL‑60 cells during PMA stimulation. On the other hand, the dynamic changes triggered by MSU-induced NET-MSU aggregate formation play a pivotal role in both the rapid escalation and subsequent resolution of inflammation. This dual functionality of NETs—promoting acute inflammation while also facilitating its resolution—underscores their complex immunomodulatory nature. These findings not only provides valuable insights into the mechanisms governing neutrophil behavior and cytokine signaling but also highlight potential therapeutic strategies. Targeting NET-associated pathways may offer therapeutic potential in managing inflammatory diseases marked by dysregulated or excessive inflammation.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-16T16:08:51Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-16T16:08:51Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
中文摘要 iii
Abstract vi
Contents ix
List of Figures xiii
List of Tables xv
Chapter 1. Introduction 1
1. Human neutrophils and their diverse functional responses 1
2. The regulatory and anti-inflammatory functions of neutrophils 2
3. The role of neutrophil extracellular traps (NETs) in homeostasis and rheumatic diseases 4
4. Clinical significance of immunoglobulin G (IgG) in neutrophil activation 8
5. Neutrophils in the acute attack and resolution gouty arthritis 11
Chapter 2. Materials and Methods 15
1. Cell culture and differentiation of HL-60 promyeloblast cell line into granulocyte-like cells by ATRA 15
2. Purification of normal human peripheral blood granulocytes (PBGs) 17
3. Incubation of human monomeric IgG1, IgG2, and the Fab and Fc fragments of human IgG with dHL-60 17
4. Quantification and confirmation of NET formation induced by PMA 18
5. Identification of NET-MSU aggregate formation by immunofluorescence antibody staining 20
6. Real-time quantitation of NET area by SYTOX Green stain after dHL-60 and MSU crystal interaction for 22 hours 21
7. Determination of reactive oxygen species (ROS) generation by PMA-stimulated dHL-60 cells 22
8. Real-time detection of the cellular oxidation-reduction (redox) state 24
9. Assessment of the general ROS in cells after IgG stimulation 25
10. Western blot analysis 26
11. Quantitation of proinflammatory cytokines and anti-inflammatory IL-1RA 27
12. The experimental designs of gout cell model for unveiling the molecular basis of acute gout resolution 29
13. Calculating the estimate inflammation score (EIS) 31
14. Disruption of DNA scaffold in the NET-MSU aggregates by treatment with DNase I 32
15. Quantitation of the intracellular CISH and SOCSs mRNA expression by RT-PCR 32
16. Identification of N1/N2 phenotype by flow cytometry after stain with surface marker CD54 for N1 and CD182 for N2 33
17. Statistical analyses 34
Chapter 3. Results 35
1. Surface marker expression of dHL-60 cells 35
2. PMA-stimulated NET formation by dHL-60 35
3. Effect of pre‑incubating dHL‑60 cells with human monomeric IgG subclasses (IgG1, IgG2) and IgG fragments (Fab, Fc) on PMA‑stimulated NET formation 36
4. Dose-dependent augmenting effect of human IgG Fc receptor type III (FcγRIII) engagement on PMA-stimulated dHL-60 NET formation 37
5. Elevated intra‑ and extracellular ROS production by dHL‑60 cells following FcγRIII engagement 37
6. Activation of the Syk–ERK signaling pathway via IgG Fc‑receptor engagement 38
7. Pro‑inflammatory cytokine release by dHL‑60 cells upon FcγRIII engagement 39
8. Confirmation of NET-MSU aggregate formation after dHL-60 and MSU crystals interaction 40
9. Dose-response and kinetic formation of NET-MSU aggregate for measuring NET area and EIS 41
10. Impact of DNase I‑mediated disruption of NET–MSU DNA scaffolds on NET area and EIS 42
11. Dynamic changes in NET area and EIS from 4 h to 22 h after adding fresh dHL‑60 cells and the original dose of new MSU 43
12. Comparison of NET area and the calculated EIS between 1st and 2nd reaction 44
13. Cellular redox changes during a 4‑h incubation of dHL‑60 cells with MSU crystals 46
14. Expression of the positive and negative intracellular cytokine signaling regulators in dHL-60 cells after 2h and 4h of interaction with MSU 46
15. N1 to N2 phenotype polarization after interaction of dHL-60 with MSU crystals 47
16. The supernatant obtained from dHL-60 ± MSU on the inflammatory response of the new MSU-stimulated dHL-60 48
Chapter 4. Discussion 50
Chapter 5. Prospect 63
Chapter 6. References 65
Figures and Tables 92
Appendix 128
Publication related to this thesis 128
Other first-author publications 129
Lists of abbreviations 130
-
dc.language.isoen-
dc.subjectHL-60細胞zh_TW
dc.subject嗜中性球胞外陷阱zh_TW
dc.subject免疫球蛋白Gzh_TW
dc.subject單鈉尿酸晶體zh_TW
dc.subject嗜中性球胞外陷阱-單鈉尿酸晶體聚集體zh_TW
dc.subject估計發炎嚴重度評分指數(estimate inflammation score)zh_TW
dc.subjectN1促發炎/N2抗發炎表現型zh_TW
dc.subjectN1 proinflammatory/N2 anti-inflammatory phenotypesen
dc.subjectHL-60 cellsen
dc.subjectneutrophil extracellular traps (NETs)en
dc.subjectimmunoglobulin Gen
dc.subjectmonosodium urate crystal (MSU)en
dc.subjectNET-MSU aggregateen
dc.subjectestimate inflammation score (EIS)en
dc.title嗜中性球胞外陷阱形成的調控及其在急性發炎的消解作用:以HL-60細胞模型分析zh_TW
dc.titleThe Regulation of Neutrophil Extracellular Trap Formation and Its Role in Acute Inflammation Resolution: An HL-60 Cell Model Analysisen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.coadvisor謝松洲zh_TW
dc.contributor.coadvisorSong-Chou Hsiehen
dc.contributor.oralexamcommittee楊偉勛;蔡長祐;孫光蕙;呂明錡zh_TW
dc.contributor.oralexamcommitteeWei-Shiung Yang;Chang-Youh Tsai;Kuang-Hui Sun;Ming-Chi Luen
dc.subject.keywordHL-60細胞,嗜中性球胞外陷阱,免疫球蛋白G,單鈉尿酸晶體,嗜中性球胞外陷阱-單鈉尿酸晶體聚集體,估計發炎嚴重度評分指數(estimate inflammation score),N1促發炎/N2抗發炎表現型,zh_TW
dc.subject.keywordHL-60 cells,neutrophil extracellular traps (NETs),immunoglobulin G,monosodium urate crystal (MSU),NET-MSU aggregate,estimate inflammation score (EIS),N1 proinflammatory/N2 anti-inflammatory phenotypes,en
dc.relation.page133-
dc.identifier.doi10.6342/NTU202501943-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-29-
dc.contributor.author-college醫學院-
dc.contributor.author-dept臨床醫學研究所-
dc.date.embargo-lift2025-09-17-
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf5.31 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved