Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99567
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor侯信安zh_TW
dc.contributor.advisorHsin-An Houen
dc.contributor.author呂欣瑜zh_TW
dc.contributor.authorHsin-Yu Luen
dc.date.accessioned2025-09-16T16:08:30Z-
dc.date.available2025-09-17-
dc.date.copyright2025-09-16-
dc.date.issued2025-
dc.date.submitted2025-08-05-
dc.identifier.citation1. Döhner H, Weisdorf DJ, Bloomfield CD. Acute Myeloid Leukemia. New England Journal of Medicine 2015;373(12):1136-1152. DOI: doi:10.1056/NEJMra1406184.
2. Kantarjian H, Borthakur G, Daver N, et al. Current status and research directions in acute myeloid leukemia. Blood Cancer Journal 2024;14(1):163. DOI: 10.1038/s41408-024-01143-2.
3. Pratz KW, Jonas BA, Pullarkat V, et al. Long-term follow-up of VIALE-A: Venetoclax and azacitidine in chemotherapy-ineligible untreated acute myeloid leukemia. Am J Hematol 2024;99(4):615-624. (In eng). DOI: 10.1002/ajh.27246.
4. DiNardo CD, Pratz K, Pullarkat V, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood 2019;133(1):7-17. (In eng). DOI: 10.1182/blood-2018-08-868752.
5. Stone RM, Mandrekar SJ, Sanford BL, et al. Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation. N Engl J Med 2017;377(5):454-464. (In eng). DOI: 10.1056/NEJMoa1614359.
6. Castaigne S, Pautas C, Terré C, et al. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. Lancet 2012;379(9825):1508-16. (In eng). DOI: 10.1016/s0140-6736(12)60485-1.
7. Cooperrider JH, Shukla N, Nawas MT, Patel AA. The Cup Runneth Over: Treatment Strategies for Newly Diagnosed Acute Myeloid Leukemia. JCO Oncol Pract 2023;19(2):74-85. (In eng). DOI: 10.1200/op.22.00342.
8. El Chaer F, Hourigan CS, Zeidan AM. How I treat AML incorporating the updated classifications and guidelines. Blood 2023;141(23):2813-2823. (In eng). DOI: 10.1182/blood.2022017808.
9. Lancet JE, Uy GL, Cortes JE, et al. CPX-351 (cytarabine and daunorubicin) Liposome for Injection Versus Conventional Cytarabine Plus Daunorubicin in Older Patients With Newly Diagnosed Secondary Acute Myeloid Leukemia. J Clin Oncol 2018;36(26):2684-2692. (In eng). DOI: 10.1200/jco.2017.77.6112.
10. Lambert J, Pautas C, Terré C, et al. Gemtuzumab ozogamicin for de novo acute myeloid leukemia: final efficacy and safety updates from the open-label, phase III ALFA-0701 trial. Haematologica 2019;104(1):113-119. (In eng). DOI: 10.3324/haematol.2018.188888.
11. Appelbaum FR, Gundacker H, Head DR, et al. Age and acute myeloid leukemia. Blood 2006;107(9):3481-5. (In eng). DOI: 10.1182/blood-2005-09-3724.
12. Chien L-N, Tzeng H-E, Liu H-Y, Chou W-C, Tien H-F, Hou H-A. Epidemiology and survival outcomes of acute myeloid leukemia patients in Taiwan: A national population-based analysis from 2001 to 2015. Journal of the Formosan Medical Association 2023;122(6):505-513. DOI: https://doi.org/10.1016/j.jfma.2022.10.007.
13. Sasaki K, Kadia T, Begna K, et al. Prediction of early (4-week) mortality in acute myeloid leukemia with intensive chemotherapy. Am J Hematol 2022;97(1):68-78. (In eng). DOI: 10.1002/ajh.26395.
14. Krug U, Röllig C, Koschmieder A, et al. Complete remission and early death after intensive chemotherapy in patients aged 60 years or older with acute myeloid leukaemia: a web-based application for prediction of outcomes. The Lancet 2010;376(9757):2000-2008. DOI: 10.1016/S0140-6736(10)62105-8.
15. Reville PK, Nogueras González GM, Ravandi F, et al. Predictors of Early Mortality, Response, and Survival in Newly Diagnosed Acute Myeloid Leukemia (AML) Using a Contemporary Academic Cohort. Blood 2020;136:44-45. DOI: https://doi.org/10.1182/blood-2020-141837.
16. Liu CJ, Hong YC, Kuan AS, et al. The risk of early mortality in elderly patients with newly diagnosed acute myeloid leukemia. Cancer Med 2020;9(4):1572-1580. (In eng). DOI: 10.1002/cam4.2740.
17. Döhner H, Wei AH, Appelbaum FR, et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 2022;140(12):1345-1377. (In eng). DOI: 10.1182/blood.2022016867.
18. Arber DA, Orazi A, Hasserjian RP, et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood 2022;140(11):1200-1228. (In eng). DOI: 10.1182/blood.2022015850.
19. McGowan-Jordan J, Simons A, Schmid M. ISCN 2016: An International System for Human Cytogenomic Nomenclature (2016). 2016. DOI: https://doi.org/10.1159/isbn.978-3-318-06861-0.
20. Tien HF, Wang CH, Lin MT, et al. Correlation of cytogenetic results with immunophenotype, genotype, clinical features, and ras mutation in acute myeloid leukemia. A study of 235 Chinese patients in Taiwan. Cancer Genet Cytogenet 1995;84(1):60-8. (In eng). DOI: 10.1016/0165-4608(95)00084-4.
21. Lin LI, Lin TC, Chou WC, Tang JL, Lin DT, Tien HF. A novel fluorescence-based multiplex PCR assay for rapid simultaneous detection of CEBPA mutations and NPM mutations in patients with acute myeloid leukemias. Leukemia 2006;20(10):1899-1903. DOI: 10.1038/sj.leu.2404331.
22. Chou WC, Hou HA, Liu CY, et al. Sensitive measurement of quantity dynamics of FLT3 internal tandem duplication at early time points provides prognostic information. Annals of Oncology 2011;22(3):696-704. DOI: https://doi.org/10.1093/annonc/mdq402.
23. Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013;29(1):15-21. (In eng). DOI: 10.1093/bioinformatics/bts635.
24. Frankish A, Diekhans M, Ferreira AM, et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res 2019;47(D1):D766-d773. (In eng). DOI: 10.1093/nar/gky955.
25. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15(12):550. (In eng). DOI: 10.1186/s13059-014-0550-8.
26. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005;102(43):15545-50. (In eng). DOI: 10.1073/pnas.0506580102.
27. Newman AM, Steen CB, Liu CL, et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nature Biotechnology 2019;37(7):773-782. DOI: 10.1038/s41587-019-0114-2.
28. Walter RB, Othus M, Borthakur G, et al. Prediction of early death after induction therapy for newly diagnosed acute myeloid leukemia with pretreatment risk scores: a novel paradigm for treatment assignment. J Clin Oncol 2011;29(33):4417-23. (In eng). DOI: 10.1200/jco.2011.35.7525.
29. Updates to the Alliance of Genome Resources central infrastructure. Genetics 2024;227(1) (In eng). DOI: 10.1093/genetics/iyae049.
30. Kobayashi T, Masaki T, Sugiyama M, Atomi Y, Furukawa Y, Nakamura Y. A gene encoding a family with sequence similarity 84, member A (FAM84A) enhanced migration of human colon cancer cells. Int J Oncol 2006;29(2):341-7.
31. Ding Y, Wu L, Zhuang X, et al. The direct miR-874-3p-target FAM84A promotes tumor development in papillary thyroid cancer. Mol Oncol 2021;15(5):1597-1614. (In eng). DOI: 10.1002/1878-0261.12941.
32. Hayashi K, Longenecker KL, Koenig P, et al. Structure of human DPEP3 in complex with the SC-003 antibody Fab fragment reveals basis for lack of dipeptidase activity. Journal of Structural Biology 2020;211(1):107512. DOI: https://doi.org/10.1016/j.jsb.2020.107512.
33. Wang L, Tian G. Insight into dipeptidase 1: structure, function, and mechanism in gastrointestinal cancer diseases. Transl Cancer Res 2024;13(12):7015-7025. (In eng). DOI: 10.21037/tcr-2024-2436.
34. Hamilton E, O'Malley DM, O'Cearbhaill R, et al. Tamrintamab pamozirine (SC-003) in patients with platinum-resistant/refractory ovarian cancer: Findings of a phase 1 study. Gynecol Oncol 2020;158(3):640-645. (In eng). DOI: 10.1016/j.ygyno.2020.05.038.
35. Narayana RVL, Gupta R. Exploring the therapeutic use and outcome of antibody-drug conjugates in ovarian cancer treatment. Oncogene 2025;44(28):2343-2356. DOI: 10.1038/s41388-025-03448-3.
36. Ahmadi SE, Rahimi S, Zarandi B, Chegeni R, Safa M. MYC: a multipurpose oncogene with prognostic and therapeutic implications in blood malignancies. J Hematol Oncol 2021;14(1):121. (In eng). DOI: 10.1186/s13045-021-01111-4.
37. Dhanasekaran R, Deutzmann A, Mahauad-Fernandez WD, Hansen AS, Gouw AM, Felsher DW. The MYC oncogene - the grand orchestrator of cancer growth and immune evasion. Nat Rev Clin Oncol 2022;19(1):23-36. (In eng). DOI: 10.1038/s41571-021-00549-2.
38. Chen HZ, Tsai SY, Leone G. Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat Rev Cancer 2009;9(11):785-97. (In eng). DOI: 10.1038/nrc2696.
39. Fauriat C, Olive D. AML drug resistance: c-Myc comes into play. Blood 2014;123(23):3528-30. (In eng). DOI: 10.1182/blood-2014-04-566711.
40. Johnson NA, Slack GW, Savage KJ, et al. Concurrent expression of MYC and BCL2 in diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. J Clin Oncol 2012;30(28):3452-9. (In eng). DOI: 10.1200/jco.2011.41.0985.
41. Degli-Esposti MA, Smyth MJ. Close encounters of different kinds: dendritic cells and NK cells take centre stage. Nat Rev Immunol 2005;5(2):112-24. (In eng). DOI: 10.1038/nri1549.
42. Lion E, Willemen Y, Berneman ZN, Van Tendeloo VFI, Smits ELJ. Natural killer cell immune escape in acute myeloid leukemia. Leukemia 2012;26(9):2019-2026. DOI: 10.1038/leu.2012.87.
43. van Galen P, Hovestadt V, Wadsworth Ii MH, et al. Single-Cell RNA-Seq Reveals AML Hierarchies Relevant to Disease Progression and Immunity. Cell 2019;176(6):1265-1281.e24. DOI: https://doi.org/10.1016/j.cell.2019.01.031.
44. Khaldoyanidi S, Nagorsen D, Stein A, Ossenkoppele G, Subklewe M. Immune Biology of Acute Myeloid Leukemia: Implications for Immunotherapy. J Clin Oncol 2021;39(5):419-432. (In eng). DOI: 10.1200/jco.20.00475.
45. Wang C, Zhang J, Yin J, et al. Alternative approaches to target Myc for cancer treatment. Signal Transduction and Targeted Therapy 2021;6(1):117. DOI: 10.1038/s41392-021-00500-y.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99567-
dc.description.abstract急性骨髓性白血病為造血幹細胞異常增生分化及基因變異累積所導致之血液癌症。隨著醫學研究的演進及抗癌藥物和骨髓移植之發展, 急性骨髓性白血病已由六十年前的不治之症變成現今可治癒之癌症。然而,仍有部分病人是在初期診斷治療時,就面臨死亡。過去已有諸多文獻分析過早期死亡率相關危險因子,包括:年長者、複雜的染色體核型變化、較差之日常體能狀態、較差之腎功能、共病、感染症、診斷時較高之周邊白血球、及較高之骨髓芽細胞數目。然而,其分析大多屬於歐美國家的數據,且未納入基因突變及基因表達之分析。因此,仍有相當大的研究空間。
本研究納入1,056名新診斷非M3型急性骨髓性白血病成人病患,所有病患皆接受高強度誘導化學治療。早期死亡定義為急性骨髓性白血病初次診斷後八週內之死亡。我們使用Cox比例風險模型建立治療前預後風險評分;透過核糖核酸定序資料進行基因表達及基因集合富集分析;採用CIBERSORTx分析免疫細胞族群分布。
本研究中位追蹤時間為78.3個月,八週早期死亡率為7.8% (人數=82)。多變項回歸分析發現,2017年後診斷的病患,其早期死亡風險顯著降低。我們建立了兩個治療前早期死亡預後風險評分模型:第一個模型針對全部病患,其預測因子包含年齡、診斷年份、白蛋白濃度及DNMT3A突變;第二個模型針對2017年後診斷的病患,其預測因子包含白蛋白濃度、TP53、IDH2及NRAS突變。兩模型把病人分成三組(高風險、中風險、低風險) ,Harrell's C-指數分別為0.72及0.81。基因集合富集分析及免疫細胞族群分析結果顯示,早期死亡組患者的MYC及E2F路徑增強,免疫相關路徑活性降低,且CD8 T細胞數量減少。
根據研究建立的早期死亡預後風險評分模型,能有效預測患者接受高強度誘導化學治療後的早期死亡風險。另外,研究發現早期死亡組患者呈現MYC及E2F路徑增強,且骨髓微環境具有免疫抑制特性。結合這些風險評估工具與生物學標記,可協助臨床醫師為新診斷急性骨髓性白血病患者制定個人化治療策略。
zh_TW
dc.description.abstractBackground: Despite significant advances in acute myeloid leukemia (AML) treatment, early mortality remains a clinical challenge, with approximately 3–17% and 11–24% of patients dying within four and eight weeks of diagnosis, respectively. This study aims to identify molecular markers and pathways associated with early mortality and to develop pretreatment prognostic risk scores for early mortality prediction.
Methods: We included 1,056 adults with newly diagnosed non-M3 AML who received intensive induction chemotherapy. Patients were recruited from National Taiwan University Hospital between 1994 and 2023. Early mortality was defined as death occurring within eight weeks of initial AML diagnosis. Cox proportional hazard models were employed to establish the pretreatment prognostic risk scores. Gene expression and gene set enrichment analyses (GSEA) were performed using bulk RNA sequencing data. CIBERSORTx was utilized to analyze immune cell populations.
Results: The median age of the entire cohort was 51 years, and 54.5% were male. The median follow-up time was 78.3 months (95% CI: 31.7-142.9). The 8-week early mortality rate was 7.8% (n = 82). Multivariable Cox regression showed significantly lower early mortality risk for patients diagnosed after 2017 (HR: 0.51, P=0.029). We established two pretreatment prognostic risk scores for early mortality: one for the entire cohort and another for patients diagnosed after 2017 (Post-2017 subgroup). The entire cohort risk score included age, diagnostic year, albumin level, and DNMT3A mutation; the Post-2017 subgroup included albumin level, TP53, IDH2, and NRAS mutations. Harrell's C-indices for the prediction models were 0.72 (95% CI 0.66-0.78) and 0.81 (95% CI: 0.71–0.92), respectively. GSEA and immune cell population evaluation revealed positive enrichment in MYC and E2F pathways, negative enrichment in immune-related pathways, and decreased numbers of CD8 T cells in the early mortality patients.
Conclusions: This study established pretreatment prognostic risk scores combining clinical and genetic parameters for early mortality prediction in patients undergoing intensive induction chemotherapy. The identified biological features in early mortality patients, including MYC pathway overexpression and immunosuppressive microenvironment, may enable more precise risk stratification and personalized therapy.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-16T16:08:30Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-16T16:08:30Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
摘要 iii
Abstract v
Introduction 1
Material and methods 2
• Patients and treatment 2
• Cytogenetic and molecular analysis 3
• RNA sequencing analysis 4
• Statistical analysis 5
Results 6
• General description and cause of death of early mortality 6
• Baseline demographics and genetic alterations 6
• Predictors of early mortality 8
• Subgroup analysis: patients diagnosed after 2017 (Post-2017 subgroup) 9
• Transcriptional signatures 10
Discussion 12
Conclusion 17
References 18
Figures 26
Tables 35
Supplementary Figures 37
Supplementary Tables 41
-
dc.language.isozh_TW-
dc.subject高強度化學治療zh_TW
dc.subject急性骨髓性白血病zh_TW
dc.subject核糖核酸定序zh_TW
dc.subject風險預測zh_TW
dc.subject早期死亡zh_TW
dc.subjectrisk predictionen
dc.subjectearly mortalityen
dc.subjectintensive chemotherapyen
dc.subjectRNA sequencingen
dc.subjectacute myeloid leukemiaen
dc.title新診斷急性骨髓性白血病患者早期死亡預測因子分析zh_TW
dc.titleAnalysis of Predictive Factors for Early Mortality in New-diagnosed Acute Myeloid Leukemia Patientsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee周文堅;邵文逸zh_TW
dc.contributor.oralexamcommitteeWen-Chien Chou;Wen-Yi Shauen
dc.subject.keyword急性骨髓性白血病,高強度化學治療,早期死亡,風險預測,核糖核酸定序,zh_TW
dc.subject.keywordacute myeloid leukemia,intensive chemotherapy,early mortality,risk prediction,RNA sequencing,en
dc.relation.page45-
dc.identifier.doi10.6342/NTU202503746-
dc.rights.note未授權-
dc.date.accepted2025-08-05-
dc.contributor.author-college醫學院-
dc.contributor.author-dept臨床醫學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
4.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved