Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99565
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor施金元zh_TW
dc.contributor.advisorJin-Yuan Shihen
dc.contributor.author于鎧綸zh_TW
dc.contributor.authorKai-Lun Yuen
dc.date.accessioned2025-09-16T16:08:08Z-
dc.date.available2025-09-17-
dc.date.copyright2025-09-16-
dc.date.issued2025-
dc.date.submitted2025-07-10-
dc.identifier.citation1. Gould MK, Donington J, Lynch WR, Mazzone PJ, Midthun DE, Naidich DP, Wiener RS. Evaluation of individuals with pulmonary nodules: When is it lung cancer?: Diagnosis and management of lung cancer: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013; 143: e93S-e120S.
2. MacMahon H, Naidich DP, Goo JM, Lee KS, Leung AN, Mayo JR, Mehta AC, Ohno Y, Powell CA, Prokop M. Guidelines for management of incidental pulmonary nodules detected on CT images: from the Fleischner Society 2017. Radiology. 2017; 284: 228-43.
3. Rivera MP, Mehta AC, Wahidi MM. Establishing the diagnosis of lung cancer: Diagnosis and management of lung cancer: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013; 143: e142S-e65S.
4. Hürter T, Hanrath P. Endobronchial sonography: feasibility and preliminary results. Thorax. 1992; 47: 565-7.
5. Herth F, Ernst A, Becker H. Endobronchial ultrasound-guided transbronchial lung biopsy in solitary pulmonary nodules and peripheral lesions. European Respiratory Journal. 2002; 20: 972-4.
6. Oki M, Saka H, Ando M, Asano F, Kurimoto N, Morita K, Kitagawa C, Kogure Y, Miyazawa T. Ultrathin bronchoscopy with multimodal devices for peripheral pulmonary lesions. A randomized trial. American journal of respiratory and critical care medicine. 2015; 192: 468-76.
7. Ali MS, Trick W, Mba BI, Mohananey D, Sethi J, Musani AI. Radial endobronchial ultrasound for the diagnosis of peripheral pulmonary lesions: A systematic review and meta‐analysis. Respirology. 2017; 22: 443-53.
8. DiBardino DM, Yarmus LB, Semaan RW. Transthoracic needle biopsy of the lung. Journal of thoracic disease. 2015; 7: S304.
9. Folch EE, Labarca G, Ospina-Delgado D, Kheir F, Majid A, Khandhar SJ, Mehta HJ, Jantz MA, Fernandez-Bussy S. Sensitivity and safety of electromagnetic navigation bronchoscopy for lung cancer diagnosis: systematic review and meta-analysis. Chest. 2020; 158: 1753-69.
10. Kalchiem-Dekel O, Connolly JG, Lin I-H, Husta BC, Adusumilli PS, Beattie JA, Buonocore DJ, Dycoco J, Fuentes P, Jones DR. Shape-sensing robotic-assisted bronchoscopy in the diagnosis of pulmonary parenchymal lesions. Chest. 2022; 161: 572-82.
11. Hohenforst-Schmidt W, Zarogoulidis P, Vogl T, Turner JF, Browning R, Linsmeier B, Huang H, Li Q, Darwiche K, Freitag L. Cone beam computertomography (CBCT) in interventional chest medicine-high feasibility for endobronchial realtime navigation. Journal of Cancer. 2014; 5: 231.
12. Khandhar SJ, Bowling MR, Flandes J, Gildea TR, Hood KL, Krimsky WS, Minnich DJ, Murgu SD, Pritchett M, Toloza EM. Electromagnetic navigation bronchoscopy to access lung lesions in 1,000 subjects: first results of the prospective, multicenter NAVIGATE study. BMC pulmonary medicine. 2017; 17: 59.
13. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2024; 74: 229-63.
14. Wang M, Herbst RS, Boshoff C. Toward personalized treatment approaches for non-small-cell lung cancer. Nature medicine. 2021; 27: 1345-56.
15. Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004; 304: 1497-500.
16. Mok TS, Wu Y-L, Thongprasert S, Yang C-H, Chu D-T, Saijo N, Sunpaweravong P, Han B, Margono B, Ichinose Y, Nishiwaki Y, Ohe Y, Yang J-J, Chewaskulyong B, Jiang H, Duffield EL, Watkins CL, Armour AA, Fukuoka M. Gefitinib or Carboplatin–Paclitaxel in Pulmonary Adenocarcinoma. New England Journal of Medicine. 2009; 361: 947-57.
17. Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, Felip E, Palmero R, Garcia-Gomez R, Pallares C, Sanchez JM. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. The lancet oncology. 2012; 13: 239-46.
18. Wu Y-L, Zhou C, Hu C-P, Feng J, Lu S, Huang Y, Li W, Hou M, Shi JH, Lee KY. Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-Lung 6): an open-label, randomised phase 3 trial. The lancet oncology. 2014; 15: 213-22.
19. Hendriks L, Kerr K, Menis J, Mok T, Nestle U, Passaro A, Peters S, Planchard D, Smit E, Solomon B. Oncogene-addicted metastatic non-small-cell lung cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up☆. Annals of Oncology. 2023; 34: 339-57.
20. Riely GJ, Wood DE, Ettinger DS, Aisner DL, Akerley W, Bauman JR, Bharat A, Bruno DS, Chang JY, Chirieac LR. Non–Small Cell Lung Cancer, Version 4.2024, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network. 2024; 22: 249-74.
21. Steinfort DP, Khor YH, Manser RL, Irving LB. Radial probe endobronchial ultrasound for the diagnosis of peripheral lung cancer: systematic review and meta-analysis. European Respiratory Journal. 2011; 37: 902-10.
22. Coghlin CL, Smith LJ, Bakar S, Stewart KN, Devereux GS, Nicolson MC, Kerr KM. Quantitative analysis of tumor in bronchial biopsy specimens. Journal of Thoracic Oncology. 2010; 5: 448-52.
23. Oxnard GR, Thress KS, Alden RS, Lawrance R, Paweletz CP, Cantarini M, Yang JC-H, Barrett JC, Jänne PA. Association between plasma genotyping and outcomes of treatment with osimertinib (AZD9291) in advanced non–small-cell lung cancer. Journal of clinical oncology. 2016; 34: 3375-82.
24. Rolfo C, Mack P, Scagliotti GV, Aggarwal C, Arcila ME, Barlesi F, Bivona T, Diehn M, Dive C, Dziadziuszko R. Liquid biopsy for advanced NSCLC: a consensus statement from the international association for the study of lung cancer. Journal of Thoracic Oncology. 2021; 16: 1647-62.
25. Pisapia P, Malapelle U, Troncone G. Liquid biopsy and lung cancer. Acta cytologica. 2019; 63: 489-96.
26. Hu Y, Ulrich BC, Supplee J, Kuang Y, Lizotte PH, Feeney NB, Guibert NM, Awad MM, Wong K-K, Jänne PA. False-positive plasma genotyping due to clonal hematopoiesis. Clinical Cancer Research. 2018; 24: 4437-43.
27. Tsai T-H, Yang C-Y, Ho C-C, Liao W-Y, Jan I-S, Chen K-Y, Wang J-Y, Ruan S-Y, Yu C-J, Yang JC-H. Multi-gene analyses from waste brushing specimens for patients with peripheral lung cancer receiving EBUS-assisted bronchoscopy. Lung cancer. 2013; 82: 420-5.
28. Dhillon SS, Harris K. Bronchoscopy for the diagnosis of peripheral lung lesions. Journal of Thoracic Disease. 2017; 9: S1047.
29. Patel VK, Naik SK, Naidich DP, Travis WD, Weingarten JA, Lazzaro R, Gutterman DD, Wentowski C, Grosu HB, Raoof S. A practical algorithmic approach to the diagnosis and management of solitary pulmonary nodules: part 2: pretest probability and algorithm. Chest. 2013; 143: 840-6.
30. Ost D, Fein AM, Feinsilver SH. The solitary pulmonary nodule. New England Journal of Medicine. 2003; 348: 2535-42.
31. Holin SM, Dwork RE, Glaser S, Rikli AE, Stocklen JB. Solitary Pulmonary Nodules Found in a Community-wide Chest Roentgenographic Survey, A Five-year Follow-up Study. American Review of Tuberculosis and Pulmonary Diseases. 1959; 79: 427-39.
32. Callister M, Baldwin D, Akram A, Barnard S, Cane P, Draffan J, Franks K, Gleeson F, Graham R, Malhotra P. British Thoracic Society guidelines for the investigation and management of pulmonary nodules: accredited by NICE. Thorax. 2015; 70: ii1-ii54.
33. Gómez-Sáez N, González-Álvarez I, Vilar J, Hernández-Aguado I, Domingo M, Lorente M, Pastor-Valero M, Parker L, Picazo N, Calbo J. Prevalence and variables associated with solitary pulmonary nodules in a routine clinic-based population: a cross-sectional study. European Radiology. 2014; 24: 2174-82.
34. Murrmann GB, van Vollenhoven FH, Moodley L. Approach to a solid solitary pulmonary nodule in two different settings—“Common is common, rare is rare”. Journal of thoracic disease. 2014; 6: 237.
35. Team NLSTR. Reduced lung-cancer mortality with low-dose computed tomographic screening. New England Journal of Medicine. 2011; 365: 395-409.
36. Xia Y, Li Q, Zhong C, Wang K, Li S. Inheritance and innovation of the diagnosis of peripheral pulmonary lesions. Therapeutic Advances in Chronic Disease. 2023; 14: 20406223221146723.
37. Yang L, Zhang Q, Bai L, Li T-Y, He C, Ma Q-L, Li L-S, Huang X-Q, Qian G-S. Assessment of the cancer risk factors of solitary pulmonary nodules. Oncotarget. 2017; 8: 29318.
38. Chen D, Yang L, Zhang W, Shen J, Van Schil PE, Divisi D, Seetharamu N, Gu J. Prevalence and management of pulmonary nodules: a systematic review and meta-analysis. Journal of thoracic disease. 2024; 16: 4619.
39. Erasmus JJ, Connolly JE, McAdams HP, Roggli VL. Solitary pulmonary nodules: Part I. Morphologic evaluation for differentiation of benign and malignant lesions. Radiographics. 2000; 20: 43-58.
40. Valeyre D, Prasse A, Nunes H, Uzunhan Y, Brillet PY, Müller-Quernheim J. Sarcoidosis. Lancet. 2014; 383: 1155-67.
41. Yousem SA, Colby TV, Carrington CB. Lung biopsy in rheumatoid arthritis. American Review of Respiratory Disease. 1985; 131: 770-7.
42. De Cicco C, Bellomi M, Bartolomei M, Carbone G, Pelosi G, Veronesi G, De Pas T, Spaggiari L, Paganelli G. Imaging of lung hamartomas by multidetector computed tomography and positron emission tomography. The Annals of thoracic surgery. 2008; 86: 1769-72.
43. Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JH, Beasley MB, Chirieac LR, Dacic S, Duhig E, Flieder DB. The 2015 World Health Organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. Journal of thoracic oncology. 2015; 10: 1243-60.
44. Siemion K, Reszec-Gielazyn J, Kisluk J, Roszkowiak L, Zak J, Korzynska A. What do we know about inflammatory myofibroblastic tumors?–A systematic review. Advances in Medical Sciences. 2022; 67: 129-38.
45. Gross DJ, Briski LM, Wherley EM, Nguyen DM. Bronchogenic cysts: a narrative review. Mediastinum. 2023; 7: 26.
46. Pal P, Chetty R. Multiple sclerosing pneumocytomas: a review. Journal of Clinical Pathology. 2020; 73: 531-4.
47. Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger KR, Yatabe Y, Beer DG, Powell CA, Riely GJ, Van Schil PE. International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. Journal of thoracic oncology. 2011; 6: 244-85.
48. Suarez E, Knollmann-Ritschel BEC. Squamous Cell Carcinoma of the Lung. Acad Pathol. 2017; 4: 2374289517705950.
49. Travis WD. Update on small cell carcinoma and its differentiation from squamous cell carcinoma and other non-small cell carcinomas. Modern Pathology. 2012; 25: S18-S30.
50. Rindi G, Mete O, Uccella S, Basturk O, La Rosa S, Brosens LA, Ezzat S, de Herder WW, Klimstra DS, Papotti M. Overview of the 2022 WHO classification of neuroendocrine neoplasms. Endocrine pathology. 2022; 33: 115-54.
51. Seo JB, Im J-G, Goo JM, Chung MJ, Kim M-Y. Atypical pulmonary metastases: spectrum of radiologic findings. Radiographics. 2001; 21: 403-17.
52. Herold C, Bankier A, Fleischmann D. Lung metastases. European radiology. 1996; 6: 596-606.
53. Girard N, Deshpande C, Lau C, Finley D, Rusch V, Pao W, Travis WD. Comprehensive histologic assessment helps to differentiate multiple lung primary nonsmall cell carcinomas from metastases. The American journal of surgical pathology. 2009; 33: 1752-64.
54. Piña-Oviedo S, Weissferdt A, Kalhor N, Moran CA. Primary pulmonary lymphomas. Advances in anatomic pathology. 2015; 22: 355-75.
55. Sardaro A, Bardoscia L, Petruzzelli MF, Portaluri M. Epithelioid hemangioendothelioma: an overview and update on a rare vascular tumor. Oncology reviews. 2014; 8: 259.
56. Zeren H, Moran CA, Suster S, Fishback NF, Koss MN. Primary pulmonary sarcomas with features of monophasic synovial sarcoma: a clinicopathological, immunohistochemical, and ultrastructural study of 25 cases. Human pathology. 1995; 26: 474-80.
57. McWilliams A, Tammemagi MC, Mayo JR, Roberts H, Liu G, Soghrati K, Yasufuku K, Martel S, Laberge F, Gingras M. Probability of cancer in pulmonary nodules detected on first screening CT. New England journal of medicine. 2013; 369: 910-9.
58. Edey A, Hansell D. Incidentally detected small pulmonary nodules on CT. Clinical radiology. 2009; 64: 872-84.
59. Snoeckx A, Reyntiens P, Desbuquoit D, Spinhoven MJ, Van Schil PE, van Meerbeeck JP, Parizel PM. Evaluation of the solitary pulmonary nodule: size matters, but do not ignore the power of morphology. Insights into imaging. 2018; 9: 73-86.
60. Swensen SJ, Silverstein MD, Ilstrup DM, Schleck CD, Edell ES. The probability of malignancy in solitary pulmonary nodules: application to small radiologically indeterminate nodules. Archives of internal medicine. 1997; 157: 849-55.
61. Gould MK, Ananth L, Barnett PG. A clinical model to estimate the pretest probability of lung cancer in patients with solitary pulmonary nodules. Chest. 2007; 131: 383-8.
62. Manhire A, Charig M, Clelland C, Gleeson F, Miller R, Moss H, Pointon K, Richardson C, Sawicka E. Guidelines for radiologically guided lung biopsy. Thorax. 2003; 58: 920-36.
63. Heerink WJ, de Bock GH, de Jonge GJ, Groen HJ, Vliegenthart R, Oudkerk M. Complication rates of CT-guided transthoracic lung biopsy: meta-analysis. European radiology. 2017; 27: 138-48.
64. Takeshita J, Masago K, Kato R, Hata A, Kaji R, Fujita S, Katakami N. CT-guided fine-needle aspiration and core needle biopsies of pulmonary lesions: a single-center experience with 750 biopsies in Japan. American Journal of Roentgenology. 2015; 204: 29-34.
65. Huang M-D, Weng H-H, Hsu S-L, Hsu L-S, Lin W-M, Chen C-W, Tsai Y-H. Accuracy and complications of CT-guided pulmonary core biopsy in small nodules: a single-center experience. Cancer Imaging. 2019; 19: 1-10.
66. Li H, Boiselle PM, Shepard J, Trotman-Dickenson B, McLoud T. Diagnostic accuracy and safety of CT-guided percutaneous needle aspiration biopsy of the lung: comparison of small and large pulmonary nodules. AJR American journal of roentgenology. 1996; 167: 105-9.
67. Tomiyama N, Yasuhara Y, Nakajima Y, Adachi S, Arai Y, Kusumoto M, Eguchi K, Kuriyama K, Sakai F, Noguchi M. CT-guided needle biopsy of lung lesions: a survey of severe complication based on 9783 biopsies in Japan. European journal of radiology. 2006; 59: 60-4.
68. Khan M, Straub R, Moghaddam S, Maataoui A, Gurung J, Wagner T, Ackermann H, Thalhammer A, Vogl T, Jacobi V. Variables affecting the risk of pneumothorax and intrapulmonal hemorrhage in CT-guided transthoracic biopsy. European radiology. 2008; 18: 1356-63.
69. Li Y, Yang F, Huang Y-Y, Cao W. Comparison between computed tomography-guided core and fine needle lung biopsy: a meta-analysis. Medicine. 2022; 101: e29016.
70. Wu S-G, Chang Y-L, Hsu Y-C, Wu J-Y, Yang C-H, Yu C-J, Tsai M-F, Shih J-Y, Yang P-C. Good response to gefitinib in lung adenocarcinoma of complex epidermal growth factor receptor (EGFR) mutations with the classical mutation pattern. The oncologist. 2008; 13: 1276-84.
71. Leighl NB, Rekhtman N, Biermann WA, Huang J, Mino-Kenudson M, Ramalingam SS, West H, Whitlock S, Somerfield MR. Molecular testing for selection of patients with lung cancer for epidermal growth factor receptor and anaplastic lymphoma kinase tyrosine kinase inhibitors: American Society of Clinical Oncology endorsement of the College of American Pathologists/International Association for the study of lung cancer/association for molecular pathology guideline. Journal of Clinical Oncology. 2014; 32: 3673-9.
72. Saggiante L, Biondetti P, Lanza C, Carriero S, Ascenti V, Piacentino F, Shehab A, Ierardi AM, Venturini M, Carrafiello G. Computed-tomography-guided lung biopsy: A practice-oriented document on techniques and principles and a review of the literature. Diagnostics. 2024; 14: 1089.
73. Kurimoto N, Miyazawa T, Okimasa S, Maeda A, Oiwa H, Miyazu Y, Murayama M. Endobronchial ultrasonography using a guide sheath increases the ability to diagnose peripheral pulmonary lesions endoscopically. Chest. 2004; 126: 959-65.
74. Zhan P, Zhu Q-Q, Miu Y-Y, Liu Y-F, Wang X-X, Zhou Z-J, Jin J-J, Li Q, Sasada S, Izumo T. Comparison between endobronchial ultrasound-guided transbronchial biopsy and CT-guided transthoracic lung biopsy for the diagnosis of peripheral lung cancer: a systematic review and meta-analysis. Translational lung cancer research. 2017; 6: 23.
75. Zuniga PVS, Vakil E, Molina S, Bassett Jr RL, Ost DE. Sensitivity of radial endobronchial ultrasound-guided bronchoscopy for lung cancer in patients with peripheral pulmonary lesions: an updated meta-analysis. Chest. 2020; 157: 994-1011.
76. Gex G, Pralong JA, Combescure C, Seijo L, Rochat T, Soccal PM. Diagnostic yield and safety of electromagnetic navigation bronchoscopy for lung nodules: a systematic review and meta-analysis. Respiration. 2014; 87: 165-76.
77. Zhang W, Chen S, Dong X, Lei P. Meta-analysis of the diagnostic yield and safety of electromagnetic navigation bronchoscopy for lung nodules. Journal of thoracic disease. 2015; 7: 799.
78. Venkatesh E, Elluru SV. Cone beam computed tomography: basics and applications in dentistry. Journal of istanbul University faculty of Dentistry. 2017; 51: 102-21.
79. Setser R, Chintalapani G, Bhadra K, Casal RF. Cone beam CT imaging for bronchoscopy: a technical review. Journal of Thoracic Disease. 2020; 12: 7416.
80. Orth RC, Wallace MJ, Kuo MD, Radiology TACotSoI. C-arm cone-beam CT: general principles and technical considerations for use in interventional radiology. Journal of Vascular and Interventional Radiology. 2008; 19: 814-20.
81. Casal RF, Sarkiss M, Jones AK, Stewart J, Tam A, Grosu HB, Ost DE, Jimenez CA, Eapen GA. Cone beam computed tomography-guided thin/ultrathin bronchoscopy for diagnosis of peripheral lung nodules: a prospective pilot study. Journal of Thoracic Disease. 2018; 10: 6950.
82. Pung L, Ahmad M, Mueller K, Rosenberg J, Stave C, Hwang GL, Shah R, Kothary N. The role of cone-beam CT in transcatheter arterial chemoembolization for hepatocellular carcinoma: a systematic review and meta-analysis. Journal of Vascular and Interventional Radiology. 2017; 28: 334-41.
83. Hohenforst-Schmidt W, Banckwitz R, Zarogoulidis P, Vogl T, Darwiche K, Goldberg E, Huang H, Simoff M, Li Q, Browning R. Radiation exposure of patients by cone beam CT during endobronchial navigation-a phantom study. Journal of Cancer. 2014; 5: 192.
84. Pritchett MA, Schampaert S, de Groot JA, Schirmer CC, van der Bom I. Cone-beam CT with augmented fluoroscopy combined with electromagnetic navigation bronchoscopy for biopsy of pulmonary nodules. Journal of bronchology & interventional pulmonology. 2018; 25: 274.
85. Benn BS, Romero AO, Lum M, Krishna G. Robotic-assisted navigation bronchoscopy as a paradigm shift in peripheral lung access. Lung. 2021; 199: 177-86.
86. Rampinelli C, De Marco P, Origgi D, Maisonneuve P, Casiraghi M, Veronesi G, Spaggiari L, Bellomi M. Exposure to low dose computed tomography for lung cancer screening and risk of cancer: secondary analysis of trial data and risk-benefit analysis. bmj. 2017; 356.
87. Lee SM, Park CM, Lee KH, Bahn YE, Kim JI, Goo JM. C-arm cone-beam CT-guided percutaneous transthoracic needle biopsy of lung nodules: clinical experience in 1108 patients. Radiology. 2014; 271: 291-300.
88. Yang S-M, Yu K-L, Lin J-H, Lin K-H, Liu Y-L, Sun S-E, Meng L-H, Ko H-J. Cumulative experience of preoperative real-time augmented fluoroscopy-guided endobronchial dye marking for small pulmonary nodules: an analysis of 30 initial patients. Journal of the Formosan Medical Association. 2019; 118: 1232-8.
89. Tsuboi E. Studies on an early diagnosis of lung cancer, especially cytological diagnosis of bronchial cells obtained by a direct scrape-off method. Radiol. 1959; 19: 133-51.
90. Baaklini WA, Reinoso MA, Gorin AB, Sharafkaneh A, Manian P. Diagnostic yield of fiberoptic bronchoscopy in evaluating solitary pulmonary nodules. Chest. 2000; 117: 1049-54.
91. Radke JR, Conway WA, Eyler WR, Kvale PA. Diagnostic accuracy in peripheral lung lesions: factors predicting success with flexible fiberoptic bronchoscopy. Chest. 1979; 76: 176-9.
92. Naidich DP, Sussman R, Kutcher WL, Aranda CP, Garay SM, Ettenger NA. Solitary pulmonary nodules: CT-bronchoscopic correlation. Chest. 1988; 93: 595-8.
93. Gasparini S. Conventional biopsy techniques. Principles and practice of interventional pulmonology. 2013: 151-63.
94. Gasparini S, Ferretti M, Secchi EB, Baldelli S, Zuccatosta L, Gusella P. Integration of transbronchial and percutaneous approach in the diagnosis of peripheral pulmonary nodules or masses: experience with 1,027 consecutive cases. Chest. 1995; 108: 131-7.
95. Kaneko M, Eguchi K, Ohmatsu H, Kakinuma R, Naruke T, Suemasu K, Moriyama N. Peripheral lung cancer: screening and detection with low-dose spiral CT versus radiography. Radiology. 1996; 201: 798-802.
96. Bowling MR, Brown C, Anciano CJ. Feasibility and safety of the transbronchial access tool for peripheral pulmonary nodule and mass. The Annals of Thoracic Surgery. 2017; 104: 443-9.
97. Ali EA, Takizawa H, Kawakita N, Sawada T, Tsuboi M, Toba H, Takashima M, Matsumoto D, Yoshida M, Kawakami Y. Transbronchial biopsy using an ultrathin bronchoscope guided by cone-beam computed tomography and virtual bronchoscopic navigation in the diagnosis of pulmonary nodules. Respiration. 2019; 98: 321-8.
98. Chandrika S, Yarmus L. Recent developments in advanced diagnostic bronchoscopy. European Respiratory Review. 2020; 29.
99. Prado RMG, Cicenia J, Almeida FA. Robotic-assisted bronchoscopy: a comprehensive review of system functions and analysis of outcome data. Diagnostics. 2024; 14: 399.
100. Caruso CR, Ma KC, DiBardino DM. Integration of robotic bronchoscopy and cone beam computed tomography: a narrative review. AME Medical Journal. 2023; 8.
101. Zavala DC, Richardson RH, Mukerjee PK, Rossi NP, Bedell GN. Use of the bronchofiberscope for bronchial brush biopsy: Diagnostic results and comparison with other brushing techniques. Chest. 1973; 63: 889-92.
102. Kvale PA, Bode LFR, Kini S. Diagnostic accuracy in lung cancer: comparison of techniques used in association with flexible fiberoptic bronchoscopy. Chest. 1976; 69: 752-7.
103. Dionisio J. Diagnostic flexible bronchoscopy and accessory techniques. Revista portuguesa de pneumologia. 2012; 18: 99-106.
104. Manalo-Estrella P, Fry WA. Cytologic diagnosis of lung lesions by bronchial brushing. Annals of Clinical & Laboratory Science. 1973; 3: 289-95.
105. Tomar V, Vijay N, Nuwal P, Dixit R. Comparative study of bronchoalveolar lavage, bronchial brushing, and FNAC in diagnosing malignant neoplasms of lungs. Journal of cytology. 2016; 33: 210-3.
106. Acharya V, Unnikrishnan B, Shenoy A, Holla R. Utility of various bronchoscopic modalities in lung cancer diagnosis. Asian Pacific journal of cancer prevention: APJCP. 2017; 18: 1931.
107. Hou G, Miao Y, Hu X-J, Wang W, Wang Q-Y, Wu G-P, Wang E-H, Kang J. The optimal sequence for bronchial brushing and forceps biopsy in lung cancer diagnosis: a random control study. Journal of Thoracic Disease. 2016; 8: 520.
108. Boonsarngsuk V, Kanoksil W, Laungdamerongchai S. Diagnosis of peripheral pulmonary lesions with radial probe endobronchial ultrasound-guided bronchoscopy. Archivos de Bronconeumología (English Edition). 2014; 50: 379-83.
109. Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, Gemma A, Harada M, Yoshizawa H, Kinoshita I. Gefitinib or chemotherapy for non–small-cell lung cancer with mutated EGFR. N Engl j Med. 2010; 2010: 2380-8.
110. Guisier F, Salaün M, Lachkar S, Lamy A, Piton N, Obstoy B, Sabourin JC, Thiberville L. Molecular analysis of peripheral non‐squamous non‐small cell lung cancer sampled by radial EBUS. Respirology. 2016; 21: 718-26.
111. Smouse JH, Cibas ES, Jänne PA, Joshi VA, Zou KH, Lindeman NI. EGFR mutations are detected comparably in cytologic and surgical pathology specimens of nonsmall cell lung cancer. Cancer Cytopathology. 2009; 117: 67-72.
112. Cai G, Wong R, Chhieng D, Levy GH, Gettinger SN, Herbst RS, Puchalski JT, Homer RJ, Hui P. Identification of EGFR mutation, KRAS mutation, and ALK gene rearrangement in cytological specimens of primary and metastatic lung adenocarcinoma. Cancer cytopathology. 2013; 121: 500-7.
113. Tsai T, Su K, Wu S, Chang Y, Luo S, Jan I, Yu C, Yu S, Shih J, Yang P. RNA is favourable for analysing EGFR mutations in malignant pleural effusion of lung cancer. European Respiratory Journal. 2012; 39: 677-84.
114. Mitsudomi T, Kosaka T, Endoh H, Horio Y, Hida T, Mori S, Hatooka S, Shinoda M, Takahashi T, Yatabe Y. Mutations of the epidermal growth factor receptor gene predict prolonged survival after gefitinib treatment in patients with non–small-cell lung cancer with postoperative recurrence. Journal of Clinical Oncology. 2005; 23: 2513-20.
115. Shih JY, Gow CH, Yu CJ, Yang CH, Chang YL, Tsai MF, Hsu YC, Chen KY, Su WP, Yang PC. Epidermal growth factor receptor mutations in needle biopsy/aspiration samples predict response to gefitinib therapy and survival of patients with advanced nonsmall cell lung cancer. International journal of cancer. 2006; 118: 963-9.
116. Eberhard DA, Johnson BE, Amler LC, Goddard AD, Heldens SL, Herbst RS, Ince WL, Jänne PA, Januario T, Johnson DH. Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non–small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. Journal of clinical oncology. 2005; 23: 5900-9.
117. Su K-Y, Chen H-Y, Li K-C, Kuo M-L, Yang JC-H, Chan W-K, Ho B-C, Chang G-C, Shih J-Y, Yu S-L. Pretreatment epidermal growth factor receptor (EGFR) T790M mutation predicts shorter EGFR tyrosine kinase inhibitor response duration in patients with non–small-cell lung cancer. Journal of clinical oncology. 2012; 30: 433-40.
118. Hart D, Wall B. Radiation exposure of the UK population from medical and dental X-ray examinations. NRPB Chilton, UK, 2002.
119. Choo JY, Park CM, Lee NK, Lee SM, Lee H-J, Goo JM. Percutaneous transthoracic needle biopsy of small (≤ 1 cm) lung nodules under C-arm cone-beam CT virtual navigation guidance. European radiology. 2013; 23: 712-9.
120. Steinfort DP, Einsiedel P, Irving LB. Radiation dose to patients and clinicians during fluoroscopically-guided biopsy of peripheral pulmonary lesions. Respiratory care. 2010; 55: 1469-74.
121. Izumo T, Sasada S, Chavez C, Tsuchida T. The diagnostic utility of endobronchial ultrasonography with a guide sheath and tomosynthesis images for ground glass opacity pulmonary lesions. Journal of thoracic disease. 2013; 5: 745.
122. Ikezawa Y, Sukoh N, Shinagawa N, Nakano K, Oizumi S, Nishimura M. Endobronchial ultrasonography with a guide sheath for pure or mixed ground-glass opacity lesions. Respiration. 2014; 88: 137-43.
123. Cheng GZ, Liu L, Nobari M, Miller R, Wahidi M. Cone beam navigation bronchoscopy: the next frontier. Journal of thoracic disease. 2020; 12: 3272.
124. Sagar A-ES, Sabath BF, Eapen GA, Song J, Marcoux M, Sarkiss M, Arain MH, Grosu HB, Ost DE, Jimenez CA. Incidence and location of atelectasis developed during bronchoscopy under general anesthesia: the I-LOCATE trial. Chest. 2020; 158: 2658-66.
125. Pritchett MA, Bhadra K, Calcutt M, Folch E. Virtual or reality: divergence between preprocedural computed tomography scans and lung anatomy during guided bronchoscopy. Journal of Thoracic Disease. 2020; 12: 1595.
126. De Sousa VML, Carvalho L. Heterogeneity in lung cancer. Pathobiology. 2018; 85: 96-107.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99565-
dc.description.abstract隨著低劑量電腦斷層(low-dose computed tomography, LDCT)於肺癌篩檢的逐漸普及,周邊型肺部病灶(peripheral pulmonary lesions, PPLs)的發現數量也隨之增加,亟需有效的切片方式。目前常見的切片方法包括經電腦斷層導引的經皮切片,以及運用氣管鏡的經支氣管切片(transbronchial biopsy, TBB)。支氣管鏡超音波(radial endobronchial ultrasound, rEBUS)能提升病灶定位能力,但取樣過程中缺乏即時影像。錐狀束電腦斷層衍生的強化螢光透視檢查(cone-beam computed tomography-derived augmented fluoroscopy, CBCT-AF)則整合精確影像與即時螢光導引,可望提高rEBUS引導切片的成效,尤其是小病灶,但目前相關的研究仍然有限。此外,以傳統氣管鏡取得的檢體量常不足以進行非小細胞肺癌(non-small cell lung cancer, NSCLC)的分子檢測。透過rEBUS進行的支氣管刷檢或許能提供額外的檢體,用於細胞病理診斷及表皮生長因子受體(epidermal growth factor receptor, EGFR)基因檢測,然而其實際效果仍需進一步研究。
本研究分為兩部分。第一部分旨在確定CBCT-AF與rEBUS的結合使用是否比單獨使用rEBUS能提高PPLs的診斷率。患有PPLs的患者將接受CBCT-AF結合rEBUS或僅單獨使用rEBUS的比較分析。我們假設CBCT-AF將顯著改善病灶定位,從而提高診斷準確性,同時具有與單獨使用rEBUS相似的安全性。第二部分旨在評估支氣管刷檢在細胞病理學和分子檢測中的可行性,特別是在NSCLC患者中檢測EGFR突變的效用。我們假設支氣管刷檢適合進行EGFR突變檢測,從而減少因樣本不足而需進行額外侵入性檢查的需求。
第一部分研究納入自2018年10月至2019年7月間,接受rEBUS導引經支氣管切片的周邊型肺部病灶患者,探討在EBUS檢查中結合CBCT-AF之成效與安全性。透過傾向分數1:1配對後,最終分析53對患者。研究結果顯示,rEBUS結合CBCT-AF組的診斷率明顯優於僅使用EBUS組(75.5% vs. 52.8%,p=0.015),尤其在病灶小於或等於3公分時,更能顯著提升診斷率(73.5% vs. 36.1%,p=0.002)。兩組並無顯著併發症差異(3.8% vs. 5.7%,p=1.000)。此外,在rEBUS結合CBCT-AF組中,約45.3%的病灶在傳統螢光透視下無法可視化,但透過CBCT-AF仍能定位並順利進行標註;整個操作流程、CBCT 與螢光透視的平均輻射劑量分別為 19.59、16.4 和 3.17 Gy cm²。總結而言,第一部分研究顯示,將CBCT-AF與rEBUS 結合用於周邊肺病灶之經支氣管切片,能提供相對令人滿意的診斷率,且所需操作時間比未使用CBCT-AF的組別更短。此外,該方法在操作相關的併發症及輻射曝露劑量方面亦被證實是安全的。第二部分研究聚焦於周邊肺癌患者接受支氣管鏡超音波檢查時,採用支氣管刷檢檢體在細胞病理及分子檢測,特別是EGFR基因突變定序上的應用價值。研究共收錄941位周邊型肺部病灶患者,最終有624人確診為非鱗狀細胞肺癌,其中376人(60.3%)在氣管鏡刷檢檢體中得到陽性細胞學結果。顯示若胸部電腦斷層可見支氣管徵象(bronchus sign)、或rEBUS探頭能位於病灶內部,則刷檢診斷率更高。在這些陽性檢體中,96.5%可成功進行EGFR基因定序,且與配對組織樣本的突變檢測一致性達88.7%(kappa=0.745,p<0.001)。值得注意的是,有144位患者最初透過經支氣管切片無法完成病理診斷或EGFR檢測,但其中57位(39.6%)可藉由同次刷檢獲得所需檢體。整體而言,rEBUS導引支氣管刷檢可作為輔助性取樣方式,提供周邊肺癌診斷及EGFR突變檢測的額外可靠途徑。
綜觀本研究兩部分結果,對於接受支氣管鏡檢查之周邊型肺部病灶患者,應用CBCT-AF輔助rEBUS不僅能提升診斷率與縮短操作時間,亦可維持良好安全性。當患者最終確診為非鱗狀非小細胞肺癌時,rEBUS之支氣管刷檢亦能提供額外且充足的檢體以進行EGFR突變檢測,減少重複侵入性檢查之需求。本研究結果可作為未來臨床診斷與治療決策的重要參考依據。
zh_TW
dc.description.abstractWith increased low-dose computed tomography screening for lung cancer, more peripheral pulmonary lesions (PPLs) are detected, emphasizing the need for effective biopsy methods. Traditional approaches include CT-guided percutaneous biopsy and bronchoscopic transbronchial biopsy (TBB). Radial endobronchial ultrasound (rEBUS) improves lesion localization but lacks real-time imaging during sampling. Cone-beam computed tomography-derived augmented fluoroscopy (CBCT-AF) combines precise imaging and real-time fluoroscopy, potentially enhancing rEBUS biopsy, particularly for small lesions, though comparative data are limited. Additionally, limited biopsy samples often hinder molecular analysis in non-small cell lung cancer (NSCLC). Bronchial brushing during rEBUS may provide sufficient material for diagnosis and genetic testing, such as epidermal growth factor receptor (EGFR) mutation detection, but this approach requires further evaluation.
This study has two parts. First, we evaluated whether combining CBCT-AF with rEBUS increases the diagnostic yield for PPLs compared to rEBUS alone, hypothesizing improved lesion localization and diagnostic accuracy without compromising safety. Second, we assessed the feasibility of bronchial brushing specimens for cytological diagnosis and EGFR mutation analysis in NSCLC, hypothesizing this approach could reduce the need for additional invasive procedures.
The first part of this study enrolled patients with PPLs undergoing rEBUS-guided TBB from October 2018 to July 2019, evaluating the efficacy and safety of combining CBCT-AF with rEBUS. After 1:1 propensity score matching, 53 matched pairs were analyzed. Results demonstrated a significantly higher diagnostic yield in the rEBUS combined with CBCT-AF group compared to rEBUS alone (75.5% vs. 52.8%, p=0.015), particularly in lesions ≤3 cm (73.5% vs. 36.1%, p=0.002). Complication rates were similar between groups (3.8% vs. 5.7%, p=1.000). Additionally, approximately 45.3% of lesions in the CBCT-AF group were not visible on conventional fluoroscopy but could still be successfully localized and labeled through CBCT. The mean radiation doses for the entire procedure, CBCT, and fluoroscopy were 19.59, 16.4, and 3.17 Gy·cm², respectively. Overall, combining CBCT-AF with rEBUS provided an improved diagnostic yield, reduced procedure time, and was proven safe regarding complications and radiation exposure. The second part assessed the diagnostic and molecular utility of bronchial brush samples obtained during rEBUS in patients with peripheral lung cancer, specifically for EGFR mutation analysis. Of 941 PPL patients enrolled, 624 were diagnosed with non-squamous NSCLC. Positive cytology from bronchial brush samples was obtained in 376 patients (60.3%), particularly when a bronchus sign was visible on computed tomography or the rEBUS probe was located within the lesion. Among these positive samples, 96.5% successfully underwent EGFR mutation sequencing, showing an 88.7% concordance rate with paired tissue samples (kappa=0.745, p<0.001). Notably, among 144 patients initially negative by TBB for pathology or EGFR analysis, 57 (39.6%) obtained adequate samples through bronchial brushing. Thus, rEBUS bronchial brushing serves as a reliable supplementary sampling method for diagnosing peripheral lung cancer and determining EGFR mutation status.
In conclusion, this two-part study shows that in patients with PPLs undergoing bronchoscopy, the application of CBCT-AF in conjunction with rEBUS can enhance diagnostic yield and shorten procedural time while maintaining a high degree of safety. Moreover, for patients ultimately diagnosed with non-squamous NSCLC, rEBUS bronchial brushing offers an additional, sufficient sample source for EGFR mutation testing, thereby reducing the need for repeat invasive procedures. These findings can serve as an important clinical reference for future diagnostic strategies and treatment planning.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-16T16:08:08Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-16T16:08:08Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
英文摘要 iv
目次 vii
圖次 xiii
表次 xiv
第一章:簡介
1.1 Background 1
1.1.1 Traditional Diagnostic Approaches of peripheral pulmonary nodule 1
1.1.2 The Promise of rEBUS 3
1.1.3 Cone-beam computed tomography-derived augmented fluoroscopy 4
1.1.4 Lung cancer and molecular diagnosis 6
1.1.5 Bronchial Brushing in Bronchoscopy 8
1.2 Research Questions 8
1.3 Research Objectives 9
1.4 Research Hypotheses 10
第二章:文獻回顧
2.1 Overview of Peripheral Pulmonary Lesions (PPLs) 11
2.1.1 Definition of PPLs 11
2.1.2 Epidemiology of Pulmonary Nodules 11
2.1.3 Pathological Spectrum of Pulmonary nodules 12
2.1.4 Risk Assessment for Malignancy for Pulmonary nodule 15
2.1.5 Clinical Guidelines and Recommendations for pulmonary nodules 17
2.2 Diagnostic Approaches for PPLs 21
2.2.1 CT-guided Transthoracic Biopsy 21
2.2.2 Traditional Bronchoscopic Biopsy 23
2.2.3 Radial Endobronchial Ultrasound (rEBUS) 24
2.2.4 rEBUS Synergies with Other Technologies 26
2.3 Cone-Beam Computed Tomography-Derived Augmented Fluoroscopy (CBCT-AF) 28
2.3.1 Technical Overview and Advantages 28
2.3.2 Clinical Application and Diagnostic Value 30
2.3.3 Radiation Exposure Considerations 31
2.3.4 Conventional Fluoroscopy 35
2.3.5 Other Navigation Systems 38
2.4 Bronchial Brushing and Molecular Testing 40
2.4.1 Clinical Application and Diagnostic Value 40
2.4.2 Utility in EGFR Mutation Detection 44
第三章:方法
3.1 Part 1: CBCT-AF with rEBUS for Peripheral Pulmonary Lesions 46
3.1.1 Study Design 46
3.1.2 Study Population 46
3.1.3 Intervention Procedures 46
3.1.4 Outcome Measures 48
3.1.5 Statistical Analysis 49
3.2 Part 2: rEBUS-guided Bronchial Brushing for Diagnosis and Molecular Analysis 50
3.2.1 Study Design 50
3.2.2 Study Population 51
3.2.3 Bronchoscopic Procedures 51
3.2.4 Cytological and EGFR Analyses 52
3.2.5 Statistical Analysis 53
第四章:結果
4.1 Part 1: CBCT-AF with rEBUS for Peripheral Pulmonary Lesions 55
4.1.1 Patient Demographics and Lesion Characteristics 55
4.1.2 Histopathologic Results and Final Diagnosis 55
4.1.3 Comparative Diagnostic Yield 56
4.1.4 Subgroup Analysis 57
4.1.5 Procedural Metrics and Radiation Exposure 57
4.2 Part 2: Radial Endobronchial Ultrasound-Guided Bronchial Brushing for Peripheral Pulmonary Lesions 59
4.2.1 Diagnostic Utility of rEBUS-guided Bronchial Brushing 59
4.2.2 Predictive Factors for Positive Brushing Cytology 60
4.2.3 EGFR Mutation Analysis 60
4.2.4 Concordance with Histopathological specimens 61
4.2.5 Clinical Outcomes Based on EGFR Status 62
第五章:討論
5.1 Summary and Interpretation of Findings 63
5.1.1 CBCT-AF with rEBUS for Peripheral Pulmonary Lesions 64
5.1.2 rEBUS-Guided Bronchial Brushing for Peripheral Pulmonary Lesions 65
5.2 Clinical Implications and Significance 66
5.2.1 Integration of CBCT-AF with rEBUS into Bronchoscopic Procedures 66
5.2.2 Radiation Considerations 67
5.2.3 Integration of Bronchial Brushing into Bronchoscopic Procedures 70
5.2.4 Molecular (EGFR) Testing from Bronchial Brushing Samples 71
5.3 Limitations 72
5.3.1 Limitations of Part 1: CBCT-AF with rEBUS for Peripheral Pulmonary Lesions 72
5.3.2 Limitations of Part 2: Radial Endobronchial Ultrasound-Guided Bronchial Brushing for Peripheral pulmonary lesions 75
第六章: 結論與展望
6.1 Key Conclusions 78
6.2 Future Research Directions 79
參考文獻 81
圖 104
表 106
-
dc.language.isoen-
dc.subject周邊型肺部病灶zh_TW
dc.subject經支氣管切片zh_TW
dc.subject支氣管超音波zh_TW
dc.subject錐狀束電腦斷層衍生之強化螢光透視檢查zh_TW
dc.subject支氣管刷檢zh_TW
dc.subject肺癌zh_TW
dc.subject表皮生長因子受體zh_TW
dc.subjectcone-beam computed tomography-derived augmented fluoroscopyen
dc.subjecttransbronchial biopsyen
dc.subjectradial endobronchial ultrasounden
dc.subjectepidermal growth factor receptoren
dc.subjectlung canceren
dc.subjectbronchial brushingen
dc.subjectperipheral pulmonary lesionsen
dc.title周邊型肺部病灶:支氣管鏡檢中結合錐狀束電腦斷層衍生之強化螢光透視與支氣管刷檢的全面評估zh_TW
dc.titlePeripheral Pulmonary Lesions: Comprehensive Evaluation of the Cone-Beam CT-Derived Augmented Fluoroscopy and Bronchial Brushing in Bronchoscopyen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.coadvisor何肇基zh_TW
dc.contributor.coadvisorChao-Chi Hoen
dc.contributor.oralexamcommittee樹金忠;陳克誠;涂智彥;楊宗穎zh_TW
dc.contributor.oralexamcommitteeChin-Chung Shu;Ke-Cheng Chen;Chih-Yen Tu;Tsung-Ying Yangen
dc.subject.keyword周邊型肺部病灶,經支氣管切片,支氣管超音波,錐狀束電腦斷層衍生之強化螢光透視檢查,支氣管刷檢,肺癌,表皮生長因子受體,zh_TW
dc.subject.keywordperipheral pulmonary lesions,transbronchial biopsy,radial endobronchial ultrasound,cone-beam computed tomography-derived augmented fluoroscopy,bronchial brushing,lung cancer,epidermal growth factor receptor,en
dc.relation.page113-
dc.identifier.doi10.6342/NTU202501616-
dc.rights.note未授權-
dc.date.accepted2025-07-11-
dc.contributor.author-college醫學院-
dc.contributor.author-dept臨床醫學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
1.62 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved