Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99564
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor丁詩同zh_TW
dc.contributor.advisorShih-Torng Dingen
dc.contributor.author吳倢慈zh_TW
dc.contributor.authorJie-Ci Wuen
dc.date.accessioned2025-09-16T16:07:57Z-
dc.date.available2025-09-17-
dc.date.copyright2025-09-16-
dc.date.issued2025-
dc.date.submitted2025-07-17-
dc.identifier.citationAn, Q., T. Liu, M. Y. Wang, Y. J. Yang, Z. D. Zhang, Z. J. Liu, and B. Yang. 2021. KRT7 promotes epithelial‑mesenchymal transition in ovarian cancer via the TGF‑beta/Smad2/3 signaling pathway. Oncol. Rep. 45:481-492. doi: 10.3892/or.2020.7886
Aruga, J., T. Tohmonda, S. Homma, and K. Mikoshiba. 2002. Zic1 promotes the expansion of dorsal neural progenitors in spinal cord by inhibiting neuronal differentiation. Dev. Biol. 244:329-341. doi: 10.1006/dbio.2002.0598
Banerjee, D., T. K. Mukherjee, and C. M. Redman. 1985. Biosynthesis of high density lipoprotein by chicken liver: intracellular transport and proteolytic processing of nascent apolipoprotein A-1. J. Cell Biol. 101:1219-1226. doi: 10.1083/jcb.101.4.1219
Banerjee, D., and C. M. Redman. 1983. Biosynthesis of high density lipoprotein by chicken liver: nature of nascent intracellular high density lipoprotein. J. Cell Biol. 96:651-660. doi: 10.1083/jcb.96.3.651
Bansod, S., R. Kageyama, and T. Ohtsuka. 2017. Hes5 regulates the transition timing of neurogenesis and gliogenesis in mammalian neocortical development. Development. 144:3156-3167. doi: 10.1242/dev.147256
Bauer, R., J. A. Plieschnig, T. Finkes, B. Riegler, M. Hermann, and W. J. Schneider. 2013. The developing chicken yolk sac acquires nutrient transport competence by an orchestrated differentiation process of its endodermal epithelial cells. J. Biol. Chem. 288:1088-1098. doi: 10.1074/jbc.M112.393090
Baughn, M. W., Z. Melamed, J. Lopez-Erauskin, M. S. Beccari, K. Ling, A. Zuberi, M. Presa, E. Gonzalo-Gil, R. Maimon, S. Vazquez-Sanchez, S. Chaturvedi, M. Bravo-Hernandez, V. Taupin, S. Moore, J. W. Artates, E. Acks, I. S. Ndayambaje, A. R. Agra de Almeida Quadros, P. Jafar-Nejad, F. Rigo, C. F. Bennett, C. Lutz, C. Lagier-Tourenne, and D. W. Cleveland. 2023. Mechanism of STMN2 cryptic splice-polyadenylation and its correction for TDP-43 proteinopathies. Science. 379:1140-1149. doi: 10.1126/science.abq5622
Bayat, A., S. Iqbal, K. Borredy, J. Amiel, C. Zweier, G. Barcia, C. Kraus, H. Weyhreter, A. G. Bassuk, M. Chopra, G. Rubboli, and R. S. Moller. 2021. PRICKLE2 revisited-further evidence implicating PRICKLE2 in neurodevelopmental disorders. Eur. J. Hum. Genet. 29:1235-1244. doi: 10.1038/s41431-021-00912-y
Beck, F. 2002. Homeobox genes in gut development. Gut. 51:450-454. doi: 10.1136/gut.51.3.450
Bisnett, B. J., B. M. Condon, C. H. Lamb, G. R. Georgiou, and M. Boyce. 2020. Export Control: Post-transcriptional Regulation of the COPII Trafficking Pathway. Front. Cell Dev. Biol. 8:618652. doi: 10.3389/fcell.2020.618652
Botta, M., M. Audano, A. Sahebkar, C. R. Sirtori, N. Mitro, and M. Ruscica. 2018. PPAR Agonists and Metabolic Syndrome: An Established Role? Int. J. Mol. Sci. 19. doi: 10.3390/ijms19041197
Bu, P., K. Y. Chen, K. Xiang, C. Johnson, S. B. Crown, N. Rakhilin, Y. Ai, L. Wang, R. Xi, I. Astapova, Y. Han, J. Li, B. B. Barth, M. Lu, Z. Gao, R. Mines, L. Zhang, M. Herman, D. Hsu, G. F. Zhang, and X. Shen. 2018. Aldolase B-Mediated Fructose Metabolism Drives Metabolic Reprogramming of Colon Cancer Liver Metastasis. Cell Metab. 27:1249-1262 e1244. doi: 10.1016/j.cmet.2018.04.003
Chen, X., S. Qiu, Q. Li, L. Hu, C. Yao, X. Xu, and F. Wang. 2020. Pancreatobiliary Diversion in the Mouse. Eur. Surg. Res. 61:130-135. doi: 10.1159/000508270
Cherian, G. 2015. Nutrition and metabolism in poultry: role of lipids in early diet. J. Anim. Sci. Biotechnol. 6:28. doi: 10.1186/s40104-015-0029-9
De Rosa, A., S. Pellegatta, M. Rossi, P. Tunici, L. Magnoni, M. C. Speranza, F. Malusa, V. Miragliotta, E. Mori, G. Finocchiaro, and A. Bakker. 2012. A radial glia gene marker, fatty acid binding protein 7 (FABP7), is involved in proliferation and invasion of glioblastoma cells. PLoS. One. 7:e52113. doi: 10.1371/journal.pone.0052113
Ding, S. T., and M. S. Lilburn. 1996. Characterization of changes in yolk sac and liver lipids during embryonic and early posthatch development of turkey poults. Poul. Sci. 75:478-483. doi: DOI 10.3382/ps.0750478
Ding, S. T., and M. S. Lilburn. 2002. The ontogeny of fatty acid-binding protein in turkey (Meleagridis gallopavo) intestine and yolk sac membrane during embryonic and early posthatch development. Poult. Sci. 81:1065-1070. doi: 10.1093/ps/81.7.1065
Duffy, D., and D. J. Rader. 2009. Update on strategies to increase HDL quantity and function. Nat. Rev. Cardiol. 6:455-463. doi: 10.1038/nrcardio.2009.94
Ehrlich, F., M. Laggner, L. Langbein, P. Burger, A. Pollreisz, E. Tschachler, and L. Eckhart. 2019. Comparative genomics suggests loss of keratin K24 in three evolutionary lineages of mammals. Sci. Rep. 9:10924. doi: 10.1038/s41598-019-47422-y
El-Shater, S. N., H. Rizk, H. A. Abdelrahman, M. A. Awad, E. F. Khalifa, and K. M. Khalil. 2021. Embryonic thermal manipulation of Japanese quail: effects on embryonic development, hatchability, and post-hatch performance. Trop. Anim. Health Prod. 53:263. doi: 10.1007/s11250-021-02726-y
Eresheim, C., J. Plieschnig, N. E. Ivessa, W. J. Schneider, and M. Hermann. 2014. Expression of microsomal triglyceride transfer protein in lipoprotein-synthesizing tissues of the developing chicken embryo. Biochimie. 101:67-74. doi: 10.1016/j.biochi.2013.12.020
Evangelista-Leite, D., A. C. O. Carreira, M. Y. Nishiyama, S. E. Gilpin, and M. A. Miglino. 2023. The molecular mechanisms of extracellular matrix-derived hydrogel therapy in idiopathic pulmonary fibrosis models. Biomaterials. 302:122338. doi: 10.1016/j.biomaterials.2023.122338
Forootan, F. S., S. S. Forootan, M. I. Malki, D. Chen, G. Li, K. Lin, P. S. Rudland, C. S. Foster, and Y. Ke. 2014. The expression of C-FABP and PPARgamma and their prognostic significance in prostate cancer. Int. J. Oncol. 44:265-275. doi: 10.3892/ijo.2013.2166
Franco, D., D. Sedmera, and E. Lozano-Velasco. 2017. Multiple Roles of Pitx2 in Cardiac Development and Disease. J. Cardiovasc. Dev. Dis. 4. doi: 10.3390/jcdd4040016
Frank-Hansen, R., L. A. Larsen, P. Andersen, C. Jespersgaard, and M. Christiansen. 2005. Mutations in the genes KCND2 and KCND3 encoding the ion channels Kv4.2 and Kv4.3, conducting the cardiac fast transient outward current (ITO,f), are not a frequent cause of long QT syndrome. Clin. Chim. Acta. 351:95-100. doi: 10.1016/j.cccn.2004.08.017
Furuhashi, M., and G. S. Hotamisligil. 2008. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat. Rev. Drug Discov. 7:489-503. doi: 10.1038/nrd2589
Furuhashi, M., M. Ogura, M. Matsumoto, S. Yuda, A. Muranaka, M. Kawamukai, A. Omori, M. Tanaka, N. Moniwa, H. Ohnishi, S. Saitoh, M. Harada-Shiba, K. Shimamoto, and T. Miura. 2017. Serum FABP5 concentration is a potential biomarker for residual risk of atherosclerosis in relation to cholesterol efflux from macrophages. Sci. Rep. 7:217. doi: 10.1038/s41598-017-00177-w
Furuhashi, M., I. Sakuma, T. Morimoto, Y. Higashiura, A. Sakai, M. Matsumoto, M. Sakuma, M. Shimabukuro, T. Nomiyama, O. Arasaki, K. Node, and S. Ueda. 2020. Independent and Distinct Associations of FABP4 and FABP5 With Metabolic Parameters in Type 2 Diabetes Mellitus. Front. Endocrinol (Lausanne). 11:575557. doi: 10.3389/fendo.2020.575557
Gabant, P., L. Forrester, J. Nichols, T. Van Reeth, C. De Mees, B. Pajack, A. Watt, J. Smitz, H. Alexandre, C. Szpirer, and J. Szpirer. 2002. Alpha-fetoprotein, the major fetal serum protein, is not essential for embryonic development but is required for female fertility. Proc. Natl. Acad. Sci. U S A. 99:12865-12870. doi: 10.1073/pnas.202215399
George Warren, W., M. Osborn, A. Yates, K. Wright, and S. E. O'Sullivan. 2023. The emerging role of fatty acid binding protein 5 (FABP5) in cancers. Drug Discov. Today. 28:103628. doi: 10.1016/j.drudis.2023.103628
Geraud, C., P. S. Koch, J. Zierow, K. Klapproth, K. Busch, V. Olsavszky, T. Leibing, A. Demory, F. Ulbrich, M. Diett, S. Singh, C. Sticht, K. Breitkopf-Heinlein, K. Richter, S. M. Karppinen, T. Pihlajaniemi, B. Arnold, H. R. Rodewald, H. G. Augustin, K. Schledzewski, and S. Goerdt. 2017. GATA4-dependent organ-specific endothelial differentiation controls liver development and embryonic hematopoiesis. J. Clin. Invest. 127:1099-1114. doi: 10.1172/JCI90086
Gires, O., M. Pan, H. Schinke, M. Canis, and P. A. Baeuerle. 2020. Expression and function of epithelial cell adhesion molecule EpCAM: where are we after 40 years? Cancer. Metast. Rev. 39:969-987. doi: 10.1007/s10555-020-09898-3
Gong, S., B. Bai, G. Sun, H. Jin, and Z. Zhang. 2022. CDCA3 exhibits a role in promoting the progression of ovarian cancer. Tissue Cell. 79:101903. doi: 10.1016/j.tice.2022.101903
Gonsalves, R., K. Aleck, D. Newbern, G. Shaibi, C. Kapadia, and O. Oatman. 2020. Severe early onset obesity and hypopituitarism in a child with a novel SIM1 gene mutation. Endocrinol Diabetes Metab Case Rep 2020doi: 10.1530/EDM-20-0042
Gridley, T. 2010. Notch signaling in the vasculature. Curr. Top Dev. Biol. 92:277-309. doi: 10.1016/S0070-2153(10)92009-7
Gusarova, V., J. L. Brodsky, E. A. Fisher, J. L. Brodsky, and E. A. Fisher. 2003. Apolipoprotein B100 exit from the endoplasmic reticulum (ER) is COPII-dependent, and its lipidation to very low density lipoprotein occurs post-ER. J. Biol. Chem. 278:48051-48058. doi: 10.1074/jbc.M306898200
Hadjivasiliou, Z., R. E. Moore, R. McIntosh, G. L. Galea, J. D. W. Clarke, and P. Alexandre. 2019. Basal Protrusions Mediate Spatiotemporal Patterns of Spinal Neuron Differentiation. Dev. Cell. 49:907-919 e910. doi: 10.1016/j.devcel.2019.05.035
Hamburger, V., and H. L. Hamilton. 1992. A series of normal stages in the development of the chick embryo. 1951. Dev. Dyn. 195:231-272. doi: 10.1002/aja.1001950404
Hanif, H., M. J. Ali, A. T. Susheela, I. W. Khan, M. A. Luna-Cuadros, M. M. Khan, and D. T. Lau. 2022. Update on the applications and limitations of alpha-fetoprotein for hepatocellular carcinoma. World. J. Gastroenterol. 28:216-229. doi: 10.3748/wjg.v28.i2.216
Hayashi, D., V. D. Mouchlis, and E. A. Dennis. 2021. Omega-3 versus Omega-6 fatty acid availability is controlled by hydrophobic site geometries of phospholipase As. J. Lipid Res. 62.doi: ARTN 10011310.1016/j.jlr.2021.100113
Hayes, A. J., W. Q. Huang, J. Yu, P. C. Maisonpierre, A. Liu, F. G. Kern, M. E. Lippman, S. W. McLeskey, and L. Y. Li. 2000. Expression and function of angiopoietin-1 in breast cancer. Br. J. Cancer. 83:1154-1160. doi: 10.1054/bjoc.2000.1437
Hermann, M., M. G. Mahon, K. A. Lindstedt, J. Nimpf, and W. J. Schneider. 2000. Lipoprotein receptors in extraembryonic tissues of the chicken. J. Biol. Chem. 275:16837-16844. doi: 10.1074/jbc.M000163200
Hermier, D., P. Forgez, and M. J. Chapman. 1985. A density gradient study of the lipoprotein and apolipoprotein distribution in the chicken, Gallus domesticus. Biochim. Biophys. Acta. 836:105-118. doi: 10.1016/0005-2760(85)90226-7
Hermier, D., P. Forgez, J. Williams, and M. J. Chapman. 1989. Alterations in plasma lipoproteins and apolipoproteins associated with estrogen-induced hyperlipidemia in the laying hen. Eur. J. Biochem. 184:109-118. doi: 10.1111/j.1432-1033.1989.tb14996.x
Hoekstra, M., M. Stitzinger, E. J. van Wanrooij, I. N. Michon, J. K. Kruijt, J. Kamphorst, M. Van Eck, E. Vreugdenhil, T. J. Van Berkel, and J. Kuiper. 2006. Microarray analysis indicates an important role for FABP5 and putative novel FABPs on a Western-type diet. J. Lipid Res. 47:2198-2207. doi: 10.1194/jlr.M600095-JLR200
Hossain, T., A. Riad, S. Siddiqi, S. Parthasarathy, and S. A. Siddiqi. 2014. Mature VLDL triggers the biogenesis of a distinct vesicle from the trans-Golgi network for its export to the plasma membrane. Biochem. J. 459:47-58. doi: 10.1042/BJ20131215
Hussain, M. M., J. Shi, P. Dreizen, J. Shi, and P. Dreizen. 2003. Microsomal triglyceride transfer protein and its role in apoB-lipoprotein assembly. J. Lipid Res. 44:22-32. doi: 10.1194/jlr.r200014-jlr200
Ishii, H., M. Saitoh, K. Sakamoto, T. Kondo, R. Katoh, S. Tanaka, M. Motizuki, K. Masuyama, and K. Miyazawa. 2014. Epithelial splicing regulatory proteins 1 (ESRP1) and 2 (ESRP2) suppress cancer cell motility via different mechanisms. J. Biol. Chem. 289:27386-27399. doi: 10.1074/jbc.M114.589432
Jaeschke, H. 2007. Troglitazone hepatotoxicity: are we getting closer to understanding idiosyncratic liver injury? Toxicol. Sci. 97:1-3. doi: 10.1093/toxsci/kfm021
Jahromi, M. M. 2012. Haplotype specific alteration of diabetes MHC risk by olfactory receptor gene polymorphism. Autoimmun. Rev. 12:270-274. doi: 10.1016/j.autrev.2012.05.001
Jin, X. L., H. Guo, C. Mao, N. Atkins, Jr., H. Wang, P. P. Avasthi, Y. T. Tu, and Y. Li. 2000. Emx1-specific expression of foreign genes using "knock-in" approach. Biochem. Biophys. Res. Commun. 270:978-982. doi: 10.1006/bbrc.2000.2532
Johnson, R., R. J. Gamblin, L. Ooi, A. W. Bruce, I. J. Donaldson, D. R. Westhead, I. C. Wood, R. M. Jackson, and N. J. Buckley. 2006. Identification of the REST regulon reveals extensive transposable element-mediated binding site duplication. Nucleic Acids Res. 34:3862-3877. doi: 10.1093/nar/gkl525
Kabaeva, Z. T., A. Perrot, B. Wolter, R. Dietz, N. Cardim, J. M. Correia, H. D. Schulte, A. A. Aldashev, M. M. Mirrakhimov, and K. J. Osterziel. 2002. Systematic analysis of the regulatory and essential myosin light chain genes: genetic variants and mutations in hypertrophic cardiomyopathy. Eur. J. Hum. Genet. 10:741-748. doi: 10.1038/sj.ejhg.5200872
Kanai, M., T. Soji, E. Sugawara, N. Watari, H. Oguchi, M. Matsubara, and D. C. Herbert. 1996. Participation of endodermal epithelial cells on the synthesis of plasma LDL and HDL in the chick yolk sac. Microsc. Res. Tech. 35:340-348. doi: 10.1002/(SICI)1097-0029(19961101)35:4<340::AID-JEMT5>3.0.CO;2-Q
Katsoulieris, E., J. G. Mabley, M. Samai, I. C. Green, and P. K. Chatterjee. 2009. alpha-Linolenic acid protects renal cells against palmitic acid lipotoxicity via inhibition of endoplasmic reticulum stress. Eur. J. Pharmacol. 623:107-112. doi: 10.1016/j.ejphar.2009.09.015
Kaur, H., P. J. Phillips-Mason, S. M. Burden-Gulley, A. E. Kerstetter-Fogle, J. P. Basilion, A. E. Sloan, and S. M. Brady-Kalnay. 2012. Cadherin-11, a marker of the mesenchymal phenotype, regulates glioblastoma cell migration and survival in vivo. Mol. Cancer Res. 10:293-304. doi: 10.1158/1541-7786.MCR-11-0457
Kersten, S. 2008. Peroxisome proliferator activated receptors and lipoprotein metabolism. PPAR Res. 2008:132960. doi: 10.1155/2008/132960
Kim, H. J., I. P. Y. Hong, S. Roh, S. Kim, H. Kim, S. Oh, T. S. Ahn, D. H. Kang, M. J. Baek, and D. Jeong. 2023. High expression of LY6E is an independent prognostic factor of colorectal cancer patients. Oncol. Rep. 49. doi: ARTN 8010.3892/or.2023.8517
Komatsu, A., and K. Node. 2010. [Effects of PPARgamma agonist on dyslipidemia and atherosclerosis]. Nihon. Rinsho. 68:294-298.
Kwon, G. S., S. T. Fraser, G. S. Eakin, M. Mangano, J. Isern, K. E. Sahr, A. K. Hadjantonakis, and M. H. Baron. 2006. (-) expression marks primitive and definitive endoderm lineages during mouse development. Dev. Dynam. 235:2549-2558. doi: 10.1002/dvdy.20843
Kwon, M. J. 2023. Role of epithelial splicing regulatory protein 1 in cancer progression. Cancer Cell. Int. 23:331. doi: 10.1186/s12935-023-03180-6
Lawson, K. A., N. R. Dunn, B. A. Roelen, L. M. Zeinstra, A. M. Davis, C. V. Wright, J. P. Korving, and B. L. Hogan. 1999. Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev. 13:424-436. doi: 10.1101/gad.13.4.424
Li, H., X. Zhang, X. Wang, Q. Wu, W. Zheng, C. Liu, S. Wei, X. Zuo, W. Xiao, H. Ye, W. Wang, L. Yang, and Y. Zhu. 2024a. The developmental pattern related to fatty acid uptake and oxidation in the yolk sac membrane and jejunum during embryogenesis in Muscovy duck. Poult. Sci. 103:103929. doi: 10.1016/j.psj.2024.103929
Li, X., P. Li, L. Wang, M. Zhang, and X. Gao. 2019. Lysine Enhances the Stimulation of Fatty Acids on Milk Fat Synthesis via the GPRC6A-PI3K-FABP5 Signaling in Bovine Mammary Epithelial Cells. J. Agric. Food Chem. 67:7005-7015. doi: 10.1021/acs.jafc.9b02160
Li, Y., Y. Pan, X. Zhao, S. Wu, F. Li, Y. Wang, B. Liu, Y. Zhang, X. Gao, Y. Wang, and H. Zhou. 2024b. Peroxisome proliferator-activated receptors: A key link between lipid metabolism and cancer progression. Clin. Nutr. 43:332-345. doi: 10.1016/j.clnu.2023.12.005
Liu, F., M. Walmsley, A. Rodaway, and R. Patient. 2008. Fli1 acts at the top of the transcriptional network driving blood and endothelial development. Curr. Biol. 18:1234-1240. doi: 10.1016/j.cub.2008.07.048
Liu, X., L. Meng, X. Li, D. Li, Q. Liu, Y. Chen, X. Li, W. Bu, and H. Sun. 2020. Regulation of FN1 degradation by the p62/SQSTM1-dependent autophagy-lysosome pathway in HNSCC. Int. J. Oral. Sci. 12:34. doi: 10.1038/s41368-020-00101-5
Low, Y. L., L. Jin, E. R. Morris, Y. J. Pan, and J. A. Nicolazzo. 2020. Pioglitazone Increases Blood-Brain Barrier Expression of Fatty Acid-Binding Protein 5 and Docosahexaenoic Acid Trafficking into the Brain. Mol. Pharmaceut. 17:873-884. doi: 10.1021/acs.molpharmaceut.9b01131
Ma, M. Y., G. Deng, W. Z. Zhu, M. Sun, L. Y. Jiang, W. H. Li, Y. B. Liu, L. Guo, B. L. Song, and X. L. Zhao. 2024. Defects in CYB5A and CYB5B impact sterol-C4 oxidation in cholesterol biosynthesis and demonstrate regulatory roles of dimethyl sterols. Cell Rep. 43. doi: ARTN 11491210.1016/j.celrep.2024.114912
Mantri, M., G. J. Scuderi, R. Abedini-Nassab, M. F. Z. Wang, D. McKellar, H. Shi, B. Grodner, J. T. Butcher, and I. De Vlaminck. 2021. Spatiotemporal single-cell RNA sequencing of developing chicken hearts identifies interplay between cellular differentiation and morphogenesis. Nat. Commun. 12:1771. doi: 10.1038/s41467-021-21892-z
Massacci, G., L. Perfetto, and F. Sacco. 2023. The Cyclin-dependent kinase 1: more than a cell cycle regulator. Br. J. Cancer. 129:1707-1716. doi: 10.1038/s41416-023-02468-8
Melville, D., A. Gorur, and R. Schekman. 2019. Fatty-acid binding protein 5 modulates the SAR1 GTPase cycle and enhances budding of large COPII cargoes. Mol. Biol. Cell. 30:387-399. doi: 10.1091/mbc.E18-09-0548
Mizuno, R., T. Cavallaro, and J. Herbert. 1992. Temporal expression of the transthyretin gene in the developing rat eye. Invest. Ophthalmol. Vis. Sci. 33:341-349.
Mowbray, C. A., S. S. Niranji, K. Cadwell, R. Bailey, K. A. Watson, and J. Hall. 2018. Gene expression of AvBD6-10 in broiler chickens is independent of AvBD6, 9, and 10 peptide potency. Vet. Immunol. Immunopathol. 202:31-40. doi: 10.1016/j.vetimm.2018.06.007
Nagaharu, K., X. Zhang, T. Yoshida, D. Katoh, N. Hanamura, Y. Kozuka, T. Ogawa, T. Shiraishi, and K. Imanaka-Yoshida. 2011. Tenascin C induces epithelial-mesenchymal transition-like change accompanied by SRC activation and focal adhesion kinase phosphorylation in human breast cancer cells. Am. J. Pathol. 178:754-763. doi: 10.1016/j.ajpath.2010.10.015
Nakai, A., M. Kashiwagi, T. Fujiyama, K. Iwasaki, A. Hirano, H. Funato, M. Yanagisawa, T. Sakurai, and Y. Hayashi. 2024. Crucial role of TFAP2B in the nervous system for regulating NREM sleep. Mol. Brain. 17:13. doi: 10.1186/s13041-024-01084-8
Nakazawa, F., C. Alev, L. M. Jakt, and G. Sheng. 2011. Yolk sac endoderm is the major source of serum proteins and lipids and is involved in the regulation of vascular integrity in early chick development. Dev. Dyn. 240:2002-2010. doi: 10.1002/dvdy.22690
National Agricultural Statistics Service (NASS), A. S. B., United States Department of, and A. (USDA). March 21, 2022. Chickens and Eggs.
Nightingale, T., and D. Cutler. 2013. The secretion of von Willebrand factor from endothelial cells; an increasingly complicated story. J. Thromb. Haemost. 11 Suppl. 1:192-201. doi: 10.1111/jth.12225
Nimpf, J., and W. J. Schneider. 1998. The VLDL receptor: an LDL receptor relative with eight ligand binding repeats, LR8. Atherosclerosis. 141:191-202. doi: 10.1016/s0021-9150(98)00172-5
Noble, R. C., and J. H. Shand. 1985. Unsaturated fatty acid compositional changes and desaturation during the embryonic development of the chicken (Gallus domesticus). Lipids. 20:278-282. doi: 10.1007/BF02534260
O'Sullivan, S. E., and M. Kaczocha. 2020. FABP5 as a novel molecular target in prostate cancer. Drug Discov. Today. 25:2056-2061. doi: 10.1016/j.drudis.2020.09.018
Oh, Y., E. Quiroz, T. Wang, Y. Medina-Laver, S. M. Redecke, F. Dominguez, J. P. Lydon, F. J. DeMayo, and S. P. Wu. 2023. The NR2F2-HAND2 signaling axis regulates progesterone actions in the uterus at early pregnancy. Front. Endocrinol (Lausanne). 14:1229033. doi: 10.3389/fendo.2023.1229033
Ohgami, R. S., K. M. Chisholm, L. Ma, and D. A. Arber. 2014. E-Cadherin Is a Specific Marker for Erythroid Differentiation and Has Utility, in Combination With CD117 and CD34, for Enumerating Myeloblasts in Hematopoietic Neoplasms. Am. J. Clin. Pathol. 141:656-664. doi: 10.1309/Ajcp8m4qqtazpgrp
Ortega-Velazquez, R., M. Gonzalez-Rubio, M. P. Ruiz-Torres, M. L. Diez-Marques, M. C. Iglesias, M. Rodriguez-Puyol, and D. Rodriguez-Puyol. 2004. Collagen I upregulates extracellular matrix gene expression and secretion of TGF-beta 1 by cultured human mesangial cells. Am. J. Physiol. Cell Physiol. 286:C1335-1343. doi: 10.1152/ajpcell.00279.2003
Palma-Barqueros, V., L. Bury, S. Kunishima, M. L. Lozano, A. Rodriguez-Alen, N. Revilla, N. Bohdan, J. Padilla, M. P. Fernandez-Perez, M. E. de la Morena-Barrio, A. Marin-Quilez, R. Benito, M. F. Lopez-Fernandez, S. Marcellini, A. Zamora-Canovas, V. Vicente, C. Martinez, P. Gresele, J. M. Bastida, and J. Rivera. 2021. Expanding the genetic spectrum of TUBB1-related thrombocytopenia. Blood Adv. 5:5453-5467. doi: 10.1182/bloodadvances.2020004057
Pan, J., Q. Dai, T. Zhang, and C. Li. 2019. Palmitate acid promotes gastric cancer metastasis via FABP5/SP1/UCA1 pathway. Cancer Cell Int. 19:69. doi: 10.1186/s12935-019-0787-0
Pan, S., M. Wan, H. Jin, R. Ning, J. Zhang, and X. Han. 2024. LCP1 correlates with immune infiltration: a prognostic marker for triple-negative breast cancer. BMC Immunol. 25:42. doi: 10.1186/s12865-024-00635-x
Park, H. J., H. R. Jang, S. Y. Park, Y. B. Kim, H. Y. Lee, and C. S. Choi. 2020. The essential role of fructose-1,6-bisphosphatase 2 enzyme in thermal homeostasis upon cold stress. Exp. Mol. Med. 52:485-496. doi: 10.1038/s12276-020-0402-4
Peebles, E. D., L. Li, S. Miller, T. Pansky, S. Whitmarsh, M. A. Latour, and P. D. Gerard. 1999. Embryo and yolk compositional relationships in broiler hatching eggs during incubation. Poult. Sci. 78:1435-1442. doi: 10.1093/ps/78.10.1435
Peotter, J., W. Kasberg, I. Pustova, and A. Audhya. 2019. COPII-mediated trafficking at the ER/ERGIC interface. Traffic. 20:491-503. doi: 10.1111/tra.12654
Pitera, J. E., V. V. Smith, P. Thorogood, and P. J. Milla. 1999. Coordinated expression of 3' hox genes during murine embryonal gut development: an enteric Hox code. Gastroenterology. 117:1339-1351. doi: 10.1016/s0016-5085(99)70284-2
Porther, N., and M. A. Barbieri. 2015. The role of endocytic Rab GTPases in regulation of growth factor signaling and the migration and invasion of tumor cells. Small GTPases. 6:135-144. doi: 10.1080/21541248.2015.1050152
Raabe, M., L. M. Flynn, C. H. Zlot, J. S. Wong, M. M. Veniant, R. L. Hamilton, and S. G. Young. 1998. Knockout of the abetalipoproteinemia gene in mice: reduced lipoprotein secretion in heterozygotes and embryonic lethality in homozygotes. Proc. Natl. Acad. Sci. U S A. 95:8686-8691. doi: 10.1073/pnas.95.15.8686
Ren, H., Z. Xu, W. Guo, Z. Deng, and X. Yu. 2018. Rab3IP interacts with SSX2 and enhances the invasiveness of gastric cancer cells. Biochem. Biophys. Res. Commun. 503:2563-2568. doi: 10.1016/j.bbrc.2018.07.016
Roberts, D. M., A. L. Anderson, M. Hidaka, R. L. Swetenburg, C. Patterson, W. L. Stanford, and V. L. Bautch. 2004. A vascular gene trap screen defines RasGRP3 as an angiogenesis-regulated gene required for the endothelial response to phorbol esters. Mol. Cell. Biol. 24:10515-10528. doi: 10.1128/MCB.24.24.10515-10528.2004
Rousset, X., R. Shamburek, B. Vaisman, M. Amar, and A. T. Remaley. 2011. Lecithin cholesterol acyltransferase: an anti- or pro-atherogenic factor? Curr. Atheroscler Rep. 13:249-256. doi: 10.1007/s11883-011-0171-6
Rozek, L. S., T. S. Hatsukami, R. J. Richter, J. Ranchalis, K. Nakayama, L. A. McKinstry, D. A. Gortner, E. Boyko, G. D. Schellenberg, C. E. Furlong, and G. P. Jarvik. 2005. The correlation of paraoxonase (PON1) activity with lipid and lipoprotein levels differs with vascular disease status. J. Lipid Res. 46:1888-1895. doi: 10.1194/jlr.M400489-JLR200
Sane, A., E. Seidman, S. Spahis, V. Lamantia, C. Garofalo, A. Montoudis, V. Marcil, and E. Levy. 2015. New Insights In Intestinal Sar1B GTPase Regulation and Role in Cholesterol Homeostasis. J. Cell Biochem. 116:2270-2282. doi: 10.1002/jcb.25177
Sauteur, L., A. Krudewig, L. Herwig, N. Ehrenfeuchter, A. Lenard, M. Affolter, and H. G. Belting. 2014. Cdh5/VE-cadherin promotes endothelial cell interface elongation via cortical actin polymerization during angiogenic sprouting. Cell Rep. 9:504-513. doi: 10.1016/j.celrep.2014.09.024
Saxena, M., M. Hisano, M. Neutzner, M. Diepenbruck, R. Ivanek, K. Sharma, R. K. R. Kalathur, T. R. Burglin, S. Risoli, and G. Christofori. 2021. The long non-coding RNA ET-20 mediates EMT by impairing desmosomes in breast cancer cells. J. Cell Sci. 134. doi: 10.1242/jcs.258418
Schadinger, S. E., N. L. Bucher, B. M. Schreiber, and S. R. Farmer. 2005. PPARgamma2 regulates lipogenesis and lipid accumulation in steatotic hepatocytes. Am. J. Physiol. Endocrinol. Metab. 288:E1195-1205. doi: 10.1152/ajpendo.00513.2004
Sehgal, A., D. S. Donaldson, C. Pridans, K. A. Sauter, D. A. Hume, and N. A. Mabbott. 2018. The role of CSF1R-dependent macrophages in control of the intestinal stem-cell niche. Nat. Commun. 9:1272. doi: 10.1038/s41467-018-03638-6
Senbanjo, L. T., and M. A. Chellaiah. 2017. CD44: A Multifunctional Cell Surface Adhesion Receptor Is a Regulator of Progression and Metastasis of Cancer Cells. Front. Cell Dev. Biol. 5:18. doi: 10.3389/fcell.2017.00018
Seo, J., D. W. Jeong, J. W. Park, K. W. Lee, J. Fukuda, and Y. S. Chun. 2020. Fatty-acid-induced FABP5/HIF-1 reprograms lipid metabolism and enhances the proliferation of liver cancer cells. Commun. Biol. 3:638. doi: 10.1038/s42003-020-01367-5
Shand, J. H., D. W. West, R. J. McCartney, R. C. Noble, and B. K. Speake. 1993. The esterification of cholesterol in the yolk sac membrane of the chick embryo. Lipids. 28:621-625. doi: 10.1007/BF02536056
Sharma, A., J. J. W. Seow, C. A. Dutertre, R. Pai, C. Bleriot, A. Mishra, R. M. M. Wong, G. S. N. Singh, S. Sudhagar, S. Khalilnezhad, S. Erdal, H. M. Teo, A. Khalilnezhad, S. Chakarov, T. K. H. Lim, A. C. Y. Fui, A. K. W. Chieh, C. P. Chung, G. K. Bonney, B. K. Goh, J. K. Y. Chan, P. K. H. Chow, F. Ginhoux, and R. DasGupta. 2020. Onco-fetal Reprogramming of Endothelial Cells Drives Immunosuppressive Macrophages in Hepatocellular Carcinoma. Cell. 183:377-394 e321. doi: 10.1016/j.cell.2020.08.040
Shen, N., C. Li, S. Yang, Y. Ma, and H. L. Wang. 2023. Liver proteomics analysis reveals the differentiation of lipid mechanism and antioxidant enzyme activity during chicken embryonic development. Int. J. Biol. Macromol. 253:127417. doi: 10.1016/j.ijbiomac.2023.127417
Shi-Wen, X., A. Leask, and D. Abraham. 2008. Regulation and function of connective tissue growth factor/CCN2 in tissue repair, scarring and fibrosis. Cytokine Growth Factor Rev. 19:133-144. doi: 10.1016/j.cytogfr.2008.01.002
Shimojo, M. 2011. RE1-silencing transcription factor (REST) and REST-interacting LIM domain protein (RILP) affect P19CL6 differentiation. Genes Cells. 16:90-100. doi: 10.1111/j.1365-2443.2010.01471.x
Siddiqi, S., A. M. Mani, and S. A. Siddiqi. 2010. The identification of the SNARE complex required for the fusion of VLDL-transport vesicle with hepatic cis-Golgi. Biochem. J. 429:391-401. doi: 10.1042/BJ20100336
Silvestri, B., M. Mochi, M. G. Garone, and A. Rosa. 2022. Emerging Roles for the RNA-Binding Protein HuD (ELAVL4) in Nervous System Diseases. Int. J. Mol. Sci. 23. doi: 10.3390/ijms232314606
Sivapalaratnam, S., S. K. Westbury, J. C. Stephens, D. Greene, K. Downes, A. M. Kelly, C. Lentaigne, W. J. Astle, E. G. Huizinga, P. Nurden, S. Papadia, K. Peerlinck, C. J. Penkett, D. J. Perry, C. Roughley, I. Simeoni, K. Stirrups, D. P. Hart, R. C. Tait, A. D. Mumford, N. BioResource, M. A. Laffan, K. Freson, W. H. Ouwehand, S. Kunishima, and E. Turro. 2017. Rare variants in GP1BB are responsible for autosomal dominant macrothrombocytopenia. Blood. 129:520-524. doi: 10.1182/blood-2016-08-732248
Smathers, R. L., and D. R. Petersen. 2011. The human fatty acid-binding protein family: evolutionary divergences and functions. Hum. Genomics. 5:170-191. doi: 10.1186/1479-7364-5-3-170
Smyth, P., J. Sasiwachirangkul, R. Williams, and C. J. Scott. 2022. Cathepsin S (CTSS) activity in health and disease - A treasure trove of untapped clinical potential. Mol. Aspects Med. 88:101106. doi: 10.1016/j.mam.2022.101106
Snijders Blok, L., T. Kleefstra, H. Venselaar, S. Maas, H. Y. Kroes, A. M. A. Lachmeijer, K. L. I. van Gassen, H. V. Firth, S. Tomkins, S. Bodek, D. D. D. Study, K. Ounap, M. H. Wojcik, C. Cunniff, K. Bergstrom, Z. Powis, S. Tang, D. N. Shinde, C. Au, A. D. Iglesias, K. Izumi, J. Leonard, A. Abou Tayoun, S. W. Baker, M. Tartaglia, M. Niceta, M. L. Dentici, N. Okamoto, N. Miyake, N. Matsumoto, A. Vitobello, L. Faivre, C. Philippe, C. Gilissen, L. Wiel, R. Pfundt, P. Deriziotis, H. G. Brunner, and S. E. Fisher. 2019. De Novo Variants Disturbing the Transactivation Capacity of POU3F3 Cause a Characteristic Neurodevelopmental Disorder. Am. J. Hum. Genet. 105:403-412. doi: 10.1016/j.ajhg.2019.06.007
Speake, B. K., and E. A. Deans. 2004. Biosynthesis of oleic, arachidonic and docosahexaenoic acids from their C18 precursors in the yolk sac membrane of the avian embryo. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 138:407-414. doi: 10.1016/j.cbpc.2004.05.006
Speake, B. K., A. M. Murray, and R. C. Noble. 1998. Transport and transformations of yolk lipids during development of the avian embryo. Prog. Lipid Res. 37:1-32. doi: 10.1016/s0163-7827(97)00012-x
Stache, C., A. Holsken, R. Fahlbusch, J. Flitsch, S. M. Schlaffer, M. Buchfelder, and R. Buslei. 2014. Tight junction protein claudin-1 is differentially expressed in craniopharyngioma subtypes and indicates invasive tumor growth. Neuro. Oncol. 16:256-264. doi: 10.1093/neuonc/not195
Sun, C., K. Zhang, C. Ni, J. Wan, X. Duan, X. Lou, X. Yao, X. Li, M. Wang, Z. Gu, P. Yang, Z. Li, and Z. Qin. 2023a. Transgelin promotes lung cancer progression via activation of cancer-associated fibroblasts with enhanced IL-6 release. Oncogenesis. 12:18. doi: 10.1038/s41389-023-00463-5
Sun, Y., H. Zhang, X. Zhang, W. Wang, Y. Chen, Z. Cai, Q. Wang, J. Wang, and Y. Shi. 2023b. Promotion of astrocyte-neuron glutamate-glutamine shuttle by SCFA contributes to the alleviation of Alzheimer's disease. Redox. Biol. 62:102690. doi: 10.1016/j.redox.2023.102690
Terasawa, Y., S. J. Cases, J. S. Wong, H. Jamil, S. Jothi, M. G. Traber, L. Packer, D. A. Gordon, R. L. Hamilton, and R. V. Farese, Jr. 1999. Apolipoprotein B-related gene expression and ultrastructural characteristics of lipoprotein secretion in mouse yolk sac during embryonic development. J. Lipid Res. 40:1967-1977.
Tiwari, S., S. Siddiqi, O. Zhelyabovska, and S. A. Siddiqi. 2016. Silencing of Small Valosin-containing Protein-interacting Protein (SVIP) Reduces Very Low Density Lipoprotein (VLDL) Secretion from Rat Hepatocytes by Disrupting Its Endoplasmic Reticulum (ER)-to-Golgi Trafficking. J. Biol. Chem. 291:12514-12526. doi: 10.1074/jbc.M115.705269
Tung, C. T., H. J. Lin, C. W. Lin, H. J. Mersmann, and S. T. Ding. 2021. The role of dynamin in absorbing lipids into endodermal epithelial cells of yolk sac membranes during embryonic development in Japanese quail. Poult. Sci. 100:101470. doi: 10.1016/j.psj.2021.101470
Ung, D. C., N. Pietrancosta, E. B. Badillo, B. Raux, D. Tapken, A. Zlatanovic, A. Doridant, B. Pode-Shakked, A. Raas-Rothschild, O. Elpeleg, B. Abu-Libdeh, N. Hamed, M. A. Papon, S. Marouillat, R. A. Thepault, G. Stevanin, J. Elegheert, M. Letellier, M. Hollmann, B. Lambolez, L. Tricoire, A. Toutain, R. Hepp, and F. Laumonnier. 2024. GRID1/GluD1 homozygous variants linked to intellectual disability and spastic paraplegia impair mGlu1/5 receptor signaling and excitatory synapses. Mol. Psychiatry. 29:1205-1215. doi: 10.1038/s41380-024-02469-w
Usman, S., N. H. Waseem, T. K. N. Nguyen, S. Mohsin, A. Jamal, M. T. Teh, and A. Waseem. 2021. Vimentin Is at the Heart of Epithelial Mesenchymal Transition (EMT) Mediated Metastasis. Cancers (Basel). 13. doi: 10.3390/cancers13194985
van der Zwaag, B., A. J. Hellemons, W. P. Leenders, J. P. Burbach, H. G. Brunner, G. W. Padberg, and H. Van Bokhoven. 2002. PLEXIN-D1, a novel plexin family member, is expressed in vascular endothelium and the central nervous system during mouse embryogenesis. Dev. Dyn. 225:336-343. doi: 10.1002/dvdy.10159
Verrecchia, F., and A. Mauviel. 2002. Transforming growth factor-β signaling through the Smad pathway:: Role in extracellular matrix gene expression and regulation. J. Invest. Dermatol. 118:211-215. doi: DOI 10.1046/j.1523-1747.2002.01641.x
Wallace, S. E., E. S. Regalado, L. Gong, A. L. Janda, D. C. Guo, C. F. Russo, R. J. Kulmacz, N. Hanna, G. Jondeau, C. Boileau, P. Arnaud, K. Lee, S. M. Leal, M. Hannuksela, B. Carlberg, T. Johnston, C. Antolik, E. M. Hostetler, R. Colombo, and D. M. Milewicz. 2019. MYLK pathogenic variants aortic disease presentation, pregnancy risk, and characterization of pathogenic missense variants. Genet. Med. 21:144-151. doi: 10.1038/s41436-018-0038-0
Wang, S. H., H. J. Lin, Y. Y. Lin, Y. J. Chen, Y. H. Pan, C. T. Tung, H. J. Mersmann, and S. T. Ding. 2017. Embryonic cholesterol esterification is regulated by a cyclic AMP-dependent pathway in yolk sac membrane-derived endodermal epithelial cells. PLoS. One. 12:e0187560. doi: 10.1371/journal.pone.0187560
Wang, X., R. Liu, S. Li, W. Xia, H. Guo, W. Yao, X. Liang, Y. Lu, and H. Zhang. 2023. The roles, molecular interactions, and therapeutic value of CDK16 in human cancers. Biomed. Pharmacother. 164:114929. doi: 10.1016/j.biopha.2023.114929
Wang, Y., S. S. Welc, M. Wehling-Henricks, Y. Kong, C. Thomas, E. Montecino-Rodriguez, K. Dorshkind, and J. G. Tidball. 2022. Myeloid cell-specific mutation of Spi1 selectively reduces M2-biased macrophage numbers in skeletal muscle, reduces age-related muscle fibrosis and prevents sarcopenia. Aging Cell. 21:e13690. doi: 10.1111/acel.13690
Weissflog, L., C. J. Scholz, C. P. Jacob, T. T. Nguyen, K. Zamzow, S. Gross-Lesch, T. J. Renner, M. Romanos, D. Rujescu, S. Walitza, S. Kneitz, K. P. Lesch, and A. Reif. 2013. KCNIP4 as a candidate gene for personality disorders and adult ADHD. Eur. Neuropsychopharmacol. 23:436-447. doi: 10.1016/j.euroneuro.2012.07.017
Wiedmann, L., F. De Angelis Rigotti, N. Vaquero-Siguero, E. Donato, E. Espinet, I. Moll, E. Alsina-Sanchis, H. Bohnenberger, E. Fernandez-Florido, R. Mulfarth, M. Vacca, J. Gerwing, L. C. Conradi, P. Strobel, A. Trumpp, C. Mogler, A. Fischer, and J. Rodriguez-Vita. 2023. HAPLN1 potentiates peritoneal metastasis in pancreatic cancer. Nat. Commun. 14:2353. doi: 10.1038/s41467-023-38064-w
Wong, E. A., and Z. Uni. 2021. Centennial Review: The chicken yolk sac is a multifunctional organ. Poult. Sci. 100:100821. doi: 10.1016/j.psj.2020.11.004
Wu, P., C. S. Ng, J. Yan, Y. C. Lai, C. K. Chen, Y. T. Lai, S. M. Wu, J. J. Chen, W. Luo, R. B. Widelitz, W. H. Li, and C. M. Chuong. 2015. Topographical mapping of alpha- and beta-keratins on developing chicken skin integuments: Functional interaction and evolutionary perspectives. Proc. Natl. Acad. Sci. U S A. 112:E6770-6779. doi: 10.1073/pnas.1520566112
Wu, T., J. Tian, R. G. Cutler, R. S. Telljohann, D. A. Bernlohr, M. P. Mattson, and J. T. Handa. 2010. Knockdown of FABP5 mRNA decreases cellular cholesterol levels and results in decreased apoB100 secretion and triglyceride accumulation in ARPE-19 cells. Lab Invest. 90:963-965. doi: 10.1038/labinvest.2010.87
Xiao, N., Y. Zhao, Y. Yao, N. Wu, M. Xu, H. Du, and Y. Tu. 2020. Biological Activities of Egg Yolk Lipids: A Review. J. Agric. Food Chem. 68:1948-1957. doi: 10.1021/acs.jafc.9b06616
Xu, K., J. Y. Qiao, B. W. Zhao, M. Z. Dong, W. L. Lei, Y. Y. Li, Z. Ju, H. Schatten, Z. B. Wang, K. Liu, and Q. Y. Sun. 2023. Maternal SMC2 is essential for embryonic development via participating chromosome condensation in mice. J. Cell Physiol. 238:2535-2545. doi: 10.1002/jcp.31102
Xu, L., W. Yu, H. Xiao, and K. Lin. 2021. BIRC5 is a prognostic biomarker associated with tumor immune cell infiltration. Sci. Rep. 11:390. doi: 10.1038/s41598-020-79736-7
Xu, Y., Q. Zhang, L. Tan, X. Xie, and Y. Zhao. 2019. The characteristics and biological significance of NPC2: Mutation and disease. Mutat. Res. Rev. Mutat. Res. 782:108284. doi: 10.1016/j.mrrev.2019.108284
Yadgary, L., O. Kedar, O. Adepeju, and Z. Uni. 2013. Changes in yolk sac membrane absorptive area and fat digestion during chick embryonic development. Poult. Sci. 92:1634-1640. doi: 10.3382/ps.2012-02886
Yadgary, L., and E. A. Wong. 2014. Temporal transcriptome analysis of the chicken embryo yolk sac. BMC Genomics. 15:690. doi: 10.1186/1471-2164-15-690
Yang, W., C. Qiu, N. Biswas, J. Jin, S. C. Watkins, R. C. Montelaro, C. B. Coyne, and T. Wang. 2008. Correlation of the tight junction-like distribution of Claudin-1 to the cellular tropism of hepatitis C virus. J. Biol. Chem. 283:8643-8653. doi: 10.1074/jbc.M709824200
Yang, Y., Z. Lin, Q. Lin, W. Bei, and J. Guo. 2022. Pathological and therapeutic roles of bioactive peptide trefoil factor 3 in diverse diseases: recent progress and perspective. Cell Death Dis. 13:62. doi: 10.1038/s41419-022-04504-6
Yazaki, M., S. Mitsuhashi, T. Tokuda, F. Kametani, Y. I. Takei, J. Koyama, A. Kawamorita, H. Kanno, and S. I. Ikeda. 2007. Progressive wild-type transthyretin deposition after liver transplantation preferentially occurs onto myocardium in FAP patients. Am. J. Transplant. 7:235-242. doi: 10.1111/j.1600-6143.2006.01585.x
Yokoi, T. 2010. Troglitazone. Handb Exp Pharmacol (196):419-435. doi: 10.1007/978-3-642-00663-0_14
Zalc, A., R. Rattenbach, F. Aurade, B. Cadot, and F. Relaix. 2015. Pax3 and Pax7 play essential safeguard functions against environmental stress-induced birth defects. Dev. Cell. 33:56-66. doi: 10.1016/j.devcel.2015.02.006
Zhang, L., C. Zhang, Z. Xing, C. Lou, J. Fang, Z. Wang, M. Li, H. He, and H. Bai. 2022a. Fibronectin 1 derived from tumor-associated macrophages and fibroblasts promotes metastasis through the JUN pathway in hepatocellular carcinoma. Int. Immunopharmacol. 113:109420. doi: 10.1016/j.intimp.2022.109420
Zhang, M., R. Xiang, C. Glorieux, and P. Huang. 2022b. PLA2G2A Phospholipase Promotes Fatty Acid Synthesis and Energy Metabolism in Pancreatic Cancer Cells with K-ras Mutation. Int. J. Mol. Sci. 23. doi: 10.3390/ijms231911721
Zhou, H., M. A. Blevins, J. Y. Hsu, D. Kong, M. D. Galbraith, A. Goodspeed, R. Culp-Hill, M. U. J. Oliphant, D. Ramirez, L. Zhang, J. Trinidad-Pineiro, L. Mathews Griner, R. King, E. Barnaeva, X. Hu, N. T. Southall, M. Ferrer, D. L. Gustafson, D. P. Regan, A. D'Alessandro, J. C. Costello, S. Patnaik, J. Marugan, R. Zhao, and H. L. Ford. 2020a. Identification of a Small-Molecule Inhibitor That Disrupts the SIX1/EYA2 Complex, EMT, and Metastasis. Cancer Res. 80:2689-2702. doi: 10.1158/0008-5472.CAN-20-0435
Zhou, L., C. Li, L. Gao, and A. Wang. 2015. High-density lipoprotein synthesis and metabolism (Review). Mol. Med. Rep. 12:4015-4021. doi: 10.3892/mmr.2015.3930
Zhou, Y., Y. Chi, A. Bhandari, E. Xia, P. C. Thakur, J. Qu, O. Wang, and X. Zhang. 2020b. Downregulated CDH3 decreases proliferation, migration, and invasion in thyroid cancer. Am. J. Transl. Res. 12:3057-3067.
Zhu, X., L. Zhang, D. Feng, L. Jiang, P. Sun, C. Zhao, X. Zhang, and J. Xu. 2023. A LY6E-PHB1-TRIM21 assembly degrades CD14 protein to mitigate LPS-induced inflammatory response. iScience. 26:106808. doi: 10.1016/j.isci.2023.106808
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99564-
dc.description.abstract禽胚會依賴卵黃囊膜(Yolk sac membrane, YSM)吸收卵黃中的營養分,其中內胚層上皮細胞(Endodermal epithelial cells, EECs)為YSM直接接觸卵黃的細胞,負責吸收卵黃中營養分並運送至血液循環系統,提供發育中禽胚所需。過去的研究發現,EECs產出極低密度脂蛋白(Very low density lipoprotein, VLDL)的膽固醇酯(cholesteryl ester, CE)含量遠高於卵黃中VLDL因此推測膽固醇會在EECs中進行酯化,並重新包裝運送出EECs。然而,因為在EECs中檢測出載脂蛋白A1(Apolipoprotein A1, APOA1)的高表現量,我們認為EECs中高密度脂蛋白(High density lipoprotein, HDL)的生成和膽固醇酯的運輸至關重要。然而,目前文獻中尚未有EECs在HDL代謝中的直接研究。基於EECs的功能特性及其與雞胚肝臟的相似性,推測EECs可能如雞胚肝臟細胞透過內質網分泌途徑生成新生HDL,以此來運送胚胎發育所需的部分膽固醇。先前的研究證實Fatty acid binding protein 5 (FABP5)可增加VLDL出芽(budding)及脂肪酸生成,但FABP5在家禽EECs中的存在及其對VLDL和HDL代謝的影響尚未明確。因此本研究目的為釐清EECs中的脂質代謝模式,並通過增加FABP5的表現來調控脂蛋白的運輸效率以增加雞胚的脂質利用效率。
本研究分成兩階段,為驗證EECs中脂質的代謝模式,首先利用scRNA-seq分析孵化第4天(E4)及孵化第7天(E7)之單顆細胞,以找到EECs中影響脂蛋白運輸之關鍵機制。單細胞分析研究中,典型EECs群體(Cluster 2)中APOA1表現量排名第3,而VLDL的標誌基因APOB則僅排名63,顯示EECs可能偏向於產生更多APOA1相關的脂蛋白來運送脂質。分析孵化第18天之雞胚心臟及卵黃囊靜脈之血漿,發現其中卵黃囊膜靜脈血漿中HDL和LDL/VLDL的膽固醇濃度均顯著高於心臟血漿 (p < 0.05),而心臟 (78%)及卵黃囊靜脈 (69%)血漿中高比例的HDL濃度說明在雞胚孵化後期,HDL可能取代VLDL的功能,成為主要的膽固醇運輸載體。Cluster 2中高度表現AFP、ALDOB和TTR等與肝臟相關基因,同時也高度表現CDH17和EPCAM等腸道上皮之標誌基因,說明EECs同時具有肝臟與腸道的特性,展現了一種獨特的雙重功能性。為驗證調控FABP5表現是否影響脂蛋白運輸效率,我們利用EECs初代培養系統通過添加100 μM棕櫚酸、1500 μM油酸、30 nM Troglitazone和1400 μM離胺酸,探討營養分的添加對脂蛋白相關基因及三酸甘油酯(Triglycerides, TG)、總膽固醇(Total cholesterol, TC)和HDL膽固醇(HDLC)含量。基因表現分析顯示,在EECs中FABP5上調主要促進VLDL合成與運輸。Lysine處理會增加VLDL和HDL運輸並降低EECs中TC和HDLC,而TGZ處理會增加TG含量但可能限制VLDL組裝導致細胞中TG的累積。此外,FABP5啟動子截切分析顯示,移除PPARγ (-767 bp 至 -621 bp)和SREBF1(-621 bp 至 -373 bp)片段後,冷光表現呈上升趨勢,並發現可能的RE-1 silencing transcription factor (REST) 結合位點,暗示REST可能參與調控FABP5表達,此調控機制需進一步驗證。
綜上所述,EECs主要依賴HDL運輸脂質,而FABP5在EECs中的作用更側重於VLDL代謝,對HDL影響較小。本研究為雞胚脂質代謝提供了新見解,支持以HDL為主的運輸模式,未來可通過超高速離心驗證EECs中脂蛋白成分並探討如何調控這些脂質運輸蛋白的機制。
zh_TW
dc.description.abstractAvian embryo development relies on the yolk sac membrane (YSM) for nutrient absorption from the yolk, where endodermal epithelial cells (EECs) are located on the surface serve as the primary cells to for direct yolk access. These cells are responsible for absorbing yolk nutrients and transporting them into the circulation to support embryonic development. Previous studies have shown that EECs produce very-low-density lipoprotein (VLDL) with significantly higher cholesteryl ester (CE) content compared to yolk VLDL, suggesting that VLDL undergoes re-esterification and repackaging within EECs for lipid transport. However, the high expression of APOA1 in EECs, indicates that high-density lipoprotein (HDL) synthesis may be involved in cholesteryl ester transport. However, there are limited direct studies on HDL metabolism in EECs. Given the functional similarities between EECs and embryonic chick hepatocytes, it is hypothesized that EECs may generate nascent HDL through the endoplasmic reticulum secretory pathway, facilitating the transport of cholesterol essential for embryonic development. Previous studies have demonstrated that FABP5 enhances VLDL budding and fatty acid production, yet its presence and impact on VLDL and HDL metabolism in avian EECs remain unclear. Therefore, this study aims to investigate the lipoprotein profile in EECs and determine whether modulating FABP5 expression can enhance lipoprotein transport efficiency to improve lipid utilization in chick embryos.
The study is divided into two parts. Initially, to validate the lipid metabolism patterns in EECs, single-cell RNA sequencing (scRNA-seq) was employed to isolate single cells from embryonic day 4 (E4) and day 7 (E7), aiming to identify key mechanisms influencing lipoprotein transport. In the single-cell analysis, the typical EEC population (Cluster 2) exhibited APOA1 expression ranked third, while the VLDL marker gene APOB ranked only 63rd, suggesting that EECs may preferentially produce APOA1-associated lipoproteins for lipid transport. Subsequent analysis with the plasma from the embryonic heart and yolk sac vein at day 18 of incubation revealed significantly higher cholesterol concentrations of HDL and LDL/VLDL as compared to those from heart. Moreover, the high proportions of HDL in the plasma from heart (78%) and yolk sac vein (69%)indicate that HDL may surpass VLDL as the primary vehicle for lipid transport during late embryonic development. Cluster 2 also highly expressed liver-related genes such as AFP, ALDOB, and TTR, alongside intestinal epithelial markers CDH17 and EPCAM, suggesting that EECs possess dual characteristics of hepatocytes and intestinal epithelium without a clear bias toward either, reflecting a unique bifunctional role.
To assess whether modulating FABP5 expression affects lipoprotein transport efficiency, the primary EEC culture system was utilized. Cells were treated with 100 μM palmitic acid, 1500 μM oleic acid, 30 nM troglitazone, and 1400 μM lysine to explore the impact of nutrient supplementation on lipoprotein-related gene expression and levels of triglycerides (TG), total cholesterol (TC), and HDL cholesterol (HDLC)in EECs. Gene expression analysis revealed that upregulation of FABP5 in EECs primarily enhances VLDL synthesis and transport. Lysine treatment increased VLDL and HDL transport while reducing TC and HDLC levels in EECs, whereas troglitazone treatment elevated TG content but potentially restricted VLDL assembly, leading to TG accumulation within cells. Additionally, FABP5 promoter deletion assays revealed reduced luciferase expression upon removal of PPARγ and SREBF1 regions, and identified a potential RE-1 silencing transcription factor (REST) binding site, suggesting REST may regulate FABP5 expression, though further validations are required.
Collectively, these findings indicate that EECs primarily utilize HDL for cholesterol transport, while FABP5 in EECs is primarily associated with VLDL metabolism, with a limited influence on HDL. The study provides new insights into chick embryo lipid metabolism, supporting HDL as the primary vehicle for lipid delivery. In the future, ultracentrifugation can be used to validate the lipoprotein components in EECs and to investigate the mechanisms regulating these lipid transport proteins.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-16T16:07:57Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-16T16:07:57Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
中文摘要 iii
Abstract v
目次 viii
圖次 xi
表次 xiii
Figure Content xiv
Table Content xvi
壹、文獻探討 1
一、 家禽胚之營養傳遞 1
二、 卵黃囊及卵黃囊膜的組成 2
三、 VLDL在EECS中之運輸 4
四、 HDL在EECS中的潛在運輸模式 6
五、 FABP5與PPARΓ在脂質代謝中的作用及其調控機制 8
六、 FABP5在EECS脂質運輸中的潛在角色 10
貳、試驗動機及設計 13
參、材料與方法 15
試驗一:雞胚發育過程中脂肪生成相關基因表現量 15
一、 受精蛋孵化 15
二、 雞胚卵黃囊 (YSM) 採集及RNA萃取 15
四、 即時定量PCR(real-time PCR)分析 16
五、 統計及分析 17
試驗二:利用單細胞定序技術比較孵化第4天和孵化第7天之EECS以解析脂蛋白運輸關鍵機制 18
一、 樣本備製 18
二、 分析環境與資料前處理 19
三、 品質管控(Quality Control, QC) 19
四、 資料正規化(Normalization)與特徵基因選擇 20
五、 主成分(PCA)與非線性降維(UMAP)分析 21
六、 GO與KEGG代謝途徑富集分析 21
七、 血漿中之脂蛋白濃度 22
試驗三:通過營養份調控內胚層上皮細胞(EECS)中FABP5表現與脂蛋白分泌 24
一、 受精蛋孵化 24
二、 建立雞隻EECs初代培養系統 24
三、 細胞存活率試驗 24
四、 EECs培養及基因表現量分析 25
五、 統計及分析 27
試驗四:利用截切啟動子序列分析探討PPARΓ是否調控FABP5表現之機制 28
一、 FABP5 promoter之預測 28
二、 選殖預測之FABP5調控區域 28
三、 序列長度連續截切冷光載體構築 31
四、 冷光分析定量調控區域之重要性 34
五、 統計及分析 35
參、結果 36
試驗一:雞胚發育過程中脂肪生成相關基因表現量 36
一、 LR8基因表現量變化 36
二、 DNM1基因表現量變化 36
三、 SOAT1基因表現量變化 36
四、 CIDE基因表現量變化 37
五、 ApoB基因表現量變化 37
六、 MTTP基因表現量變化 37
七、 FABP5基因表現量變化 38
八、 SAR1B基因表現量變化 38
九、 APOA1基因表現量變化 38
十、 ABCA1基因表現量變化 39
十一、 LCAT基因表現量變化 39
試驗二:利用單細胞定序技術比較孵化第4天和孵化第7天之EECS以分析VLDL運輸關鍵機制 51
一、 細胞分群 51
二、 細胞群分類(Cell type) 51
三、 E4和E7基因表現變化 52
四、 Cluster 2 KEGG路徑及GO路徑圖 52
五、 血漿中之脂蛋白濃度 53
試驗三:通過營養分調控內胚層上皮細胞(EECS)中FABP5表現與脂蛋白分泌 69
一、 細胞存活率測試及處理劑量 69
二、 營養分添加對EECs影響 70
三、 營養分添加對EECs中三酸甘油脂、總膽固醇及HDL膽固醇之影響 71
試驗四:利用啟動子序列刪除試驗探討PPARΓ是否調控FABP5表現之機制 79
一、 轉錄因子結合位之預測 79
二、 序列截切之FABP5 promoter冷光質體構築 79
三、 不同處理中序列截切啟動子之冷光表現 79
肆、討論 83
1. 探討FABP5在雞胚發育晚期YSM中脂質代謝及脂蛋白重組 83
2. 定義YSM中細胞群種類 85
3. E7細胞組成與EECS功能的分析 91
4. EECS在雞胚發育早期的腸道與肝臟功能探討 93
5. LCAT可能潛在的作用 94
6. OA、TGZ、LYSINE及PA處理對FABP5表現與脂質運輸的影響 95
(1) FABP5與VLDL合成及運輸 95
(2) FABP5與EECs中的HDL代謝 96
7. FABP5 啟動子截切之冷光表現分析 96
伍、結論 98
陸、參考文獻 99
柒、附錄 117
-
dc.language.isozh_TW-
dc.subject雞胚zh_TW
dc.subject單細胞定序zh_TW
dc.subject脂蛋白zh_TW
dc.subject內胚層上皮細胞zh_TW
dc.subjectscRNA-Seqen
dc.subjectlipoproteinen
dc.subjectchicken embryoen
dc.subjectEECsen
dc.title脂蛋白相關基因在雞胚發育期間內胚層上皮細胞中的作用zh_TW
dc.titleThe role of lipoprotein-related genes in endodermal epithelial cells during chicken embryonic developmenten
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳洵一;林原佑;游玉祥zh_TW
dc.contributor.oralexamcommitteeShuen-Ei Chen;Yuan-Yu Lin;Yu-Hsiang Yuen
dc.subject.keyword雞胚,內胚層上皮細胞,脂蛋白,單細胞定序,zh_TW
dc.subject.keywordchicken embryo,EECs,lipoprotein,scRNA-Seq,en
dc.relation.page167-
dc.identifier.doi10.6342/NTU202501926-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-20-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept動物科學技術學系-
dc.date.embargo-lift2030-07-09-
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2030-07-09
8.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved