Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99560
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor姚宗珍zh_TW
dc.contributor.advisorChung-Chen Jane Yaoen
dc.contributor.author蕭靖東zh_TW
dc.contributor.authorDouglas Hsiaoen
dc.date.accessioned2025-09-16T16:07:13Z-
dc.date.available2025-09-17-
dc.date.copyright2025-09-16-
dc.date.issued2025-
dc.date.submitted2025-07-26-
dc.identifier.citation1.      Gawron, K., et al., Gingival fibromatosis: clinical, molecular and therapeutic issues. Orphanet J Rare Dis, 2016. 11: p. 9.
2.      Coletta, R.D. and E. Graner, Hereditary gingival fibromatosis: a systematic review. J Periodontol, 2006. 77(5): p. 753-64.
3.      Zhu, Y., et al., A novel locus for maternally inherited human gingival fibromatosis at chromosome 11p15. Hum Genet, 2007. 121(1): p. 113-23.
4.      Ye, X., et al., A novel locus for autosomal dominant hereditary gingival fibromatosis, GINGF3, maps to chromosome 2p22.3-p23.3. Clin Genet, 2005. 68(3): p. 239-44.
5.      Majumder, P., et al., The autosomal recessive inheritance of hereditary gingival fibromatosis. Case Rep Dent, 2013. 2013: p. 432864.
6.      Hart, T.C., et al., Genetic linkage of hereditary gingival fibromatosis to chromosome 2p21. Am J Hum Genet, 1998. 62(4): p. 876-83.
7.      Baptista, I.P., Hereditary gingival fibromatosis: a case report. Journal of Clinical Periodontology, 2002. 29(9): p. 871-874.
8.      Häkkinen L, L.H., Fournier BPJ, Cell biology of gingival wound healing. Periodontology 2000, 2007. 43(1): p. 218-229.
9.      Ye, X., et al., Further evidence of genetic heterogeneity segregating with hereditary gingival fibromatosis. J Clin Periodontol, 2009. 36(8): p. 627-33.
10.     Xiao, S., et al., A new locus for hereditary gingival fibromatosis (GINGF2) maps to 5q13-q22. Genomics, 2001. 74(2): p. 180-5.
11.     Bayram, Y., et al., REST Final-Exon-Truncating Mutations Cause Hereditary Gingival Fibromatosis. Am J Hum Genet, 2017. 101(1): p. 149-156.
12.     Otto, S.J., et al., A new binding motif for the transcriptional repressor REST uncovers large gene networks devoted to neuronal functions. J Neurosci, 2007. 27(25): p. 6729-39.
13.     LJ, C., Hereditary hyperplasia of the gums. Journal of Heredity, 1924. 15(11): p. 405-412.
14.     Hwang, J.Y. and R.S. Zukin, REST, a master transcriptional regulator in neurodegenerative disease. Curr Opin Neurobiol, 2018. 48: p. 193-200.
15.     Chong JA, T.-R.J., Kim S, Toledo-Aral JJ, Zheng Y, Boutros MC, Altshuller YM, Frohman MA, Kraner SD, Mandel G, REST: A mammalian silencer protein that restricts sodium channel gene expression to neurons. Science, 1995. 267(5207): p. 1398–1403.
16.     Westbrook, T.F., et al., A genetic screen for candidate tumor suppressors identifies REST. Cell, 2005. 121(6): p. 837-48.
17.     Aoki, H., Novel Rest functions revealed by conditional gene ablation. Med Mol Morphol, 2018. 51(3): p. 129-138.
18.     Johnson, R., et al., REST regulates distinct transcriptional networks in embryonic and neural stem cells. PLoS Biol, 2008. 6(10): p. e256.
19.     Maksour, S., L. Ooi, and M. Dottori, More than a Corepressor: The Role of CoREST Proteins in Neurodevelopment. eNeuro, 2020. 7(2).
20.     Charbord, J., et al., High throughput screening for inhibitors of REST in neural derivatives of human embryonic stem cells reveals a chemical compound that promotes expression of neuronal genes. Stem Cells, 2013. 31(9): p. 1816-28.
21.     J.T. Chen, C.H.L., H.W. Huang, Y.P. Wang, P.C. Kao, T.P. Yang, S.K. Wang, Novel REST Truncation Mutations Causing Hereditary Gingival Fibromatosis. Journal of Dental Research, 2021. 100(8): p. 868–874.
22.     Gawron, K., et al., TIMP-1 association with collagen type I overproduction in hereditary gingival fibromatosis. Oral Dis, 2018. 24(8): p. 1581-1590.
23.     Cheong, A., et al., Downregulated REST transcription factor is a switch enabling critical potassium channel expression and cell proliferation. Mol Cell, 2005. 20(1): p. 45-52.
24.     Sherf BA, N.S., Hannah RR, Wood KV, Dual-Luciferase™ Reporter Assay: An Advanced Co-Reporter Technology Integrating Firefly and Renilla Luciferase Assays. 1996: Promega Notes. p. 2-7.
25.     BPS Bioscience, Dual Luciferase (Firefly-Renilla) Assay System. 2023.
26.     Richards, S., et al., Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med, 2015. 17(5): p. 405-24.
27.     Brogna, S. and J. Wen, Nonsense-mediated mRNA decay (NMD) mechanisms. Nat Struct Mol Biol, 2009. 16(2): p. 107-13.
28.     Samocha, K.E., et al., A framework for the interpretation of de novo mutation in human disease. Nat Genet, 2014. 46(9): p. 944-50.
29.     Mohiuddin, M., R.F. Kooy, and C.E. Pearson, De novo mutations, genetic mosaicism and human disease. Front Genet, 2022. 13: p. 983668.
30.     Rahikkala, E., et al., Pathogenic REST variant causing Jones syndrome and a review of the literature. Eur J Hum Genet, 2023. 31(4): p. 469-473.
31.     Gill R, G.L., Mason D, A heritable form of gingival fibromatosis: a clinical and histological study. Nature, 1988. 336(6196): p. 70–73.
32.     Schmidt, S.F., et al., Cofactor squelching: Artifact or fact? Bioessays, 2016. 38(7): p. 618-26.
33.     Straka, M.D., Ľuboš; Bzdúch, Vladimír; Polák, Štefan; Varga, Ivan, The significance of electron microscopic examination of gingiva in cases of Hunter syndrome and hereditary gingival fibromatosis. Neuroendocrinology Letters, 2016. 37(5): p. 353–360.
34.     El-Menoufy, H., L.A. Aziz Aly, and A. Ragae, Collagen turnover induced by cellular connective tissue cytokines of drug induced gingival overgrowth and hereditary gingival fibromatosis (Histological and immunohistochemical comparative study). Future Dental Journal, 2016. 2(1): p. 28-36.
35.     Domanegg, K., J.P. Sleeman, and A. Schmaus, CEMIP, a Promising Biomarker That Promotes the Progression and Metastasis of Colorectal and Other Types of Cancer. Cancers (Basel), 2022. 14(20).
36.     Zhang, D., et al., Down-regulation of KIAA1199/CEMIP by miR-216a suppresses tumor invasion and metastasis in colorectal cancer. Int J Cancer, 2017. 140(10): p. 2298-2309.
37.     Petrescu, A.D. and S. DeMorrow, Interleukin-24 therapy- a potential new strategy against liver fibrosis. EBioMedicine, 2021. 65: p. 103245.
38.     Stolf CS, S.C., Alvarenga CAPG, Vieira JR, Araújo CF, Monteiro MF, Paz HES, Santamaria MP, Ruiz KGS, Casarin RCV, Immune response characterization of primary gingival fibroblasts from Grade C periodontitis patients. Journal of Periodontology, 2023. 94(3): p. 429–438.
39.     Liang, J., et al., Adenovirus-mediated human interleukin 24 (MDA-7/IL-24) selectively suppresses proliferation and induces apoptosis in keloid fibroblasts. Ann Plast Surg, 2011. 66(6): p. 660-6.
40.     Kunze, M., et al., Efficient gene transfer to periodontal ligament cells and human gingival fibroblasts by adeno-associated virus vectors. J Dent, 2009. 37(7): p. 502-8.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99560-
dc.description.abstract遺傳性牙齦纖維瘤(Hereditary Gingival Fibromatosis, HGF)為一罕見常染色體顯性遺傳疾病,臨床表現為牙齦組織對稱性增生,可導致齒列擁擠、延遲萌發與口腔功能障礙。近年研究指出 RE1-Silencing Transcription factor(REST)末端外顯子附近的截短突變與 HGF 具關聯性,但其分子致病機轉仍未明確。本研究針對一名父母均無此疾病之HGF 病患,鑑定出一新穎 frameshift 突變(c.2280delT, p.V761Lfs*3),並透過功能實驗與細胞模型加以驗證。
在 HEK293T 細胞中進行冷光素酶報導基因分析(luciferase reporter assay)顯示,此一突變型 REST蛋白(REST-Mu)喪失轉錄抑制能力,並於共表現條件下抑制 REST-WT 蛋白功能,呈dominant-negative型態。為驗證其於生理相關細胞中的功能影響,本研究建立 FLAG-REST-WT 與 REST-Mu 表現質體      ,以電穿孔法轉染人類初代牙齦纖維母細胞(primary human gingival fibroblasts, hGFs),並應用 Parse Biosciences 單細胞 RNA 定序技術(scRNA-seq)分析 FLAG-REST 野生型(H-WT)、截短突變型(H-Mu)與空載體對照(H-Mock)三組條件。結果顯示 H-Mu 與 H-WT 組細胞中 IL24、STC1、CEMIP、NEAT1 等參與細胞修復與基質重塑之基因顯著下調,且 pathway enrichment 分析指向Apelin signaling、FGF signaling、integrin signaling 與 cytoskeletal remodeling 等路徑。為進一步提升轉染效率,本研究亦成功優化電穿孔與 G418 篩選條件,在不使用病毒載體的情況下於初代 hGFs 中實現外源 FLAG-REST 基因過表現,並以 qPCR 證實轉錄表現良好。
綜合而言,本研究結合功能性分析與初代細胞單細胞轉錄層級研究,證實一新穎 REST 突變具 dominant-negative 活性,並揭示其可能透過轉錄程序障礙與訊息傳導異常導致 HGF 表型。此研究建立一可行平台以探討 REST 功能缺損在牙齦纖維母細胞中的病理角色,對理解 HGF 發病機制與後續研究具重要參考價值。
zh_TW
dc.description.abstractHereditary Gingival Fibromatosis (HGF) is a rare autosomal dominant disorder characterized by symmetrical gingival overgrowth, often leading to dental crowding, delayed tooth eruption, and oral functional impairment. Recent studies have associated truncating mutations near the terminal exon of the RE1-Silencing Transcription Factor (REST) gene with HGF, although the molecular pathogenic mechanisms remain unclear. In this study, we identified a novel frameshift mutation (c.2280delT, p.V761Lfs*3) in a patient with HGF born to unaffected parents and validated its pathogenicity through functional assays and cellular modeling.
Luciferase reporter assays in HEK293T cells demonstrated that this mutant REST protein (REST-Mu) lacked transcriptional repression capability and exerted a dominant-negative effect by interfering with the function of co-expressed wild-type REST (REST-WT). To assess the impact in a physiologically relevant context, FLAG-tagged REST-WT and REST-Mu expression constructs were introduced into primary human gingival fibroblasts (hGFs) via electroporation, followed by single-cell RNA sequencing (scRNA-seq) using the Parse Biosciences platform under three experimental conditions: FLAG-REST wild type (H-WT), truncation mutant (H-Mu), and empty vector control (H-Mock). Transcriptomic analysis revealed significant downregulation of key genes involved in tissue repair and extracellular matrix remodeling—including IL24, STC1, CEMIP, and NEAT1—in the REST-Mu group. Pathway enrichment analysis pointed to pathways such as Apelin signaling, FGF signaling, integrin signaling, and cytoskeletal remodeling.To further enhance transfection efficiency, this study also successfully optimized electroporation and G418 selection conditions to achieve overexpression of exogenous FLAG-REST in primary hGFs without using    viral vectors, with qPCR confirming robust transcriptional expression.
In conclusion, by integrating functional assays with single-cell transcriptomic analysis in primary cells, this study demonstrates that the novel REST mutation exerts dominant-negative activity and may disrupt transcriptional programs and signaling responses underlying the HGF phenotype. Our findings establish a feasible and scalable experimental platform for exploring the pathological roles of REST dysfunction in gingival fibroblasts and provide important insights for future investigations into the molecular pathogenesis of HGF.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-16T16:07:13Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-16T16:07:13Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
Abstract ii
目次 iii
圖次 vii
表次 x
第一章 緒論 1
1.1遺傳性牙齦纖維瘤的臨床特徵與治療概述 1
1.2 HGF的遺傳背景與已知致病基因 1
1.3 REST基因的過往研究 2
1.4 REST的結構與轉錄抑制機制 3
1.5單細胞 RNA 定序技術 5
第二章 研究動機與目標 7
第三章 實驗材料與方法 8
3.1受試者招募與基因分析 8
3.2雙冷光素酶報導基因分析(Dual luciferase reporter assay) 8
3.2.1原理 8
3.2.2實驗設計 9
3.2.3為雙冷光酶分析所做之質體準備 10
3.2.4雙冷光素酶報導基因分析實驗流程 13
3.2.5冷光素酶活性分析 18
3.3牙齦纖維母細胞取得與培養 19
3.4牙齦纖維母細胞電穿孔轉染操作流程 20
3.5轉染後FLAG-REST核定位能力驗證 22
3.6轉染後FLAG-REST 表現分析之分子層級驗證 22
3.6.1反轉錄聚合酶連鎖反應 - 轉錄層級驗證 22
3.6.2西方墨點法 - 轉譯層級驗證 23
3.7 Parse Evercode單細胞 RNA定序 23
3.7.1細胞準備與固定 24
3.7.2文庫純化與定序 26
3.7.3文庫建構與第四輪條碼設計 26
3.7.4資料處理與分析 28
3.8遺傳黴素(Geneticin, G418) 抗生素篩選 28
3.8.1 G418抗生素篩選原理 28
3.8.2 G418 殺死曲線之建立 29
3.8.3 G418 殺死曲線結果與選擇濃度 29
3.8.4穩定轉染初代牙齦纖維母細胞之藥物篩選流程與濃度調整 31
3.9即時定量聚合酶連鎖反應(qPCR) 32
3.9.1 qPCR原理 32
3.9.2 qPCR實驗流程 32
3.10統計分析 34
3.10.1雙冷光酶報導基因分析 34
3.10.2單細胞 RNA 定序統計分析與生物資訊處理 34
3.10.3 qPCR 統計分析 35
第四章 實驗結果 36
4.1新穎突變的證據 36
4.2 以Lipofectamine™ 3000進行脂質體轉染HEK293T之效率預檢驗 37
4.3反轉錄聚合酶連鎖反應(RT-PCR)驗證質體表現效率 37
4.4 致病性 REST 突變導致抑制功能喪失 39
4.5 共轉染實驗之顯性負向效應 40
4.6 牙齦纖維母細胞培養結果 41
4.7 牙齦纖維母細胞電穿孔轉染效率預檢驗 42
4.8 REST 蛋白次細胞定位之免疫細胞化學分析 45
4.9轉染後FLAG-REST 表現分析之分子層級驗證 47
4.10 Parse Evercode單細胞 RNA定序 50
4.10.1 UMAP 圖下細胞的視覺分布差異 50
4.10.2透過 UMAP 套索選取與分群分析辨識特異性細胞群 53
4.10.3在高表現 REST 細胞中比較 REST-Mu 與 REST-WT 的轉錄差異 56
4.10.4不同 REST 處理組別之整體細胞轉錄表現差異分析 59
4.10.5 REST-Mu 干擾細胞分化進程之動態證據 60
4.11遺傳黴素(Geneticin, G418) 抗生素篩選結果 64
4.12藥篩過程導引細胞群體純化 64
4.13即時定量聚合酶連鎖反應證實 FLAG-REST 過表現效果 65
第五章 討論 68
5.1 REST新發現截短突變 p.V761Lfs*3 之致病潛能探討 68
5.1.1 p.V761Lfs*3 對 REST 結構與功能的潛在影響 69
5.1.2 de novo 突變在 HGF 中的臨床意義 70
5.1.3與既有 HGF 相關 REST 突變的比較 71
5.1.4致病性評估與 ACMG 分類 73
5.2轉錄抑制功能受損與顯性負向效應之實驗驗證 75
5.2.1 REST p.V761Lfs*3 於高敏感度 RE1 系統中喪失轉錄抑制能力 75
5.2.2共轉染實驗支持 REST p.V761Lfs*3 的顯性負向作用 76
5.3截短型 REST 核定位能力未受影響之意涵 78
5.4初代 hGFs 之應用與挑戰 79
5.4.1相較永生化細胞株之優勢與限制 79
5.4.2牙齦纖維母細胞的組織特異性與病理相關性 79
5.4.3初代 hGFs 的轉染效率、存活率與調整策略 80
5.5由差異基因與路徑分析探討 REST-Mu 干擾轉錄程式的可能機制 80
5.5.1 CEMIP 與透明質酸代謝及ECM 重塑異常的潛在關聯 81
5.5.2 IL24 在纖維母細胞活化與纖維化過程中的潛在調節角色 83
5.5.3 NEAT1 下調可能導致非典型發炎背景下的轉錄適應失衡 85
5.5.4 MYLK 上升反映骨架動態與肌成纖維母細胞表徵的潛在活化 85
5.6藥物篩選與轉染過程對細胞造成的壓力 86
5.6.1 G418 Killing Curve的設計與濃度調整邏輯 86
5.6.2選擇短期抗性細胞群而非穩定株的考量 87
5.6.3外源 REST 表現量驗證與轉染效率評估 88
5.7 REST 截短突變與組織特異性表現差異的探討 88
第六章 結論 90
第七章 研究限制與未來展望 92
7.1驗證 squelching 機制之潛在實驗設計 92
7.2模型建立的技術與資源限制與可能優化方向 93
7.3樣本數與資料整合的潛在方向 93
7.4可誘導表現系統與多細胞模型之建立 93
7.5臨床應用與轉譯潛力之展望 94
參考文獻 95
-
dc.language.isozh_TW-
dc.subject遺傳性牙齦纖維瘤zh_TW
dc.subjectRESTzh_TW
dc.subject顯性負作用zh_TW
dc.subject電穿孔zh_TW
dc.subject人類初代牙齦纖維母細胞zh_TW
dc.subject單細胞 RNA 定序zh_TW
dc.subjectHereditary Gingival Fibromatosisen
dc.subjectSingle-cell RNA sequencingen
dc.subjectPrimary human gingival fibroblastsen
dc.subjectElectroporationen
dc.subjectDominant-negative effecten
dc.subjectRESTen
dc.title探討REST最末外顯子突變於遺傳性牙齦纖維瘤中的分子影響:轉錄體分析與功能性探討zh_TW
dc.titleDeciphering the Molecular Impact of REST Final-Exon Mutations in Hereditary Gingival Fibromatosis: Transcriptomic Evidence and Functional Implicationsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.coadvisor王詩凱;陳容慈zh_TW
dc.contributor.coadvisorShih-Kai Wang;Jung-Tsu Chenen
dc.contributor.oralexamcommittee李欣瑾;沈宜萱zh_TW
dc.contributor.oralexamcommitteeSin-Jin Li;Yi-Shuan Sheenen
dc.subject.keyword遺傳性牙齦纖維瘤,REST,顯性負作用,電穿孔,人類初代牙齦纖維母細胞,單細胞 RNA 定序,zh_TW
dc.subject.keywordHereditary Gingival Fibromatosis,REST,Dominant-negative effect,Electroporation,Primary human gingival fibroblasts,Single-cell RNA sequencing,en
dc.relation.page97-
dc.identifier.doi10.6342/NTU202502108-
dc.rights.note未授權-
dc.date.accepted2025-07-28-
dc.contributor.author-college醫學院-
dc.contributor.author-dept臨床牙醫學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
23.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved