Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99558
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭彥彬zh_TW
dc.contributor.advisorMark Yen-Ping Kuoen
dc.contributor.author潘珮瑜zh_TW
dc.contributor.authorPei-Yu Panen
dc.date.accessioned2025-09-16T16:06:51Z-
dc.date.available2025-09-17-
dc.date.copyright2025-09-16-
dc.date.issued2025-
dc.date.submitted2025-07-29-
dc.identifier.citation1. Lindhe, J. and N.P. Lang. Clinical periodontology and implant dentistry. 2015
2. Newman, M.G., et al.. Newman and Carranza's Clinical Periodontology. 13 ed. 2018.
3. Ibrahim M, Abouzaid M, Mehrez M, El Din HG, El Kamah G. Genetic disorders associated with gingival enlargement. Gingival Diseases-Their Aetiology, Prevention and Treatment: IntechOpen, 2011.
4. Bharti, V. and C. Bansal, Drug-induced gingival overgrowth: The nemesis of gingiva unravelled. J Indian Soc Periodontol, 2013. 17(2): p. 182-7.
5. Wynn T. Cellular and molecular mechanisms of fibrosis. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland 2008;214:199-210.
6. Kiwanuka E, Junker JP, Eriksson E. Transforming growth factor β1 regulates the expression of CCN2 in human keratinocytes via Smad‐ERK signalling. International Wound Journal 2017; 14: 1006-1018.
7. Trackman P. and Kantarci A.. Molecular and clinical aspects of drug-induced gingival overgrowth. Journal of Dental Research 2015;94(4):540-546.
8. Fu M., Chin Y., Fu E., Chiu H., Wang L., Chiang C. et al.. Role of transforming growth factor‐beta1 in cyclosporine‐induced epithelial‐to‐mesenchymal transition in gingival epithelium. Journal of Periodontology 2015;86(1):120-128.
9. Kantarci A, Nseir Z, Kim YS, Sume SS, Trackman PC. Loss of basement membrane integrity in human gingival overgrowth. J Dent Res. 2011 Jul;90(7):887-93.
10. Chen M., Dai X., Sun Y., Yu Y., & Yang F.. Cyclosporine a‐induced gingival overgrowth in renal transplant patients accompanied by epithelial‐to‐mesenchymal transition. Journal of Periodontal Research 2023;58(3):511-519.
11. Sume, S.S., et al.. Epithelial to mesenchymal transition in gingival overgrowth. Am J Pathol, 2010. 177(1): p. 208-18.
12. Bokenkamp, A., et al., Nifedipine aggravates cyclosporine A-induced gingival hyperplasia. Pediatr Nephrol, 1994. 8(2): p. 181-5.
13. Kanno, C.M., et al.. Effects of cyclosporin, phenytoin, and nifedipine on the synthesis and degradation of gingival collagen in tufted capuchin monkeys (Cebus apella): histochemical and MMP-1 and -2 and collagen I gene expression analyses. J Periodontol, 2008. 79(1): p. 114-22.
14. Kato, T., et al., Impaired degradation of matrix collagen in human gingival fibroblasts by the antiepileptic drug phenytoin. J Periodontol, 2005. 76(6): p. 941-50.
15. Kataoka, M., et al., Decreased expression of alpha2 integrin in fibroblasts isolated from cyclosporin A- induced gingival overgrowth in rats. J Periodontal Res, 2003. 38(5): p. 533-7.
16. Arora, P.D., et al., Mechanism of cyclosporin-induced inhibition of intracellular collagen degradation. J Biol Chem, 2001. 276(17): p. 14100-9.
17. Dahllof, G. and T. Modeer, The effect of a plaque control program on the development of phenytoin-induced gingival overgrowth. A 2-year longitudinal study. J Clin Periodontol, 1986. 13(9): p. 845-9.
18. Modeer, T. and G. Dahllof, Development of phenytoin-induced gingival overgrowth in non-institutionalized epileptic children subjected to different plaque control programs. Acta Odontol Scand, 1987;45(2): p. 81-5.
19. Marshall RI, Bartold PM. Medication-induced gingival overgrowth. Oral Dis. 1998;4(2):130–151.
20. O'Neil, T.C. and K.H. Figures. The effects of chlorhexidine and mechanical methods of plaque control on the recurrence of gingival hyperplasia in young patients taking phenytoin. Br Dent J. 1982;152(4): p. 130-3.
21. Leask A, Abraham DJ. TGF-beta signaling and the fibrotic response. FASEB J 2004;18:816-827.
22. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007;39:44-84.
23. Kennedy DS, Linden GJ. Resolution of gingival overgrowth following change from cyclosporin to tacrolimus therapy in a renal transplant patient. J Ir Dent, Assoc 46: 3-4, 2000.
24. Jia-Xuan Hu、Szu-Han Wang、Po-Chun Chang、Mark Yen-Ping Ku. Drug-induced Gingival Overgrowth: Report of Two cases。臺灣牙周病醫學會雜誌(2022)27(2),188-201。
25. Ilgenli T, Atilla G, Baylas H. Effectiveness of periodontal therapy in patients with drug-induced gingival overgrowth. Long-term results. J Periodontol, 1999;70:967-972.
26. Massague, J., TGF-beta signal transduction. Annu Rev Biochem, 1998. 67: p. 753-91.
27. Crane, J.L. and X. Cao, Bone marrow mesenchymal stem cells and TGF-beta signaling in bone remodeling. J Clin Invest, 2014. 124(2): p. 466-72
28. Oklu R, Hesketh R. The latent transforming growth factor beta binding protein (LTBP) family. Biochem J. 2000;352(Pt 3):601–610.
29. Mangasser-Stephan, K. and A.M. Gressner. Molecular and functional aspects of latent transforming growth factor-beta binding protein: just a masking protein? Cell Tissue Res, 1999. 297(3): p. 363-70.
30. Pfeilschifter, J., L. Bonewald, and G.R. Mundy. Characterization of the latent transforming growth factor beta complex in bone. J Bone Miner Res,1990. 5(1): p. 49-58.
31. Skaleric U, Kramar B, Petelin M, Pavlica Z, Wahl SM. 1997. Changes in TGF-beta 1 levels in gingiva, crevicular fluid and serum associated with periodontal inflammation in humans and dogs. Eur J Oral Sci. 105(2):136–142
32. Buduneli N, Kütükçüler N, Aksu G, Atilla G. 2001. Evaluation of transform- ing growth factor-beta 1 level in crevicular fluid of cyclosporin A–treated patients. J Periodontol. 72(4):526–531.
33. Kuru L, Yilmaz S, Kuru B, Kose KN, Noyan U. 2004. Expression of growth factors in the gingival crevice fluid of patients with phenytoin-induced gin- gival enlargement. Arch Oral Biol. 49(11):945–950.
34. Leask A (2012). Getting out of a sticky situation: targeting the myofibroblast in scleroderma. Open Rheumatol J 6:163-169.
35. Kantarci A, Black SA, Xydas CE, Murawel P, Uchida Y, Yucekal-Tuncer B, et al. (2006). Epithelial and connective tissue cell CTGF/CCN2 expression in gingival fibrosis. J Pathol 210:59-66.
36. Yang WH, Kuo MY, Liu CM, Deng YT, Chang HH, Chang JZ. Curcumin inhibits TGFβ1-induced CCN2 via Src, JNK, and Smad3 in gingiva. 2013 J Dent Res. 92(7):629–634.
37. Yang WH, Deng YT, Hsieh YP, Wu KJ, Kuo MY. 2015. NADPH oxidase 4 mediates TGFβ1-induced CCN2 in gingival fibroblasts. 2015. J Dent Res. 94(7):976–982.
38. Yang WH, Deng YT, Hsieh YP, Wu KJ, Kuo MY. Thrombin Activates Latent TGFβ1 via Integrin αvβ1 in Gingival Fibroblasts. J Dent Res. 2016 Jul;95(8):939-45.
39. Ikenaga, N., et al., Selective targeting of lysyl oxidase-like 2 (LOXL2) suppresses hepatic fibrosis progression and accelerates its reversal. Gut, 2017. 66(9): p. 1697-1708.
40. Mehal,W.Z., J.Iredale, and S.L. Friedman, Scraping fibrosis : express way to the core of fibrosis. Nat Med, 2011. 17(5): p. 552-3.
41. Barry-Hamilton, V., et al., Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat Med, 2010. 16(9): p. 1009-17.
42. Saxena, D., et al., Multiple Functions of Lysyl Oxidase Like-2 in Oral Fibroproliferative Processes. J Dent Res, 2018. 97(11): p. 1277-1284.
43. Tian J, Sun HX, Li YC, Jiang L, Zhang SL, Hao Q. LOXL 2 Promotes The Epithelial-Mesenchymal Transition And Malignant Progression Of Cervical Cancer. Onco Targets Ther. 2019 Oct 30;12:8947-8954.
44. Tanaka N. , Yamada S. , Sonohara F. , Suenaga M. , Hayashi M. , Takami H. et al.. Clinical implications of lysyl oxidase-like protein 2 expression in pancreatic cancer. Scientific Reports 2018;8(1).
45. Eraso P. , Mazón M. , Jiménez V. , Pizarro-García P. , Cuevas E. , Majuelos-Melguizo J. et al.. New functions of intracellular loxl2: modulation of rna-binding proteins. Molecules 2023;28(11):4433.
46. Park P., Jo S., Kim M., Kim H. , Lee J. , Park C. et al.. Role of loxl2 in the epithelial-mesenchymal transition and colorectal cancer metastasis. Oncotarget 2017;8(46):80325-80335.
47. Park J., Lee J., Lee Y., Kim J., Dong S., & Yoon D.. Emerging role of loxl2 in the promotion of pancreas cancer metastasis. Oncotarget 2016;7(27):42539-42552.
48. Lu, Yi‐Jie, Yiting Deng, Hui‐Hsin Ko, Hsin‐Hui Peng, Hsiang‐Chieh Lee, Mark Yen‐Ping Kuo, and Shih‐Jung Cheng. Lysyl oxidase‐like 2 promotes stemness and enhances antitumor effects of gefitinib in head and neck cancer via ifit1 and ifit3. Cancer Science 2023 (10), 114:3957-3971
49. Assaggaf, M.A., et al., Prevention of phenytoin-induced gingival overgrowth by lovastatin in mice. Am J Pathol, 2015. 185(6): p. 1588-99.
50. Henderson J, Flynn J, Tucci M, Tsao A, Zebrowski E, Odium O, et al. Site‐ specific variations in metabolism by human fibroblasts exposed to nifedipine in vitro. Journal of oral pathology & medicine 1997;26:6-10.
51. Chou CL, Chou CY, Hsu CC, et al. Old habits die hard: a nationwide utilization study of short-acting nifedipine in Taiwan. PLOS ONE 2014;9:e91858.
52. Lederman D, Lumerman H, Reuben S, Freedman PD. Gingival hyperplasia associated with nifedipine therapy. Report of a case. Oral Surg Oral Med Oral Pathol. 1984 Jun;57(6):620-2.
53. Tipton DA, Fry H, Dabbous MK. Altered collagen metabolism in nifedipine‐ induced gingival overgrowth. Journal of periodontal research. 1994;29:401-409.
54. Vidal F, et al. Influence of 3 calcium channel blockers on gingival overgrowth in a population of severe refractory hypertensive patients. J Periodontal Res. 2018;53(6):1021–1027.
55. Yamazaki K, Igarashi-Takeuchi H, Numabe Y. Hepatocyte growth factor exhibits anti-fibrotic effects in an in vitro model of nifedipine-induced gingival overgrowth. J Oral Sci. 2022 Jan 19;64(1):99-104.
56. Takeuchi R, Hiratsuka K, Arikawa K, Ono M, Komiya M, Akimoto Y, Fujii A, Matsumoto H. Possible pharmacotherapy for nifedipine-induced gingival overgrowth: 18α-glycyrrhetinic acid inhibits human gingival fibroblast growth. Br J Pharmacol. 2016;173(5):913-924.
57. Huang WT, Lu HK, Chou HH, Kuo MY. Immunohistochemical analysis of Th1/Th2 cytokine profiles and androgen receptor expression in the pathogenesis of nifedipine-induced gingival overgrowth. J Periodontal Res. 2003;38(4):422-427.
58. Lu H., Chou H., Li C., Wang M., & Wang L. Stimulation of cells derived from nifedipine-induced gingival overgrowth with porphyromonas gingivalis, lipopolysaccharide, and interleukin-1β. Journal of Dental Research 2007;86(11):1100-1104.
59. Lu HK, Tseng CC, Lee YH, Li CL, Wang LF. Flutamide inhibits nifedipine- and interleukin-1 beta-induced collagen overproduction in gingival fibroblasts. J Periodontal Res. 2010 Aug;45(4):451-7.
60. Norris RA, Borg TK, Butcher JT, Baudino TA, Banerjee I, Markwald RR. Neonatal and adult cardiovascular pathophysiological remodeling and repair: developmental role of periostin. Ann N Y Acad Sci. 2008 Mar;1123:30-40.
61. Kim SS, Jackson-Boeters L, Darling MR, Rieder MJ, Hamilton DW. Nifedipine induces periostin expression in gingival fibroblasts through TGF-beta. J Dent Res. 2013 Nov;92(11):1022-8.
62. 胡瑋凡。「薑黃素抑制Nifedipine 經由活性氧化物誘導牙齦上皮細胞活化潛伏性TGF-β」。碩士論文,國立臺灣大學臨床牙醫學研究所,2023。https://hdl.handle.net/11296/xm6xj4。
63. UROŠEVIĆ, Maja, et al. Curcumin: Biological activities and modern pharmaceutical forms. Antibiotics, 2022, 11.2: 135.
64. Fuloria S, Mehta J, Chandel A, Sekar M, Rani NNIM, Begum MY, et al.
A comprehensive review on the therapeutic potential of Curcuma longa Linn. in relation to its major active constituent curcumin. Front Pharmacol. 2022 Mar 25;13:820806.
65. MARTON, Ledyane Taynara, et al. The effects of curcumin on diabetes mellitus: a systematic review. Frontiers in endocrinology, 2021, 12: 669448.
66. Mansouri K, Rasoulpoor S, Daneshkhah A, Abolfathi S, Salari N, Mohammadi M, et al. Clinical effects of curcumin in enhancing cancer therapy: A systematic review. BMC cancer 2020;20:1-11.
67. Zheng D, Huang C, Huang H, Zhao Y, Khan MRU, Zhao H, et al. Antibacterial mechanism of curcumin: A review. Chemistry & Biodiversity 2020;17:e2000171.
68. Jakubczyk K, Drużga A, Katarzyna J, Skonieczna-Żydecka K. Antioxidant potential of curcumin—A meta-analysis of randomized clinical trials. Antioxidants 2020;9:1092.
69. Kuttan, G., et al., Antitumor, anti-invasion, and antimetastatic effects of curcumin. Adv Exp Med Biol, 2007. 595: p. 173-84.
70. Kunnumakkara, A.B., P. Anand, and B.B. Aggarwal, Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett, 2008. 269(2): p. 199-225.
71. Punithavathi, D., N. Venkatesan, and M. Babu, Curcumin inhibition of bleomycin- induced pulmonary fibrosis in rats. Br J Pharmacol, 2000.131(2): p. 169-72.
72. Madden, K., et al., Proteomics-based approach to elucidate the mechanism of antitumor effect of curcumin in cervical cancer. Prostaglandins Leukot Essent Fatty Acids, 2009. 80(1): p. 9-18.
73. Aggarwal, B.B. and B. Sung, Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends Pharmacol Sci, 2009. 30(2): p. 85-94.
74. Chen YW, Yang WH, Wong MY, Chang HH, Yen-Ping Kuo M. Curcumin inhibits thrombin-stimulated connective tissue growth factor (CTGF/CCN2) production through c-Jun NH2-terminal kinase suppression in human gingival fibroblasts. J Periodontol. 2012 Dec;83(12):1546-53.
75. Yang WH, Kuo MY, Liu CM, Deng YT, Chang HH, Chang JZ. Curcumin inhibits TGFβ1-induced CCN2 via Src, JNK, and Smad3 in gingiva. J Dent Res. 2013 Jul;92(7):629-34.
76. Gaedeke, J., N.A. Noble, and W.A. Border, Curcumin blocks multiple sites of the TGF-beta signaling cascade in renal cells. Kidney Int, 2004. 66(1): p. 112-20.
77. 徐百鍊。「薑黃素可抑制環孢素經由TGF-β誘導牙齦上皮細胞的LOXL2表現」。碩士論文,國立臺灣大學臨床牙醫學研究所,2024。https://hdl.handle.net/11296/8wz95y。
78. Zhang J, Zhang Y, Ma Y, Wang Y, Li W, Chen Y, et al. IL-1β augments TGF-β1-induced epithelial-mesenchymal transition in neutrophilic asthma via MAPK signaling pathways. Respir Res. 2021;22(1):189.
79. Hayashi H, Sakai T. Biological Significance of Local TGF-beta Activation in Liver Diseases. Front Physiol 2012;3:12.
80. Lin Y-C, Wu M-S, Lin Y-F, Chen C-R, Chen C-Y, Chen C-J, et al. Nifedipine modulates renal lipogenesis via the AMPK-SREBP transcriptional pathway. International journal of molecular sciences 2019;20:1570.
81. Hsiao, An-Fang, et al. The efficacy of high-and low-dose curcumin in knee osteoarthritis: A systematic review and meta-analysis. Complementary therapies in medicine 2021, 63: 102775.
82. Drobnic F, Riera J, Appendino G, Togni S, Franceschi F, Valle X, Pons A, Tur J. Reduction of delayed onset muscle soreness by a novel curcumin delivery system (Meriva®): a randomized placebo-controlled trial. J Int Soc Sports Nutr. 2014 Jun 18;11:31.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99558-
dc.description.abstractNifedipine 是常見的高血壓用藥,副作用是會引起牙齦腫大,造成口腔衛生維護不易,導致牙周病的形成,嚴重時會影響病人的美觀與發音。目前Nifedipine 引起牙齦腫大的致病機制尚未完全了解。離氨基氧化酶樣蛋白 2 (Lysyl oxidase-like 2, LOXL2)為離氨基氧化酶(LOX)家族的成員,近期研究指出,LOXL2 不僅參與細胞外基質的穩定,還可誘導上皮細胞的上皮間質轉化(epithelial mesenchymal transition, EMT),牙齦過度增生。本研究探討Nifedipine 是否會誘導人類牙齦上皮細胞 OECM-1 及 Ca9-22 產生 LOXL2,以及與EMT相關之機轉。結果發現,隨著 Nifedipine 處理的濃度或時間增加可使人類口腔上皮細胞 Ca9-22、OECM-1 的 LOXL2 的表現量隨之增加,且 Nifedipine 可使 Ca9-22、OECM-1 的上皮標誌因子中 E-cadherin 下降,間質標誌因子 Vimentin 及轉化因子 Slug 上升,顯示可以產生EMT 的現象。以 LOXL2 的抑制劑 LOX2-in-1 處理,可以抑制 EMT 的現象。進一步發現TGF-β 可以誘導 Ca9-22、OECM-1 產生 LOLX2,且使用 TGF-β 路徑的抑制劑(TGF-β 中和抗體、SIS3、SB431542)處理 Ca9-22、OECM-1 以後,可有效抑制 Nifedipine 誘導的LOXL2 產生。薑黃素(Curcumin)濃度到達 5μM 時,開始顯著降低 Ca9-22 及 OECM-1 中Nifedipine 誘導的 LOXL2 產生量,並具有劑量依賴效應。本實驗結果及連結先前實驗室的研究,Nifedipine 可活化 TGF-β 路徑,進而促進 LOXL2 表現,最終誘導 EMT 的發生。此外,實驗結果觀察到薑黃素能夠減少 LOXL2 的產生,可以預期薑黃素能抑制 Nifedipine 造成之牙齦腫大,成為新型防治 Nifedipine 導致牙齦增生的治療方法之一。zh_TW
dc.description.abstractNifedipine is a commonly prescribed antihypertensive medication. However, studies have shown that it can induce gingival overgrowth (GO), making oral hygiene maintenance difficult and potentially leading to the development of periodontal disease. In severe cases, this condition may affect aesthetics and speech. The pathogenic mechanism underlying Nifedipine-induced GO remains incompletely understood. Lysyl oxidase-like 2 (LOXL2), a member of the lysyl oxidase (LOX) family, has recently been implicated not only in extracellular matrix stabilization but also in the induction of epithelial-mesenchymal transition (EMT) and GO. This study investigated whether Nifedipine induces LOXL2 expression and EMT-related changes in human gingival epithelial cell lines OECM-1 and Ca9-22. The results demonstrated that Nifedipine increases LOXL2 expression in a dose- and time-dependent manner in both cell lines. Additionally, Nifedipine treatment led to decreased expression of the epithelial marker E-cadherin and increased expression of mesenchymal markers Vimentin and Slug, indicating the occurrence of EMT. Notably, treatment with the LOXL2 inhibitor, LOX2-in-1, effectively suppressed EMT. Furthermore, TGF-β was found to induce LOXL2 expression in both Ca9-22 and OECM-1 cells. Inhibition of the TGF-β signaling pathway using a neutralizing antibody, SIS3, or SB431542 significantly reduced LOXL2 levels. Curcumin, a natural compound known for its anti-inflammatory properties, was shown to decrease Nifedipine-induced LOXL2 expression in a dose-dependent manner, with significant inhibition observed at concentrations as low as 5 μM. Together with our previous findings, these results suggest that Nifedipine activates the TGF-β pathway, which in turn promotes LOXL2 expression and induces EMT in gingival epithelial cells. Moreover, curcumin may serve as a promising therapeutic agent fopreventing Nifedipine-induced gingival overgrowth through the suppression of LOXL2 expression.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-16T16:06:51Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-16T16:06:51Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
第一章 導論 1
第一節 牙齦過度增生(Gingival Overgrowth) 1
1.1 牙齦過度增生 1
1.2 牙齦過度增生的成因 1
1.3 藥物性誘導牙齦增生的致病機制 2
1.4 藥物性牙齦增生的臨床治療 3
2.1 TGF-β 的介紹 5
2.2 TGF-β 的活化機制 5
2.3 TGF-β 與牙齦增生的關係 5
第三節 離氨基氧化酶樣蛋白 2 (LYSYL OXIDASE-LIKE PROTEIN 2, LOXL2) 8
3.1 LOXL2 簡介 8
3.2 LOXL2 促進牙齦上皮細胞間質轉化現象(EMT) 8
第四節 尼菲迪平 (Nifedipine) 10
4.1 Nifedipine 的簡介與影響牙齦細胞的作用機轉 10
4.2 Nifedipine 誘導牙齦過度增生(nifedipine-induced gingival overgrowth,NIGO)的臨床表現與流行病學 10
第五節 薑黃素(Curcumin) 13
第二章 研究目的 14
第三章 材料與方法 15
第一節 細胞株與細胞培養 15
第二節 藥物處理 16
2.1 Nifedipine 處理細胞 16
2.2 抑制劑、抗氧化劑以及中和抗體使用資料 16
2.3 Nifedipine 和 TGF-β 的使用資料 16
第三節 西方墨點法 17
3.1 蛋白質收集及濃度定量 17
3.2 膠體配置與電泳分析 17
3.3 蛋白轉漬 17
3.4 抗體檢測與顯影呈色 17
第四節 統計方法 19
第四章 結果 20
1.1 Nifedipine 誘導牙齦上皮細胞 Ca9-22 及OECM-1 產生 LOXL2 20
1.2 LOXL-2 參與 Nifedipine 誘導上皮間質轉化 EMT 的過程 20
1.3 TGF-β 誘導牙齦上皮細胞 OECM-1 及 Ca9-22 之 LOXL2 表現 21
1.4 Nifedipine 經由 TGF-β 訊息傳導路徑誘導牙齦上皮細胞 Ca9-22 及 OECM-1 產生 LOXL2 22
1.5 薑黃素(Curcumin)在牙齦上皮細胞CA9-22 及OECM-1 可以抑制 Nifedipine 誘導所產生之 LOXL2 22
1.6 TGF-β 無法誘導牙齦上皮細胞 Ca9-22 及OECM-1 之Androgen Receptor (AR)表現 23
第五章 討論 24
第六章 結論 27
圖與表 28
參考文獻 43
-
dc.language.isozh_TW-
dc.subject尼菲迪平(Nifedipine)zh_TW
dc.subject牙齦過度增生(Gingival overgrowth)zh_TW
dc.subject離氨基氧化酶樣蛋白 2(LOXL2)zh_TW
dc.subject乙型轉化生長因子(TGF-β)zh_TW
dc.subject薑黃素(Curcumin)zh_TW
dc.subject上皮間質轉化(epithelial mesenchymal transitionzh_TW
dc.subjectEMT)zh_TW
dc.subjectLysyl oxidase-like 2 (LOXL2)en
dc.subjectNifedipineen
dc.subjectepithelial mesenchymal transition (EMT)en
dc.subjectCurcuminen
dc.subjectTGF-βen
dc.subjectGingival overgrowthen
dc.titleNifedipine經由TGF-β訊息傳導路徑誘導人類口腔上皮細胞LOXL2之表現zh_TW
dc.titleNifedipine Induced LOXL2 Expression Through TGF-β signaling in Human Oral Epithelial Cellsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee周涵怡;呂炫堃zh_TW
dc.contributor.oralexamcommitteeHan-Yi Chou;Hsein-kun Luen
dc.subject.keyword尼菲迪平(Nifedipine),牙齦過度增生(Gingival overgrowth),離氨基氧化酶樣蛋白 2(LOXL2),乙型轉化生長因子(TGF-β),薑黃素(Curcumin),上皮間質轉化(epithelial mesenchymal transition, EMT),zh_TW
dc.subject.keywordNifedipine,Gingival overgrowth,Lysyl oxidase-like 2 (LOXL2),TGF-β,Curcumin,epithelial mesenchymal transition (EMT),en
dc.relation.page52-
dc.identifier.doi10.6342/NTU202502557-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-29-
dc.contributor.author-college醫學院-
dc.contributor.author-dept臨床牙醫學研究所-
dc.date.embargo-lift2025-09-17-
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
1.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved