Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99557Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 林思洸 | zh_TW |
| dc.contributor.advisor | Sze-Kwan Lin | en |
| dc.contributor.author | 劉人豪 | zh_TW |
| dc.contributor.author | Jen-Hao Liu | en |
| dc.date.accessioned | 2025-09-16T16:06:37Z | - |
| dc.date.available | 2025-09-17 | - |
| dc.date.copyright | 2025-09-16 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-06-04 | - |
| dc.identifier.citation | 1. Nair, P. N. R. (2004). Pathogenesis of apical periodontitis and the causes of endodontic failures. Critical Reviews in Oral Biology & Medicine, 15(6), 348–381.
2. Siqueira, J. F., & Rôças, I. N. (2009). Diversity of endodontic microbiota revisited. Journal of Dental Research, 88(11), 969–981. 3. Stashenko, P., Teles, R., & D'Souza, R. (1998). Periapical inflammatory responses and their modulation. Critical Reviews in Oral Biology & Medicine, 9(4), 498–521. 4. Graves, D. T., & Cochran, D. (2003). The contribution of interleukin-1 and tumor necrosis factor to periodontal tissue destruction. Journal of Periodontology, 74(3), 391–401. 5. Socransky, S. S., & Haffajee, A. D. (2005). Periodontal microbial ecology. Periodontology 2000, 38(1), 135–187. 6. Zehnder, M., & Guggenheim, B. (2009). The mysterious appearance of extraradicular infection. International Endodontic Journal, 42(4), 277–280. 7. Gomes, B. P. F. A., Pinheiro, E. T., Jacinto, R. C., Zaia, A. A., Ferraz, C. C. R., & Souza-Filho, F. J. (2004). Molecular assessment of endodontic infections by checkerboard DNA–DNA hybridization. Oral Microbiology and Immunology, 19(5), 336–343. 8. Hajishengallis, G. (2014). The inflammophilic character of the periodontitis-associated microbiota. Molecular Oral Microbiology, 29(6), 248–257. 9. Herrera, D., Figuero, E., López, R., Martín, C., & Sanz, M. (2018). Acute periodontal lesions (periodontal abscesses and necrotizing periodontal diseases) and endo-periodontal lesions. Journal of Clinical Periodontology, 45(S20), S78–S94. 10. Cecil, J. D., O'Brien-Simpson, N. M., & Lenzo, J. C. (2016). Outer membrane vesicles: An emerging tool in vaccinology. Current Issues in Molecular Biology, 22, 79–112. 11. Guo, Y., Nguyen, K. A., & Potempa, J. (2010). Dichotomy of gingipains action as virulence factors: From cleaving substrates with precision to inducing host cell apoptosis. Molecular Oral Microbiology, 25(4), 301–313. 12. Nakao, R., Hasegawa, H., Ochiai, K., Takashiba, S., & Amano, A. (2014). Outer membrane vesicles of Porphyromonas gingivalis elicit a mucosal immune response. PLoS One, 9(4), e100626. 13. Jung, J. Y., Choi, Y., Jang, E. H., Lee, Y. H., Choi, Y. S., Kim, J. Y., ... & Shin, H. I. (2020). Porphyromonas gingivalis outer membrane vesicles induce mitochondrial dysfunction and apoptosis in osteoblasts. Cell Death & Disease, 11(7), 682. 14. Yilmaz, Ö. (2008). The chronicles of Porphyromonas gingivalis: The microbium, the human oral epithelium and their interplay. Microbiology, 154(10), 2897–2903. 15. Fink, S. L., & Cookson, B. T. (2005). Apoptosis, pyroptosis, and necrosis: Mechanistic description of dead and dying eukaryotic cells. Infection and Immunity, 73(4), 1907–1916. 16. Kerr, J. F. R., Wyllie, A. H., & Currie, A. R. (1972). Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. British Journal of Cancer, 26(4), 239–257. 17. Majno, G., & Joris, I. (1995). Apoptosis, oncosis, and necrosis: An overview of cell death. American Journal of Pathology, 146(1), 3–15. 18. Zhang, Z., Liu, D., Liu, S., Zhang, S., & Pan, Y. (2021). The role of Porphyromonas gingivalis outer membrane vesicles in periodontal disease and related systemic diseases. Frontiers in Cellular and Infection Microbiology, 10, 585917. 19. Ma, X., Shin, Y. J., Yoo, J. W., Park, H. S., & Kim, D. H. (2023). Extracellular vesicles derived from Porphyromonas gingivalis induce trigeminal nerve-mediated cognitive impairment. Journal of Advanced Research, 54, 293–303. 20. Hong, M., Li, Z., Liu, H., et al. (2023). Fusobacterium nucleatum aggravates rheumatoid arthritis through FadA-containing outer membrane vesicles. Cell Host & Microbe, 31(5), 1–13. 21. Dominy, S. S., Lynch, C., Ermini, F., et al. (2019). Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Science Advances, 5(1), eaau3333. 22. Shi, Y., Ratnayake, D. B., Okamoto, K., et al. (1999). Genetic analyses of proteolysis, hemoglobin binding, and hemagglutination of Porphyromonas gingivalis. Journal of Biological Chemistry, 274(26), 17955–17960. 23. Deo, P., Chow, S. H., Han, M. L., et al. (2020). Mitochondrial dysfunction caused by outer membrane vesicles from Gram-negative bacteria activates intrinsic apoptosis and inflammation. Nature Microbiology, 5(11), 1418–1427. 24. Okamura, H., Hirota, K., Yoshida, K., et al. (2021). Outer membrane vesicles of Porphyromonas gingivalis: Novel communication tool and strategy. Japanese Dental Science Review, 57, 138–146. 25. Fujimura, Y., Kurihara, H., Yamamoto, M., Noguchi, T., Abiko, Y., & Kato, H. (2023). Porphyromonas gingivalis outer membrane vesicles promote periapical lesion development via gingipain-dependent mechanisms. Journal of Endodontics, 49(2), 137–145. 26. Sheets, S. M., Potempa, J., Travis, J., Casiano, C. A., & Fletcher, H. M. (2005). Gingipains from Porphyromonas gingivalis W83 induce cell adhesion molecule cleavage and apoptosis in endothelial cells. Infection and Immunity, 73(3), 1543–1552. 27. Gui, M. J., Dashper, S. G., Slakeski, N., & Reynolds, E. C. (2016). Spheres of influence: Porphyromonas gingivalis outer membrane vesicles. Molecular Oral Microbiology, 31(6), 365–378. 28. Roier, S., Zingl, F. G., Cakar, F., & Schild, S. (2016). A novel mechanism for the biogenesis of outer membrane vesicles in Gram-negative bacteria. Nature Communications, 7, 10515. 29. Cecil, J. D., O'Brien-Simpson, N. M., Lenzo, J. C., Holden, J. A., Chen, Y.-Y., Singleton, W., ... & Reynolds, E. C. (2016). The immunomodulatory properties of outer membrane vesicles from Porphyromonas gingivalis. Journal of Periodontal Research, 51(5), 643–652. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99557 | - |
| dc.description.abstract | 根尖病變是牙髓感染後引發之慢性免疫性炎症,其臨床上以根尖骨吸收為主要表現。近年研究指出,牙周病菌 Porphyromonas gingivalis(Pg)於其生長過程中可釋放外膜囊泡(outer membrane vesicles, OMVs),其中富含牙齦蛋白酶(gingipains),被認為是影響遠端組織的重要致病因子。本研究旨在探討Pg-OMVs是否可藉由gingipains活化粒線體相關凋亡路徑,促進成骨細胞凋亡,進而加劇根尖病變之發展。
實驗設計包括以PCR確認臨床樣本中gingipain之表現,並自野生型Pg及gingipains缺損突變株KDP136中純化OMVs。於MC3T3-E1細胞中檢測粒線體膜電位變化、活性氧產生與細胞凋亡標記之變化,並以大鼠動物模式評估Pg-OMVs對根尖病變體積與組織病理之影響。 結果顯示,Pg-OMVs能明顯誘導成骨細胞粒線體膜電位下降與活性氧累積,伴隨cytochrome C釋放及caspase-9與caspase-3活化,誘發細胞凋亡,惟KDP136產生之OMVs不具此效應。在動物實驗中,Pg-OMVs處理組之根尖病變面積與體積皆呈上升趨勢,組織染色亦顯示明顯細胞死亡與發炎浸潤。 綜合而言,Pg-OMVs可藉由gingipains活化粒線體路徑引發成骨細胞凋亡,進而促進根尖病變之進程。未來研究將進一步以免疫組織化學法(IHC)驗證病灶中細胞凋亡情形,並分析KDP136動物實驗結果,同時引入已知gingipains抑制劑(KYT-1、KYT-36、KYT-41)進行治療實驗,以評估其抑病潛力。 | zh_TW |
| dc.description.abstract | Periapical lesions are chronic inflammatory conditions initiated by pulp infection, typically characterized by apical bone resorption. Recent evidence suggests that Porphyromonas gingivalis (Pg), a key periodontal pathogen, secretes outer membrane vesicles (OMVs) enriched in gingipains—its principal virulence factors—which may affect distant tissues. This study aimed to investigate whether Pg-OMVs promote osteoblast apoptosis via gingipain-mediated mitochondrial pathways, thereby aggravating the progression of apical lesions.
PCR was conducted to assess gingipains expression in clinical specimens. OMVs were isolated from wild-type Pg and a gingipains-deficient mutant strain KDP136. In vitro, MC3T3-E1 osteoblasts were evaluated for mitochondrial membrane potential, reactive oxygen species, and apoptotic markers. In vivo, a mouse model was employed to analyze the impact of Pg-OMVs on periapical lesion volume and histopathology. Pg-OMVs significantly induced mitochondrial dysfunction in osteoblasts, including membrane potential loss, ROS accumulation, cytochrome C release, and caspase-9/caspase-3 activation, all contributing to apoptosis. In contrast, OMVs from KDP136 did not elicit such effects. In vivo, Pg-OMV treatment led to increased apical lesion volume, and histological staining revealed enhanced cell death and inflammatory infiltration. In conclusion, Pg-OMVs aggravate apical lesion progression by inducing osteoblast apoptosis via gingipain-triggered mitochondrial pathways. Future studies will utilize immunohistochemistry to verify apoptotic activity in tissues, complete analysis of ongoing KDP136 animal models, and assess the therapeutic efficacy of gingipain inhibitors (KYT-1, KYT-36, KYT-41). | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-16T16:06:37Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-16T16:06:37Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 中文摘要 i
Abstract ii 目次 iv 圖次 viii 表次 ix 第一章 導論 1 1.1 根尖周圍病變(periapical lesion)與發炎的關聯 1 1.2 牙周病(periodontal disease)與根尖周圍病變 1 1.2.1 Pg與根尖周圍病變 2 1.3 Pg菌釋放之外膜囊泡(outer membrane vesicles, OMVs)與gingipains在根尖病變中的角色 2 1.3.1 Pg-OMVs誘發成骨細胞(osteoblasts)粒腺體功能障礙(mitochondrial dysfunction)致細胞凋亡 3 1.3.2 細胞的凋亡(apoptosis)與壞死(necrosis) 3 第二章 實驗目的 4 第三章 材料與方法 5 3.1 人類檢體搜集 5 3.2 組織奈米粒子(nanoparticles, NPs)萃取與 Bicinchoninic acid 定量法 5 3.3 聚合酶連鎖反應(PCR) 6 3.4 Gingipains活性測定 6 3.5 實驗細胞株培養 7 3.6 MTT細胞生長率檢測 7 3.7 蛋白質萃取 7 3.8 西方點墨法 8 3.9 實驗細菌株培養 8 3.9.1 菌株來源 8 3.9.2 菌株培養基 8 3.9.3 菌株培養 9 3.10 細菌OMVs萃取 9 3.11 奈米粒子追蹤分析(NTA) 10 3.12 穿透式電子顯微鏡觀察(Transmission Electron Microscopy, TEM) 11 3.13 粒腺體膜電位(Mitochondrial membrane potential, ΔΨm)與氧化壓力檢測..... 11 3.13.1 粒腺體膜電位變化 11 3.13.2 活性氧物質(ROS)檢測 12 3.14 誘導根尖病變動物模型 12 3.14.1 誘導根尖病變操作 12 3.14.2 檢體採集與放射學影像檢查 13 3.14.1 DiO3螢光標記Pg-OMVs並以非侵入式活體分子影像系統(in vivo imaging system, IVIS)進行活體螢光影像拍攝 13 3.14.2 下顎骨檢體組織切片染色 14 3.15 統計方法 15 第四章 實驗結果 16 4.1 患者AP組織的奈米粒子(nanoparticles, NPs)存在相對大量的Pg-OMVs... 16 4.1.1 患者牙根尖周圍組織奈米粒子的Pg 16S-rRNA表現量比正常組織高 16 4.1.2 CAP組織中奈米粒子的gingipains活性比正常組織高 16 4.2 分離出Pg-OMVs: WT Pg與KDP136變異株 17 4.2.1 WT Pg的Pg-OMVs較Pg含有較多的gingipains,KDP136 變異株則不含gingipains 17 4.3 Pg-OMVs誘導成骨細胞凋亡 19 4.3.1 Pg-OMVs誘發成骨細胞內在凋亡路徑 19 4.4 Gingipains才是造成細胞凋亡的主因 21 4.4.1 細胞的凋亡與粒腺體功能異常相關 22 4.5 動物實驗看WT Pg-OMVs對CAP的影響 24 4.5.1 放射學影像檢查 25 4.5.2 組織切片結果 28 第五章 討論與未來展望 31 參考文獻 33 附錄 38 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 根尖病變 | zh_TW |
| dc.subject | 牙齦卟啉單胞菌 | zh_TW |
| dc.subject | 外膜囊泡 | zh_TW |
| dc.subject | 牙齦蛋白酶 | zh_TW |
| dc.subject | 成骨細胞凋亡 | zh_TW |
| dc.subject | 粒腺體功能障礙 | zh_TW |
| dc.subject | outer membrane vesicles | en |
| dc.subject | periapical lesion | en |
| dc.subject | mitochondria dysfunction | en |
| dc.subject | osteoblast apoptosis | en |
| dc.subject | gingipains | en |
| dc.subject | Porphyromonas gingivalis | en |
| dc.title | 牙齦卟啉單胞菌之外膜囊泡經由活化牙齦蛋白酶加劇根尖病變的進展 | zh_TW |
| dc.title | Porphyromonas gingivalis outer membrane vesicles exacerbate periapical lesion propagation via gingipain activation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 洪志遠;王翰偉 | zh_TW |
| dc.contributor.oralexamcommittee | Chi-Yuan Hong;Han-Wei Wang | en |
| dc.subject.keyword | 根尖病變,牙齦卟啉單胞菌,外膜囊泡,牙齦蛋白酶,成骨細胞凋亡,粒腺體功能障礙, | zh_TW |
| dc.subject.keyword | periapical lesion,Porphyromonas gingivalis,outer membrane vesicles,gingipains,osteoblast apoptosis,mitochondria dysfunction, | en |
| dc.relation.page | 40 | - |
| dc.identifier.doi | 10.6342/NTU202501000 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-06-05 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 臨床牙醫學研究所 | - |
| dc.date.embargo-lift | 2028-05-28 | - |
| Appears in Collections: | 臨床牙醫學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf Restricted Access | 13.78 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
