請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99555完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭生興 | zh_TW |
| dc.contributor.advisor | Sang-Heng Kok | en |
| dc.contributor.author | 曾建福 | zh_TW |
| dc.contributor.author | Chien-Fu Tseng | en |
| dc.date.accessioned | 2025-09-16T16:06:07Z | - |
| dc.date.available | 2025-09-17 | - |
| dc.date.copyright | 2025-09-16 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-13 | - |
| dc.identifier.citation | 1. Quinn B, Potting CM, Stone R, Blijlevens NM, Fliedner M, Margulies A, et al. Guidelines for the assessment of oral mucositis in adult chemotherapy, radiotherapy and haematopoietic stem cell transplant patients. Eur J Cancer 2008;44:61-72.
2. Glenny AM, Gibson F, Auld E, Coulson S, Clarkson JE, et al. The development of evidence-based guidelines on mouth care for children, teenagers and young adults treated for cancer. Eur J Cancer 2010;46:1399-1412. 3. Potting CM, Mank A, Blijlevens NM, Donnelly JP, Van Achterberg T. Providing oral care in haematological oncology patients: nurses' knowledge and skills. Eur J Oncol Nurs 2008;12:291-8. 4. Cheng KK, Leung SF, Liang RH, Tai JW, Yeung RM, Thompson DR. Severe oral mucositis associated with cancer therapy: Impact on oral functional status and quality of life. Support Care Cancer 2010;18:1477-485. 5. Paulino MR, Alves LR, Gurgel BCV, et al. Simplified versus traditional techniques for complete denture fabrication: A systematic review. J. Prosthet. Dent. 2015;113:12-16. 6. Peng T-Y, Lin D-J, Mine Y, et al. Biofilm formation on the surface of (poly)ether-ether-ketone and in vitro antimicrobial efficacy of photodynamic therapy on peri-implant mucositis. Polymers 2021;13:940. 7. Oppenheim FG, Yang YC, Diamond RD, Hyslop D, Offner GD, Troxler RF. The primary structure and functional characterization of the neutral histidine-rich polypeptide from human parotid secretion. J Biol Chem 1986;261:1177-182. 8. Elad S, Zadik Y. Chronic oral mucositis after radiotherapy to the head and neck: a new insight. Support Care Cancer 2016;24:4825-830. 9. Lalla RV, Treister N, Sollecito T, Schmidt B, Patton LL, Mohammadi K, et al. Oral complications at 6 months after radiation therapy for head and neck cancer. Oral Dis 2017;23:1134-143. 10. Nuchit S, Lam-ubol A, Paemuang W, Talungchit S, Chokchaitam O, Mungkung OO, et al. Alleviation of dry mouth by saliva substitutes improved swallowing ability and clinical nutritional status of post-radiotherapy head and neck cancer patients: a randomized controlled trial. Support Care Cancer 2020;28:2817-828. 11. Bugshan A, Farooq I: Oral squamous cell carcinoma: metastasis, potentially associated malignant disorders, etiology and recent advancements in diagnosis. F1000Res 9: 229, 2020. DOI: 10.12688/f1000research.22941.1 12. Lin CW, Chin HK, Lee SL, Chiu CF, Chung JG, Lin ZY, Wu CY, Liu YC, Hsiao YT, Feng CH, Bai LY and Weng JR: Ursolic acid induces apoptosis and autophagy in oral cancer cells. Environ Toxicol 34(9): 983-991, 2019. DOI: 10.1002/tox.22769 13. Melo-Alvim C, Neves ME, Santos JL, Abrunhosa-Branquinho AN, Barroso T, Costa L, Ribeiro L: Radiotherapy, chemotherapy and immunotherapy-current practice and future perspectives for recurrent/metastatic oral cavity squamous cell carcinoma. Diagnostics (Basel) 13(1): 99, 2022. DOI: 10.3390/ diagnostics13010099 14. Yang X, Hao J, Zhu CH, Niu YY, Ding XL, Liu C, Wu XZ: Survival benefits of western and traditional Chinese medicine treatment for patients with pancreatic cancer. Medicine (Baltimore) 94(26): e1008, 2015. 15. Lee YW, Chen TL, Shih YR, Tsai CL, Chang CC, Liang HH, Tseng SH, Chien SC, Wang CC: Adjunctive traditional Chinese medicine therapy improves survival in patients with advanced breast cancer: A population based study. Cancer 120(9): 1338-1344, 2014. 16. Lu SY, Chen JJ, Pan JI, Fu ZX, Wu JL, Hsieh TC: The association between different patterns of traditional Chinese medicine treatment and all-cause mortality among cancer patients. Integr Cancer Ther 18: 1534735418823273, 2019. 17. Lin HC, Lin CL, Huang WY, Shangkuan WC, Kang BH, Chu YH, Lee JC, Fan HC, Kao CH: The use of adjunctive traditional Chinese medicine therapy and survival outcome in patients with head and neck cancer: a nationwide population-based cohort study. Qjm 108(12): 959-965, 2015. 18. Hu S, Li S, Xu Y, Huang X, Mai Z, Chen Y, Xiao H, Ning W, Gaus S, Savkovic V, Lethaus B, Zimmerer R, Acharya A, Ziebolz D, Schmalz G, Huang S, Zhao J, Hu X: The antitumor effects of herbal medicine Triphala on oral cancer by inactivating PI3K/Akt signaling pathway: based on the network pharmacology, molecular docking, in vitro and in vivo experimental validation. Phytomedicine 128: 155488, 2024. 19. Alqutaibi AY, Baik A, Almuzaini SA, et al. Polymeric denture base materials: A review. Polymers 2023;15:3258. 20. Alp G, Johnston WM, Yilmaz B. Optical properties and surface roughness of prepolymerized poly(methyl methacrylate) denture base materials. J. Prosthet. Dent. 2019;121:347-52. 21. Zafar MS. Prosthodontic applications of polymethyl methacrylate (PMMA): An update. Polymers 2020;12:2299. 22. Taylor PB, Frank SL. Low temperature polymerization of acrylic resins. J. Dent. Res. 1950;29:486-92. 23. Ferracane JL. Hygroscopic and hydrolytic effects in dental polymer networks. Dent. Mater. 2006;22:211-22. 24. Lee S, Hong S-J, Paek J, et al. Comparing accuracy of denture bases fabricated by injection molding, CAD/CAM milling, and rapid prototyping method. J. Adv. Prosthodont. 2019;11:55-64. 25. Temizci T, Bozoğulları HN. Effect of thermal cycling on the flexural strength of 3-D printed, CAD/CAM milled and heat-polymerized denture base materials. BMC Oral Health 2024;24:357. 26. Yu H-J, Kang Y-J, Park Y, et al. A comparison of the mechanical properties of 3D-printed, milled, and conventional denture base resin materials. Dent. Mater. J. 2024;43:813-21. 27. Arora O, Ahmed N, Nallaswamy D, et al. Denture base materials: An in vitro evaluation of the mechanical and color properties. J. Dent. 2024;145:104993. 28. Dimitrova M, Corsalini M, Kazakova R, et al. Comparison between conventional PMMA and 3D printed resins for denture bases: A narrative review. J. Compos. Sci. 2022;6:87. 29. Abualsaud R, Gad MM. Flexural strength of CAD/CAM denture base materials: Systematic review and meta-analysis of in-vitro studies. J. Int. Soc. Prev. Community Dent. 2022;12:160-70. 30. Batisse C, Nicolas E. Comparison of CAD/CAM and conventional denture base resins: A systematic review. Appl. Sci. 2021;11:5990. 31. Takhtdar M, Azizimoghadam N, Kalantari MH, et al. Effect of denture cleansers on color stability and surface roughness of denture bases fabricated from three different techniques: Conventional heat-polymerizing, CAD/CAM additive, and CAD/CAM subtractive manufacturing. Clin. Exp. Dent. Res. 2023;9:840-50. 32. Sidhom M, Zaghloul H, Mosleh IE, et al.Effect of different CAD/CAM milling and 3D printing digital fabrication techniques on the accuracy of PMMA working models and vertical marginal fit of PMMA provisional dental prosthesis: An in vitro study. Polymers 2022;14:1285. 33. Jeong Y-G, Lee W-S, Lee K-B. Accuracy evaluation of dental models manufactured by CAD/CAM milling method and 3D printing method. J. Adv. Prosthodont. 2018;10:245-51. 34. Etemad-Shahidi Y, Qallandar OB, Evenden J, et al. Accuracy of 3-dimensionally printed full-arch dental models: A systematic review. J. Clin. Med. 2020;9:3357. 35. Zhao Q, Cheng X, Yu W, Bi Y, Guo J, Ma Q, Gong Y, He L, Yu X: Pristimerin induces apoptosis and tumor inhibition of oral squamous cell carcinoma through activating ROS-dependent ER stress/Noxa pathway. Phytomedicine 92: 153723, 2021. 36. Kuo CS, Yang CY, Lin CK, Lin GJ, Sytwu HK, Chen YW: Triptolide suppresses oral cancer cell PD-L1 expression in the interferon-γ-modulated microenvironment in vitro, in vivo, and in clinical patients. Biomed Pharmacother 133: 111057, 2021. 37. Zhou Z, Han S, Liao J, Wang R, Yu X, Li M: Isoliquiritigenin inhibits oral squamous cell carcinoma and overcomes chemoresistance by destruction of survivin. Am J Chin Med 51(08): 2221-2241, 2023. 38. Chen HY, Hung YC, Lee EJ, Chen TY, Chuang IC, Wu TS: The protective efficacy of magnolol in hind limb ischemiareperfusion injury. Phytomedicine 16(10): 976-981, 2009. 39. Szałabska-Rąpała K, Borymska W, Kaczmarczyk-Sedlak I: Effectiveness of magnolol, a lignan from magnolia bark, in diabetes, its complications and comorbidities-a review. Int J Mol Sci 22(18): 50, 2021. 40. Zhang FH, Ren HY, Shen JX, Zhang XY, Ye HM, Shen DY: Magnolol suppresses the proliferation and invasion of cholangiocarcinoma cells via inhibiting the NF-ĸB signaling pathway. Biomed Pharmacother 94: 474-480, 2017. 41. Kalyanaraman B: Exploiting the tumor immune microenvironment and immunometabolism using mitochondria-targeted drugs: Challenges and opportunities in racial disparity and cancer outcome research. FASEB J 36(4): e22226, 2022. 42. Chen YT, Lin CW, Su CW, Yang WE, Chuang CY, Su SC, Hsieh MJ, Yang SF: Magnolol triggers caspase-mediated apoptotic cell death in human oral cancer cells through JNK1/2 and p38 pathways. Biomedicines 9(10): 1295, 2021. 43. Peng CY, Yu CC, Huang CC, Liao YW, Hsieh PL, Chu PM, Yu CH, Lin SS: Magnolol inhibits cancer stemness and IL-6/Stat3 signaling in oral carcinomas. J Formos Med Assoc 121(1): 51-57, 2022. 44. Chiang IT, Lee YH, Tan ZL, Hsu FT, Tu HF: Regorafenib enhances antitumor immune efficacy of anti-PD-L1 immunotherapy on oral squamous cell carcinoma. Biomed Pharmacother 147: 112661, 2022. 45. Hsu LC, Lin CN, Hsu FT, Chen YT, Chang PL, Hsieh LL, Wang HY, Lin KH, Hsiao HC, Tu HF: Imipramine suppresses tumor growth and induces apoptosis in oral squamous cell carcinoma: targeting multiple processes and signaling pathways. Anticancer Res 43(9): 3987-3996, 2023. 46. Oweida AJ, Bhatia S, Van Court B, Darragh L, Serkova N, Karam SD: Intramucosal inoculation of squamous cell carcinoma cells in mice for tumor immune profiling and treatment response assessment. J Vis Exp (146): e59195, 2019. 47. Boutilier AJ, Elsawa SF: Macrophage polarization states in the tumor microenvironment. Int J Mol Sci 22(13): 6995, 2021. 48. Hsu FT, Liu YC, Tsai CL, Yueh PF, Chang CH, Lan KL: Preclinical evaluation of recombinant human IL15 protein fused with albumin binding domain on anti-PD-L1 immunotherapy efficiency and anti-tumor immunity in colon cancer and melanoma. Cancers (Basel) 13(8): 1789, 2021. 49. Hsu FT, Tsai CL, Chiang IT, Lan KH, Yueh PF, Liang WY, Lin CS, Chao Y, Lan KL: Synergistic effect of Abraxane that combines human IL15 fused with an albumin-binding domain on murine models of pancreatic ductal adenocarcinoma. J Cell Mol Med 26(7): 1955-1968, 2022. 50. Hsu FT, Chen TC, Chuang HY, Chang YF, Hwang JJ: Enhancement of adoptive T cell transfer with single low dose pretreatment of doxorubicin or paclitaxel in mice. Oncotarget 6(42): 44134-44150, 2015. 51. Ribatti D: Immunosuppressive effects of vascular endothelial growth factor. Oncol Lett 24(4): 369, 2022. 52. Sørensen RB, Hadrup SR, Svane IM, Hjortsø MC, Thor Straten P, Andersen MH: Indoleamine 2,3-dioxygenase specific, cytotoxic T cells as immune regulators. Blood 117(7): 2200-2210, 2011. 53. Lee YC, Weng YS, Wang HY, Hsu FT, Chueh FS, Wu JY, Chen WL, Chen JH: Magnolol induces apoptosis through extrinsic/intrinsic pathways and attenuates NF-ĸB/STAT3 signaling in non-small-cell lung cancer cells. Anticancer Res 42(8): 3825-3833, 2022. 54. Li YC, Wong CN, Hsu FT, Chen JH, Yang CC, Liu HH, Chen WL, Weng YS: Accessing apoptosis induction and metastasis inhibition effect of magnolol on triple negative breast cancer in vitro. In Vivo 37(3): 1028-1036, 2023. 55. Kim H, Kim J, Sa JK, Ryu BK, Park KJ, Kim J, Ha H, Park Y, Shin MH, Kim J, Lee H, Kim D, Lee K, Jang B, Lee KM, Kang SH: Calcipotriol, a synthetic Vitamin D analog, promotes antitumor immunity via CD4+T-dependent CTL/NK cell activation. Biomed Pharmacother 154: 113553, 2022. 56. Kou Y, Sun Q, Zhu R, Lin Z, Li Z, Xu H, Feng X, Liu Y: Dioscin induces M1 macrophage polarization through Connexin43 Channels in Tumor-associated-macrophages-mediated melanoma metastasis. Phytomedicine 109: 154559, 2023. 57. Fiorentini G, Banfi R, Dentico P, Moriconi S, Turrisi G, Pelagotti F, Rossi S, Montagnani F: Clinical experience of treatment of metastatic melanoma and solid tumours adopting a derivative of diphtheria toxin: Cross-reacting material 197. In Vivo 27(2): 197-202, 2013. 58. Guermonprez P, Valladeau J, Zitvogel L, Théry C, Amigorena S: Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 20(1): 621-667, 2002. 59. Maskalenko NA, Zhigarev D, Campbell KS: Harnessing natural killer cells for cancer immunotherapy: dispatching the first responders. Nat Rev Drug Discov 21(8): 559-577, 2022. 60. Watson RA, Tong O, Cooper R, Taylor CA, Sharma PK, de Los Aires AV, Mahé EA, Ruffieux H, Nassiri I, Middleton MR, Fairfax BP: Immune checkpoint blockade sensitivity and progression-free survival associates with baseline CD8(+) T cell clone size and cytotoxicity. Sci Immunol 6(64): eabj8825, 2021. 61. Liu K, Sun Q, Liu Q, Li H, Zhang W, Sun C: Focus on immune checkpoint PD-1/PD-L1 pathway: New advances of polyphenol phytochemicals in tumor immunotherapy. Biomed Pharmacother 154: 113618, 2022. 62. Shimizu S, Hiratsuka H, Koike K, Tsuchihashi K, Sonoda T, Ogi K, Miyakawa A, Kobayashi J, Kaneko T, Igarashi T, Hasegawa T, Miyazaki A: Tumor-infiltrating CD8(+) T-cell density is an independent prognostic marker for oral squamous cell carcinoma. Cancer Med 8(1): 80-93, 2019. 63. Ma B, Wang J, Yusufu P: Tumor-derived exosome ElNF1-AS1 affects the progression of gastric cancer by promoting M2 polarization of macrophages. Environ Toxicol 38(9): 2228-2239, 2023. 64. Hayashi T, Yoshikawa K, Suzuki S, Gosho M, Ueda R, Kazaoka Y: Tumor-infiltrating FoxP3+ T cells are associated with poor prognosis in oral squamous cell carcinoma. Clin Exp Dent Res 8(1): 152-159, 2022. 65. Principe DR, Chiec L, Mohindra NA, Munshi HG: Regulatory T-cells as an emerging barrier to immune checkpoint inhibition in lung cancer. Front Oncol 11: 684098, 2021. 66. Ceci C, Atzori MG, Lacal PM, Graziani G: Targeting tumorassociated macrophages to increase the efficacy of immune checkpoint inhibitors: a glimpse into novel therapeutic approaches for metastatic melanoma. Cancers (Basel) 12(11): 3401, 2020. 67. Peng T-Y, Ma T-L, Lee IT, et al. Enhancing dental cement bond strength with autofocus-laser-cutter-generated grooves on polyetheretherketone surfaces. Polymers 2023;15:3670. 68. Kaushik A, Garg RK. Effect of printing parameters on the surface roughness and dimensional accuracy of digital light processing fabricated parts. J. Mater. Eng. Perform. 2024;33:11863-75. 69. Yue X, Suopajärvi T, Sun S, et al. High-purity lignin fractions and nanospheres rich in phenolic hydroxyl and carboxyl groups isolated with alkaline deep eutectic solvent from wheat straw. Bioresour. Technol. 2022;360:127570. 70. Gorbounov M, Halloran P, Masoudi Soltani S. Hydrophobic and hydrophilic functional groups and their impact on physical adsorption of CO2 in presence of H2O: A critical review. J. CO2 Util. 2024;86:102908. 71. Barberi J, Spriano S. Titanium and protein adsorption: An overview of mechanisms and effects of surface features. Materials 2021;14:1590. 72. Talapko J, Juzbašić M, Meštrović T, et al. Aggregatibacter actinomycetemcomitans: From the Oral Cavity to the Heart Valves. Microorganisms 2024;12:1451. 73. Oopath SV, Baji A, Abtahi M, et al. Nature-inspired biomimetic surfaces for controlling bacterial attachment and biofilm development. Adv. Mater. Interfaces 2023;10:2201425. 74. Fiore AD, Meneghello R, Brun P, et al. Comparison of the flexural and surface properties of milled, 3D-printed, and heat polymerized PMMA resins for denture bases: An in vitro study. J Prosthodont Res 2022;66:502-08. 75. Burgueño-Barris G, Camps-Font O, Figueiredo R, et al. The Influence of implantoplasty on surface roughness, biofilm formation, and biocompatibility of titanium implants: A systematic review. Int. J. Oral Maxillofac. Implants 2021;36:e111–e19. 76. Kang J-W, Jeon J, Lee J-Y, et al.Surface-wetting characteristics of DLP-based 3D printing outcomes under various printing conditions for microfluidic device fabrication. Micromachines 2024;15:61. 77. Zhang ZC, Li PL, Chu FT, et al. Influence of the three-dimensional printing technique and printing layer thickness on model accuracy. J. Orofac. Orthop. 2019;80:194-204. 78. Chaudhary R, Fabbri P, Leoni E, et al. Additive manufacturing by digital light processing: A review. Prog. Addit. Manuf. 2023;8:331-51. 79. Hussain MI, Xia M, Ren X, et al. Digital light processing 3D printing of ceramic materials: a review on basic concept, challenges, and applications. Int. J. Adv. Manuf. Technol. 2024;130:2241-67. 80. Rosa V, Silikas N, Yu B, et al. Guidance on the assessment of biocompatibility of biomaterials: Fundamentals and testing considerations. Dent. Mater. 2024;40:1773-85. 81. Kreve S, dos Reis AC. Effect of surface properties of ceramic materials on bacterial adhesion: A systematic review. J. Esthet. Restor. Dent. 2022;34:461-72. 82. Freitas R, Duarte S, Feitosa S, et al. Physical, mechanical, and anti-biofilm formation properties of CAD-CAM milled or 3D printed denture base resins: In vitro analysis. J Prosthodont 2023;32:38-44. 83. Abualsaud, R., & Gad, M. M. (2022). Flexural Strength of CAD/CAM Denture Base Materials: Systematic Review and Meta-analysis of In-vitro Studies. J Int Soc Prev Community Dent, 12(2), 160-170. 84. Alp, G., Johnston, W. M., & Yilmaz, B. (2019). Optical properties and surface roughness of prepolymerized poly(methyl methacrylate) denture base materials. J Prosthet Dent, 121(2), 347-352. 85. Alqutaibi, A. Y., Baik, A., Almuzaini, S. A., Farghal, A. E., Alnazzawi, A. A., Borzangy, S., Aboalrejal, A. N., AbdElaziz, M. H., Mahmoud, II, & Zafar, M. S. (2023). Polymeric Denture Base Materials: A Review. Polymers (Basel)(15). 86. Anadioti, E., Musharbash, L., Blatz, M. B., Papavasiliou, G., & Kamposiora, P. (2020). 3D printed complete removable dental prostheses: a narrative review. BMC Oral Health, 20(1), 343. 87. Batisse, C., & Nicolas, E. (2021). Comparison of CAD/CAM and Conventional Denture Base Resins: A Systematic Review. Applied Sciences, 11(13). 88. Dimitrova, M., Corsalini, M., Kazakova, R., Vlahova, A., Chuchulska, B., Barile, G., Capodiferro, S., & Kazakov, S. (2022). Comparison between Conventional PMMA and 3D Printed Resins for Denture Bases: A Narrative Review. Journal of Composites Science, 6(3). 89. Mohd Farid, D. A., Zahari, N. A. H., Said, Z., Ghazali, M. I. M., Hao-Ern, L., Mohamad Zol, S., Aldhuwayhi, S., & Alauddin, M. S. (2022). Modification of Polymer Based Dentures on Biological Properties: Current Update, Status, and Findings. Int J Mol Sci, 23(18). 90. Paulino, M. R., Alves, L. R., Gurgel, B. C., & Calderon, P. S. (2015). Simplified versus traditional techniques for complete denture fabrication: a systematic review. J Prosthet Dent, 113(1), 12-16. 91. Sidhom, M., Zaghloul, H., Mosleh, I. E., & Eldwakhly, E. (2022). Effect of Different CAD/CAM Milling and 3D Printing Digital Fabrication Techniques on the Accuracy of PMMA Working Models and Vertical Marginal Fit of PMMA Provisional Dental Prosthesis: An In Vitro Study. Polymers (Basel), 14(7). 92. Zafar, M. S. (2020). Prosthodontic Applications of Polymethyl Methacrylate (PMMA): An Update. Polymers (Basel), 12(10). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99555 | - |
| dc.description.abstract | 口腔癌及牙科修復材料相關研究在近年均有顯著進展,探討新型治療與材料技術在口腔醫學的整合臨床與基礎研究。首先,使用含抗菌胜肽的噴劑,能有效緩解口乾症狀與口腔疼痛,提升患者的生活品質,尤其在疼痛管理方面效果顯著。雖然短期內未見對口腔黏膜炎有明顯改善,但該噴劑有助於減少因口腔衛生不佳導致的黏膜潰瘍及感染,改善口腔環境,顯示有助減輕口腔黏膜炎與口乾症狀,並改善營養攝取與生活品質。其次,木蘭醇作為免疫調節及抗腫瘤輔助用藥,能降低口腔癌復發率,減少術後再手術機會,並提升患者存活率與口腔健康狀況。在動物實驗中,利用小鼠原位口腔鱗狀細胞癌模型,評估木蘭醇之抗腫瘤與免疫調節作用,高劑量組顯著抑制腫瘤生長,促進細胞凋亡,並增加NK細胞、細胞毒性T細胞與樹突細胞比例,同時抑制免疫抑制細胞,且安全性良好。材料研究部分,比較傳統包埋、銑削與立體列印義齒基底樹脂(DBR)的物化與生物性能,結果顯示立體列印DBR具最低表面粗糙度、無細胞毒性,且對生物膜形成具最高抑制效果,顯示其有潛力提升口腔衛生與長期穩定性。此外,針對聚芳醚酮(PAEK)牙科植體進行手持式非熱等離子體(HNP)處理,可顯著增加表面親水性與表面自由能,促進成骨細胞黏附、增殖與礦化標的物表達,且無明顯炎症反應。重建方面,採用非熱等離子體技術處理植體表面,加速骨結合,有助於改善缺骨及缺牙問題,為傳統鈦金屬植牙提供替代或輔助方案。咀嚼功能復形則引入DLP立體列印義齒技術,提高假牙製作的精確度,降低感染風險,提升義齒貼合度和患者咀嚼功能,改善因張口受限及黏膜變薄所造成的口腔微環境改變。綜合多胜肽藥劑與木蘭醇的應用,不僅提升口腔癌的口腔衛生和免疫功能,減少治療相關的疼痛感,促進營養攝取,有助於改善患者的心理狀態和生活品質,能有效降低併發症和腫瘤復發率,分別在臨床症狀控制、腫瘤免疫調節、義齒材料性能優化與植體表面功能化等面向展現應用潛力,對提升口腔醫療品質與病人生活品質具有重要意義,為口腔癌患者提供更全面的輔助治療選擇。 | zh_TW |
| dc.description.abstract | Advances in oral cancer therapy and dental restorative materials increasingly emphasize integrating novel therapeutics with material innovations to optimize clinical outcomes.An antimicrobial peptide spray effectively alleviated xerostomia and oral pain, with marked benefit in pain management. While short-term impact on mucositis was limited, it reduced ulceration and infection, improving oral environment, nutrition, and quality of life. Magnolol, an immunomodulatory and antitumor agent, decreased recurrence rates, reduced reoperation needs, and enhanced survival. In a murine oral squamous cell carcinoma model, high-dose magnolol suppressed tumor growth, promoted apoptosis, increased NK cells, cytotoxic T cells, and dendritic cells, while reducing immunosuppressive populations, with favorable safety.
Material innovations included stereolithography-printed denture base resins exhibiting lowest surface roughness, no cytotoxicity, and greatest biofilm inhibition, supporting superior oral hygiene and long-term stability. Polyaryletherketone (PAEK) implants treated with handheld non-thermal plasma (HNP) showed enhanced hydrophilicity, osteoblast adhesion, proliferation, and mineralization without inflammation, accelerating osseointegration and offering an alternative to titanium in compromised bone. Digital light processing (DLP) denture fabrication improved fit, accuracy, and masticatory function, while lowering infection risk. Combining antimicrobial peptides, magnolol, advanced denture materials, and plasma-functionalized implants addresses oral cancer care at multiple levels—pain relief, immune modulation, oral hygiene, and prosthetic performance—potentially reducing recurrence and improving quality of life. These strategies represent promising adjunctive options to elevate oral oncology treatment standards. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-16T16:06:07Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-16T16:06:07Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口委審定書 i
致謝 ii 中文摘要 iii 英文摘要 iv 目次 v 圖表目錄 vii 圖次 vii 表次 viii 正文 1 文獻摘要 1 研究動機 5 研究目地 7 口腔黏膜炎預防及治療 7 降低癌症復發率及預防方式,提升治療的成功率及後續追蹤的成效。 13 增加植入物骨整合及尋找取代物 13 減少復形物黏膜刺激 14 研究方法 16 口腔黏膜炎臨床分析: 16 研究方法、進行步驟及執行進度: 18 藥物預防復發之研究: 19 研究方法、進行步驟及執行進度: 20 骨整合材料取代物: 22 研究方法、進行步驟及執行進度: 23 表面分析與物化性質評估 26 研究方法、進行步驟及執行進度: 27 研究結果 32 探討天然抗菌胜肽噴劑介入改善口腔癌病人接受化放射線治療前後的口乾症狀及口腔黏膜炎與生活品質的影響 32 胜肽介入治療對口腔癌病人口乾徵狀的療效 32 胜肽介入治療對口腔癌病人口腔黏膜炎的療效 33 胜肽介入治療對口腔癌病人生活質量的療效 33 以木蘭醇在口腔鱗狀細胞癌中的治療效果和免疫調節作用 33 列印式非熱等離子體對聚芳醚酮植入物生物反應、礦化和炎症反應的影響 43 表面表徵Surface characterization 43 細胞代謝活性和細胞毒性Cell metabolic activity and cytotoxicity 44 MG-63細胞黏附和形態MG-63 cell adherence and morphology 44 促炎細胞因數表達Pro-inflammatory cytokine expression 44 促進骨骼和牙齒礦化Promotion of bone and tooth mineralization 44 立體列印義齒基底樹脂材料之物化與生物性能評估 48 表面微地形和形貌 48 表面粗糙度結果 49 表面潤濕性 49 細胞毒性 50 生物膜形成 50 討論 54 1. 對口乾症狀的影響 55 2. 對口腔黏膜炎的影響 56 3. 對生活品質與疼痛的影響 56 4. 木蘭醇的輔助抗腫瘤潛力 56 5. 植牙表面改質的創新應用 58 6. 立體列印義齒基底樹脂的臨床優勢 60 結論 62 參考文獻 63 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 木蘭醇 | zh_TW |
| dc.subject | 非熱等離子體 | zh_TW |
| dc.subject | 免疫調節 | zh_TW |
| dc.subject | 立體列印義齒基底樹脂 | zh_TW |
| dc.subject | 生活品質 | zh_TW |
| dc.subject | 生物相容性 | zh_TW |
| dc.subject | 口腔癌 | zh_TW |
| dc.subject | 胜肽 | zh_TW |
| dc.subject | quality of life | en |
| dc.subject | biocompatibility | en |
| dc.subject | immunomodulation | en |
| dc.subject | non-thermal plasma | en |
| dc.subject | 3D printing | en |
| dc.subject | magnolol | en |
| dc.subject | P113 peptide | en |
| dc.subject | oral cancer | en |
| dc.title | 口腔癌輔助性治療及功能改善之研究 | zh_TW |
| dc.title | Adjuvant treatment of oral cancer and functional improvement | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 陳信銘;鄭世榮;章浩宏;方致元;蔣智宏 | zh_TW |
| dc.contributor.oralexamcommittee | Hsin-Min Chen;Shih-Jung Cheng;Hao-Hueng Chang;Chih-Yuan Fang;Chi-Hung Chiang | en |
| dc.subject.keyword | 口腔癌,胜肽,木蘭醇,立體列印義齒基底樹脂,非熱等離子體,免疫調節,生物相容性,生活品質, | zh_TW |
| dc.subject.keyword | oral cancer,P113 peptide,magnolol,3D printing,non-thermal plasma,immunomodulation,biocompatibility,quality of life, | en |
| dc.relation.page | 69 | - |
| dc.identifier.doi | 10.6342/NTU202504403 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-14 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 臨床牙醫學研究所 | - |
| dc.date.embargo-lift | 2030-08-11 | - |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 2.44 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
