Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99553
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊宗傑zh_TW
dc.contributor.advisorTsung-Chieh Yangen
dc.contributor.author周昀瑩zh_TW
dc.contributor.authorYUN-YING CHOUen
dc.date.accessioned2025-09-16T16:05:45Z-
dc.date.available2025-09-17-
dc.date.copyright2025-09-16-
dc.date.issued2025-
dc.date.submitted2025-07-25-
dc.identifier.citation[1] Alqutaibi AY, Baik A, Almuzaini SA, Farghal AE, Alnazzawi AA, Borzangy S et al. Polymeric Denture Base Materials: A Review. Polym (Basel). 2023;15:3258-85.
[2] Atwood DA. Final report of the workshop on clinical requirements of ideal denture base materials. J Prosthe Dent. 1968;20:101-5.
[3] Dimitrova M, Corsalini M, Kazakova R, Vlahova A, Chuchulska B, Barile G et al. Comparison between Conventional PMMA and 3D Printed Resins for Denture Bases: A Narrative Review. J Compos Sci. 2022;6:87-100.
[4] Zafar MS. Prosthodontic Applications of Polymethyl Methacrylate (PMMA): An Update. Polym (Basel). 2020;12:2299-334.
[5] Bidra AS, Taylor TD, Agar JR. Computer-aided technology for fabricating complete dentures: systematic review of historical background, current status, and future perspectives. J Prosthet Dent. 2013;109:361-6.
[6] Huang PJ, Wang TM, Lin LD, Yang TC. Effect of Immersion in Water on Deformation with a Variety of Denture Base Materials and Manufacturing Techniques. Int J Prosthodont. 2024:123-35.
[7] Lee BS, Cheng KC, Zeng BH, Wang PC, Yang TC. Development of a novel resin for provisional prostheses using hyperbranched polyurethane acrylate and triethylene glycol dimethacrylate - An in vitro study. J Prosthodont Res. 2022;66:557-63.
[8] Yu-Hsuan Hsu K-CC. Effect of Post curing Process on the Properties of Hyperbranched Polyurethane Acrylate Blended Resins in 3D Printing[master’s thesis] National Taipei University of Technology;2023.
[9] Rokaya D, Srimaneepong V, Sapkota J, Qin J, Siraleartmukul K, Siriwongrungson V. Polymeric materials and films in dentistry: An overview. J Adv Res. 2018;14:25-34.
[10] de Oliveira DC, Rocha MG, Gatti A, Correr AB, Ferracane JL, Sinhoret MA. Effect of different photoinitiators and reducing agents on cure efficiency and color stability of resin-based composites using different LED wavelengths. J Dent. 2015;43:1565-637.
[11] Schweiger J, Edelhoff D, Guth JF. 3D Printing in Digital Prosthetic Dentistry: An Overview of Recent Developments in Additive Manufacturing. J Clin Med. 2021;10:2010-34.
[12] Barazanchi A, Li KC, Al-Amleh B, Lyons K, Waddell JN. Additive Technology: Update on Current Materials and Applications in Dentistry. J Prosthodont. 2017;26:156-63.
[13] Prpic V, Schauperl Z, Catic A, Dulcic N, Cimic S. Comparison of Mechanical Properties of 3D-Printed, CAD/CAM, and Conventional Denture Base Materials. J Prosthodont. 2020;29:524-8.
[14] Prpic V, Slacanin I, Schauperl Z, Catic A, Dulcic N, Cimic S. A study of the flexural strength and surface hardness of different materials and technologies for occlusal device fabrication. J Prosthet Dent. 2019;121:955-9.
[15] International Organization for Standardization (ISO). ISO 20795-1:2013 Dentistry — Base polymers — Part 1: Denture base polymers. Geneva, Switzerland: ISO; 2013.
[16] Berli C, Thieringer FM, Sharma N, Muller JA, Dedem P, Fischer J et al. Comparing the mechanical properties of pressed, milled, and 3D-printed resins for occlusal devices. J Prosthet Dent. 2020;124:780-6.
[17] Wesemann C, Spies BC, Sterzenbach G, Beuer F, Kohal R, Wemken G et al. Polymers for conventional, subtractive, and additive manufacturing of occlusal devices differ in hardness and flexural properties but not in wear resistance. Dent Mater J. 2021;37:432-42.
[18] Hassan M, Asghar M, Din SU, Zafar MS. Thermoset polymethacrylate-based materials for dental applications. In: M M, editor. Materials for biomedical engineering: thermoset and thermoplastic polymers: Amsterdam: Elsevier; 2019. p. 273-308.
[19] Juhi Singh PR, Ashutosh Gupta, Arvind Tripathi, Ritika Sharma. Shrinkage Assessment of Different Denture Bases: A Comparative Study
Int J Pharm Res. 2024;16:347-50.
[20] Zissis. A long term study on residual monomer release from denture materials. Eur J Prosthodont Rest Dent. 2008;16:81-4.
[21] Cubas LS, Batista DS, Batista LH, Baratto Filho F, Matos TdP. Review of complete denture fabrication processes and the application of CAD/CAM systems. RGO - Rev Gaúcha Odontol. 2024;72:1981-92.
[22] Saponaro PC, Yilmaz B, Heshmati RH, McGlumphy EA. Clinical performance of CAD-CAM-fabricated complete dentures: A cross-sectional study. J Prosthet Dent. 2016;116:431-6.
[23] Mubaraki MQ, Moaleem MMA, Alzahrani AH, Shariff M, Alqahtani SM, Porwal A et al. Assessment of Conventionally and Digitally Fabricated Complete Dentures: A Comprehensive Review. Mater (Basel). 2022;15:3868-81.
[24] Infante L, Yilmaz B, McGlumphy E, Finger I. Fabricating complete dentures with CAD/CAM technology. J Prosthet Dent. 2014;111:351-6.
[25] Hirayama H. Digital Removable Complete Denture (DRCD). In: Sailer I FV, Pjetursson BE, Brägger U, editor. Digital Restorative Dentistry: Cham: Springer; 2019. p. 115-36.
[26] Baba NZ, Goodacre BJ, Goodacre CJ, Muller F, Wagner S. CAD/CAM Complete Denture Systems and Physical Properties: A Review of the Literature. J Prosthodont. 2021;30:113-24.
[27] Chaturvedi S, Addas MK, Alqahtani NM, Al Ahmari NM, Alfarsi MA. Clinical analysis of CAD-CAM milled and printed complete dentures using computerized occlusal force analyser. Technol Health Care. 2021;29:797-811.
[28] Tian Y, Chen C, Xu X, Wang J, Hou X, Li K et al. A Review of 3D Printing in Dentistry: Technologies, Affecting Factors, and Applications. Scanning. 2021;2021:9950131-50.
[29] Zhang ZC, Li PL, Chu FT, Shen G. Influence of the three-dimensional printing technique and printing layer thickness on model accuracy. J Orofac Orthop. 2019;80:194-204.
[30] Chockalingam K, Jawahar N, Chandrasekhar U. Influence of layer thickness on mechanical properties in stereolithography. Rapid Prototyp J. 2006;12:106-13.
[31] Ucar Y, Ekren O. Effect of layered manufacturing techniques, alloy powders, and layer thickness on mechanical properties of Co-Cr dental alloys. J Prosthet Dent. 2018;120:762-70.
[32] Balc N, Milde J, Morovič L, Blaha J. Influence of the layer thickness in the Fused Deposition Modeling process on the dimensional and shape accuracy of the upper teeth model. MATEC Web Conf. 2017;137:2006-16.
[33] Liaw CY, Guvendiren M. Current and emerging applications of 3D printing in medicine. Biofab. 2017;9:24102-21.
[34] Ferracane JL. Resin composite--state of the art. Dent Mater J. 2011;27:29-38.
[35] Chattopadhyay DK, Raju KVSN. Structural engineering of polyurethane coatings for high performance applications. Prog Polym Sci. 2007;32:352-418.
[36] Stansbury JW, Idacavage MJ. 3D printing with polymers: Challenges among expanding options and opportunities. Dent Mater J. 2016;32:54-64.
[37] Allen NS. Photoinitiators for UV and visible curing of coatings" mechanisms and properties. J Photochem Photobiol. 1996;100:101-7.
[38] Vaezi M, Chianrabutra S, Mellor B, Yang S. Multiple material additive manufacturing – Part 1: a review. Virtual Phys Prototyp. 2013;8:19-50.
[39] Guo N, Leu MC. Additive manufacturing: technology, applications and research needs. Front Mech Eng. 2013;8:215-43.
[40] Bagheri A, Jin J. Photopolymerization in 3D Printing. ACS Appl Polym Mater. 2019;1:593-611.
[41] Raszewski Z, Chojnacka K, Kulbacka J, Mikulewicz M. Mechanical Properties and Biocompatibility of 3D Printing Acrylic Material with Bioactive Components. J Funct Biomater. 2022;14:13-27.
[42] DETAX GmbH & Co. KG. Freeprint 3D dental materials catalogue [Internet]. DETAX; 2022 [cited 2025 May 12]. Available from: https://www.detax.de.
[43] 3D Systems. NextDent materials product brochure [Internet]. 3D Systems; 2018 [cited 2025 May 12]. Available from: https://www.3dsystems.com/nextdent.
[44] Gad MM, Fouda SM, Abualsaud R, Alshahrani FA, Al-Thobity AM, Khan SQ et al. Strength and Surface Properties of a 3D-Printed Denture Base Polymer. J Prosthodont. 2022;31:412-8.
[45] Dimova M. Total prosthetics in function. J of IMAB. 2006; vol. 12:1312-6.
[46] Santos C. Water absorption characteristics of dental composites incorporating
hydroxyapatite filler. Biomater. 2002;23:1897-904.
[47] FAN PL. Alternative Interpretations of Water Sorption Values of Composite Resins. J Dent Res. 1985;64:78-80.
[48] Cavalcanti YW, Bertolini MM, Cury AA, da Silva WJ. The effect of poly(methyl methacrylate) surface treatments on the adhesion of silicone-based resilient denture liners. J Prosthet Dent. 2014;112:1539-44.
[49] Bail M, Jorge JH, Urban VM, Campanha NH. Surface roughness of acrylic and silicone-based soft liners: in vivo study in a rat model. J Prosthodont. 2014;23:146-51.
[50] Vallittu PK. The swelling phenomenon of acrylic resin polymer teeth at the interfacewith
denture base polymers. J Prosthet Dent. 1997;78:194-9.
[51] Dimitrova M, Vlahova A, Hristov I, Kazakova R, Chuchulska B, Kazakov S et al. Evaluation of Water Sorption and Solubility of 3D-Printed, CAD/CAM Milled, and PMMA Denture Base Materials Subjected to Artificial Aging. J Compos Sci. 2023;7:339-57.
[52] Keenan PLJ. Dimensional change in complete dentures fabricated by injection molding and microwave processing. J Prosthet Dent. 2003;89:37-44.
[53] Chuchulska B, Zlatev S. Linear Dimensional Change and Ultimate Tensile Strength of Polyamide Materials for Denture Bases. Polym (Basel). 2021;13:3446-56.
[54] Greil V, Mayinger F, Reymus M, Stawarczyk B. Water sorption, water solubility, degree of conversion, elastic indentation modulus, edge chipping resistance and flexural strength of 3D-printed denture base resins. J Mech Behav Biomed Mater. 2023;137:105565-73.
[55] Azari A, Nikzad S. The evolution of rapid prototyping in dentistry: a review. Rapid Prototyp J. 2009;15:216-25.
[56] Takahashi Y KM, Chai J. . Flexural strength at the proportional limit of a denture base material relined with four different denture reline material. . Int J Prosthodont 1997;10:508-12.
[57] Vergani CE, Seo RS, Pavarina AC, dos Santos Nunes Reis JM. Flexural strength of autopolymerizing denture reline resins with microwave postpolymerization treatment. J Prosthet Dent. 2005;93:577-83.
[58] Archadian N. Flexural strength of rebased denture polymers. J Oral Rehabil. 2000;27:690-6.
[59] Srinivasan M, Kalberer N, Kamnoedboon P, Mekki M, Durual S, Ozcan M et al. CAD-CAM complete denture resins: an evaluation of biocompatibility, mechanical properties, and surface characteristics. J Dent. 2021;114:103785-95.
[60] Al-Dwairi ZN, Al Haj Ebrahim AA, Baba NZ. A Comparison of the Surface and Mechanical Properties of 3D Printable Denture-Base Resin Material and Conventional Polymethylmethacrylate (PMMA). J Prosthet Dent. 2023;32:40-8.
[61] Geiger V, Mayinger F, Hoffmann M, Reymus M, Stawarczyk B. Fracture toughness, work of fracture, flexural strength and elastic modulus of 3D-printed denture base resins in two measurement environments after artificial aging. J Mech Behav Biomed Mater. 2024;150:106234-45.
[62] Lutz A-M, Hampe R, Roos M, Lümkemann N, Eichberger M, Stawarczyk B. Fracture resistance and 2-body wear of 3-dimensional–printed occlusal devices. J Prosthet Dent. 2019;121:166-72.
[63] Grymak A, Aarts JM, Ma S, Waddell JN, Choi JJE. Comparison of hardness and polishability of various occlusal splint materials. J Mech Behav Biomed Mater. 2021;115:104270-80.
[64] Gad MM, Fouda SM. Factors affecting flexural strength of 3D-printed resins: A systematic review. J Prosthodont. 2023;32:96-110.
[65] Al-Haddad A, Vahid Roudsari R, Satterthwaite JD. Fracture toughness of heat cured denture base acrylic resin modified with Chlorhexidine and Fluconazole as bioactive compounds. J Dent. 2014;42:180-4.
[66] Zidan S, Silikas N, Alhotan A, Haider J, Yates J. Investigating the Mechanical Properties of ZrO(2)-Impregnated PMMA Nanocomposite for Denture-Based Applications. Mater (Basel). 2019;12:1344-58.
[67] Alhotan A, Yates J, Zidan S, Haider J, Silikas N. Assessing Fracture Toughness and Impact Strength of PMMA Reinforced with Nano-Particles and Fibre as Advanced Denture Base Materials. Mater (Basel). 2021;14:4127-42.
[68] Fouda S, Ji W, Gad MM, AlGhamdi MA, Rohr N. Flexural Strength and Surface Properties of 3D-Printed Denture Base Resins—Effect of Build Angle, Layer Thickness and Aging. Mater. 2025;18:913-26.
[69] Reis JM, Vergani CE, Pavarina AC, Giampaolo ET, Machado AL. Effect of relining, water storage and cyclic loading on the flexural strength of a denture base acrylic resin. J Dent. 2006;34:420-6.
[70] Zheng Y, Li S, Weng Z, Gao C. Hyperbranched polymers: advances from synthesis to applications. Chem Soc Rev. 2015;44:4091-121.
[71] Saadati A, Hasanzadeh M, Seidi F. Biomedical application of hyperbranched polymers: Recent Advances and challenges. Trends Anal Chem. 2021;142:116308-27.
[72] Gao C, Yan D. Hyperbranched polymers: from synthesis to applications. Prog Polym Sci. 2004;29:183-275.
[73] Wang D, Jin Y, Zhu X, Yan D. Synthesis and applications of stimuli-responsive hyperbranched polymers. Prog Polym Sci. 2017;64:114-53.
[74] Xiang H, Wang X, Lin G, Xi L, Yang Y, Lei D et al. Preparation, Characterization and Application of UV-Curable Flexible Hyperbranched Polyurethane Acrylate. Polym (Basel). 2017;9:552-64.
[75] Jeon IY, Noh HJ, Baek JB. Hyperbranched Macromolecules: From Synthesis to Applications. Molecules. 2018;23:657-79.
[76] Das A, Mahanwar P. A brief discussion on advances in polyurethane applications. Adv Ind Eng Polym Res. 2020;3:93-101.
[77] Liao F, Zeng X-r, Li H-q, Lai X-j, Zhao F-c. Synthesis and properties of UV curable polyurethane acrylates based on two different hydroxyethyl acrylates. J Cent South Univ. 2012;19:911-7.
[78] Tzeng JJ, Yang TS, Lee WF, Chen H, Chang HM. Mechanical Properties and Biocompatibility of Urethane Acrylate-Based 3D-Printed Denture Base Resin. Polym (Basel). 2021;13:822-3.
[79] Maurya SD, Kurmvanshi SK, Mohanty S, Nayak SK. A Review on Acrylate-Terminated Urethane Oligomers and Polymers: Synthesis and Applications. Polym Plast Technol Eng 2017;57:625-56.
[80] Khatri CA, Stansbury JW, Schultheisz CR, Antonucci JM. Synthesis, characterization and evaluation of urethane derivatives of Bis-GMA. Dent Mater J. 2003;19:584-8.
[81] Barszczewska-Rybarek I, Jurczyk S. Comparative Study of Structure-Property Relationships in Polymer Networks Based on Bis-GMA, TEGDMA and Various Urethane-Dimethacrylates. Mater (Basel). 2015;8:1230-48.
[82] Martim GC, Pfeifer CS, Girotto EM. Novel urethane-based polymer for dental applications with decreased monomer leaching. Mater Sci Eng C Mater Biol Appl. 2017;72:192-201.
[83] Zhang M, Puska MA, Botelho MG, Sailynoja ES, Matinlinna JP. Degree of conversion and leached monomers of urethane dimethacrylate-hydroxypropyl methacrylate-based dental resin systems. J Oral Sci. 2016;58:15-22.
[84] Moszner N, Fischer UK, Angermann J, Rheinberger V. A partially aromatic urethane dimethacrylate as a new substitute for Bis-GMA in restorative composites. Dent Mater J. 2008;24:694-9.
[85] Huettig F, Kustermann A, Kuscu E, Geis-Gerstorfer J, Spintzyk S. Polishability and wear resistance of splint material for oral appliances produced with conventional, subtractive, and additive manufacturing. J Mech Behav Biomed Mater. 2017;75:175-9.
[86] Altarazi A, Haider J, Alhotan A, Silikas N, Devlin H. Assessing the physical and mechanical properties of 3D printed acrylic material for denture base application. Dent Mater J. 2022;38:1841-54.
[87] AlRumaih HS, Gad MM. The Effect of 3D Printing Layer Thickness and Post-Polymerization Time on the Flexural Strength and Hardness of Denture Base Resins. Prosthesis. 2024;6:970-8.
[88] Hassanpour M, Narongdej P, Alterman N, Moghtadernejad S, Barjasteh E. Effects of Post-Processing Parameters on 3D-Printed Dental Appliances: A Review. Polym (Basel). 2024;16:2795-827.
[89] Kim MC, Byeon DJ, Jeong EJ, Go HB, Yang SY. Color stability, surface, and physicochemical properties of three-dimensional printed denture base resin reinforced with different nanofillers. Sci Rep. 2024;14:1842-54.
[90] Ahmad KH, Mohamad Z, Khan ZI, Habib M. Tailoring UV Penetration Depth in Photopolymer Nanocomposites: Advancing SLA 3D Printing Performance with Nanofillers. Polym (Basel). 2025;17:97-108.
[91] Cho K. The effect of rubber particle size on toughening behaviour of rubber-modified poly(methyl methacrylate) with different test methods. Polym Plast Technol Eng 1998;39:3073-81.
[92] Jagini AS. Effect of Long-term Immersion in Water and Artificial
Saliva on the Flexural Strength of Two Heat Cure Denture
Base Resins. J Contemp Dent Pract 2019;20:341-6.
[93] Sasaki H, Hamanaka I, Takahashi Y, Kawaguchi T. Effect of long-term water immersion or thermal shock on mechanical properties of high-impact acrylic denture base resins. Dent Mater J. 2016;35:204-13.
[94] Takahashi Y, Hamanaka I, Shimizu H. Flexural properties of denture base resins subjected to long-term water immersion. Acta Odontol Scand. 2013;71:716-20.
[95] Finoti LS, Machado AL, Chaves CA, Pavarina AC, Vergani CE. Effect of long-term water immersion on the fracture toughness of denture base and reline resins. Gerodont. 2012;29:858-64.
[96] Al-Mulla MAS. Effect of water and artificial saliva on mechanical properties of some denture-base materials. Dent Mater J. 1989;5:399-402.
[97] Ferracane JL. Hygroscopic and hydrolytic effects in dental polymer networks. Dent Mater. 2006;22:211-22.
[98] U. Oe Rtengren HW, S. Karlsson & I . E. Ruyter. Water sorption and solubility of dental composites and identification of monomers released in an aqueous
environment. J Oral Rehab. 2001;28:1106-15.
[99] Longman GJPaCM. Water sorption and solubility of resin-based materials following inadequate polymerization by a visible-light curing system. J Oral Rehab. 1989;16:57-61.
[100] Andrada SOANCĂ CIB, Mărioara MOLDOVAN,, Alexandra ROMAN MR. Water Sorption and Solubility of an Experimental Dental Material: Comparative Study. Appl Med Inform. 2011;29:27-33.
[101] Komada W, Inagaki T, Ueda Y, Omori S, Hosaka K, Tagami J et al. Influence of water immersion on the mechanical properties of fiber posts. J Prosthodont Res. 2017;61:73-80.
[102] Barszczewska-Rybarek IM. A Guide through the Dental Dimethacrylate Polymer Network Structural Characterization and Interpretation of Physico-Mechanical Properties. Mater (Basel). 2019;12:4057-87.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99553-
dc.description.abstract實驗目的:
義齒基底材料須具備良好的機械強度與耐磨性,以承受咬合力並確保長期配戴的穩定性。隨著數位牙科發展,3D列印成為製作義齒的新方式,具有效率高、材料利用率佳等優勢,但其樹脂義齒基底在臨床使用中仍易斷裂,顯示長期耐久性不足。為改善此問題,本研究開發一種新型超分支聚氨酯丙烯酸酯混合樹脂,並透過體外實驗,比較其在長時間潮濕環境下的機械性質,評估其與另外兩款市售列印樹脂的性能差異。
材料與方法:
本研究所開發之超分支聚氨酯丙烯酸酯(HBPUA)樹脂,編號為TIH4,其合成程序首先以三甲醇丙烷(1, 1, 1-tris(hydroxymethyl)propane, 98%, TMP)、二異氰酸異佛爾酮(isophorone diisocyanate, 98%, IPDI)與丙烯酸-2-羥基乙酯(2-hydroxyethyl acrylate, HEA)依最佳比例,單體莫爾比1:3:3混合,經冷凝蒸餾反應十小時製得。反應後使用迴旋濃縮機進行濃縮,再依序以傅里葉轉換紅外光譜儀(fourier transform infrared spectroscopy, HORIBA)及凝膠滲透層析儀(gel permeation chromatography, Jasco)分析反應產物之官能基轉換率與分子量分布,以確認聚合反應是否成功。接著,將三環癸烷二甲醇二丙烯酸酯(Tricyclodecanedimethanol diacrylate, TCDDMDA)以重量比1:9混合。再加入光引發劑2,4,6-三甲基苯甲酰二苯基氧化膦(2,4, 6-trimethy lbenzoy ldipheny phosphine oxide, TPO),依照莫爾比1:0.01進行混合,作為後續3D列印義齒基底材料研究之核心配方。
以兩種市售3D列印義齒基底樹脂,NextDent Denture 3D+, 3D Systems (以下簡稱Control N) 和 Detax Freeprint denture resin, Detax GmbH & Co. (以下簡稱Control D) 作為對照組。依據ISO 20795-1:2013 Denture base polymers-type IV materials之規定製備試片並進行各項材料測試。獲得各組數據資料並代入各自的公式進行計算,後續以軟體SAS version 9.4 , SAS Institute Inc. 進行Oneway ANOVA以及Pair t test之統計分析。
實驗結果:
彎曲強度方面,乾燥時Control D表現最佳,顯著高於其他兩種材料。短期內Control N強度略為上升,而TIH4變化不明顯,Control D則開始下降。中期期間,TIH4與Control D彎曲強度快速下降,後續變化趨緩;Control D則在12週後才顯著下降。至長期,Control N呈現顯著上升,而TIH4與Control D趨於穩定。彈性模數方面,乾燥時Control N剛性最高,顯著高於其他材料。短期內TIH4彈性模數顯著上升,中期變化趨於穩定,而Control N與Control D則呈波動趨勢。最大應力強度因子方面,初期Control N明顯偏低,短期內Control D為最高。至12週時,TIH4與Control D皆高於Control N,唯於24週時三者間差異消失。總斷裂功方面,初期以TIH4最高,短期內則以Control D為最低。中期Control D下降最明顯,長期則以Control N持續上升最具韌性。最後,TIH4吸水率最低且變化穩定,與市售材料Control N、Control D有顯著差異,TIH4具較佳長期吸水穩定性。且僅TIH4溶出率符合ISO20795-1:2013標準,其數值顯著低於Control N與Control D。
結論:
本研究評估之新型列印義齒基底材料(TIH4)與兩款市售樹脂(Control N、Control D)在不同泡水時間下之機械與物理性質。結果顯示,雖三者於部分時間點機械性質無顯著差異,TIH4在中長期泡水後具較佳的彎曲強度、彈性模數穩定性與抗裂性。且其最大應力強度因子全程符合ISO20795-1:2013標準,相較之下,Control N與Control D在部分時間點低於標準。於吸水與溶出表現方面,TIH4吸水率最低且溶出率唯一全程符合ISO20795-1:2013規範。整體而言,TIH4表現出良好的耐水性、結構穩定性,具發展為臨床義齒基底材料之潛力。
zh_TW
dc.description.abstractObjective:
Denture base materials must possess adequate mechanical strength and wear resistance to withstand occlusal forces and ensure long-term stability during use. However, the oral environment—characterized by prolonged exposure to saliva, temperature fluctuations, and mechanical stress—can lead to material deformation or fracture. With the advancement of digital dentistry, 3D printing has emerged as a promising method for denture fabrication, offering advantages such as high production efficiency and better material utilization. Nevertheless, 3D-printed denture base resins are still prone to fracture during clinical use, indicating insufficient long-term durability. To address this issue, this study developed a novel hyperbranched polyurethane acrylate (HBPUA)-based hybrid resin. Through in vitro experiments, its mechanical properties under prolonged humid conditions were evaluated and compared with those of two commercially available 3D-printed denture base resins.
Material and methods
A novel hyperbranched polyurethane acrylate (HBPUA) resin, designated as TIH4, was synthesized from trimethylolpropane, isophorone diisocyanate, and 2-hydroxyethyl acrylate through a 10-hour condensation distillation process. The resulting mixture was concentrated and analyzed using FTIR and GPC to confirm its chemical properties. Tricyclodecanedimethanol diacrylate and a photoinitiator (TPO) were then added to formulate the hybrid resin, named TC10. Two commercial 3D printing denture base resins, NextDent Denture 3D+ and Detax Freeprint® Denture, were used as controls. Specimens were designed per ISO 20795-1:2013 using Meshmixer, printed via a Phrozen Sonic 4K printer, cleaned with Form Wash, and post-cured with Form Cure. Mechanical properties including flexural strength, elastic modulus, Kmax, and total fracture work were tested at five time points up to 24 weeks. Water sorption and solubility were assessed separately at four intervals. All samples (n=15/group) were immersed in 37°C water, and statistical analyses were conducted based on the calculated data to evaluate long-term performance.
Results
This study evaluated the long-term mechanical behavior of three 3D-printed denture base resins—TIH4, Control N, and Control D—after water immersion. Initially, Control D exhibited the highest flexural strength, while TIH4 and Control N were comparable. Over time, Control D declined, Control N increased significantly by week 24, and TIH4 plateaued. Elastic modulus results showed that Control N had the highest initial stiffness, TIH4 increased then stabilized, and Control D remained relatively constant; by week 24, no significant group differences were found. For maximal stress intensity factor, Control N started lowest, while Control D peaked early but declined most sharply. TIH4 and Control D initially surpassed Control N, but differences leveled out by week 24. Total fracture work revealed TIH4 had the highest initial toughness, Control D degraded mid-term, and Control N showed the greatest improvement over time. In water resistance, TIH4 showed the lowest and most stable sorption and was the only material meeting ISO solubility standards throughout, indicating superior chemical durability. Overall, TIH4 demonstrated good water resistance and toughness, though its flexural strength declined over time.
Conclusions
This study evaluated the long-term mechanical and physical properties of a novel HBPUA-based 3D-printed denture base material (TIH4) and compared it with two commercial resins (Control N and Control D). While mechanical differences were not always statistically significant, TIH4 exhibited superior mid- to long-term stability in flexural strength, modulus, and crack resistance. Its Kmax remained compliant with ISO 20795-1:2013 throughout, whereas Control N and Control D occasionally fell below the standard. In terms of water behavior, TIH4 had the lowest water sorption and was the only material to meet solubility requirements throughout the study. Overall, TIH4 demonstrated promising water resistance and structural stability, highlighting its potential as a clinically viable denture base material. However, further evaluation is needed to fully confirm its clinical applicability.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-16T16:05:45Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-16T16:05:45Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract v
目次 viii
圖次 x
表次 xii
第一章 文獻回顧 1
1.1 活動義齒基底製作簡介 5
1.1.1 傳統聚合式聚甲基丙烯酸甲酯(PMMA) 10
1.1.2 CAD/CAM技術減法製程( Milling ) 12
1.1.3 CAD/CAM技術加法製程( 3D printing ) 13
1.2 ISO-20795-1:2013《牙科義齒基底聚合物—第1部分:義齒基底聚合物》 19
1.3 活動義齒基底材的吸水性與溶出率( Water sorption and solubility ) 20
1.4 活動義齒基底材的彎曲強度和彈性模數 ( Flexural strength and modulus ) 23
1.5 活動義齒基底材的斷裂韌性( Fracture toughness ) 28
1.6 新型合成列印樹脂 30
1.6.1 超分支化聚合物 (Hyperbranched Polymers, HBPs) 30
1.6.2 丙烯酸酯端基氨基甲酸酯聚合物 32
1.6.3 HBPUA在牙科固定式臨時贋復物材料的應用 34
第二章 研究動機與目的 36
第三章 材料與方法 38
一 、實驗流程 38
二 、HBPUA(TIH4)合成 39
三 、測試轉換率FTIR 40
四 、測試分子量GPC 40
五 、TIH4樹脂混合 41
六 、材料測試試品設計 41
七 、試品列印( printing ) 42
八 、試品後處理(postprocessing procedure) 42
九 、試品泡水 43
十 、試品烘乾秤重 43
十一 、材料測試:彎曲強度和彈性模數 44
十二 、材料測試:最大應力強度因子和總斷裂功 46
十三 、材料測試:吸水率和溶出率 48
第四章 實驗結果 50
4.1 彎曲強度之分析 50
4.2 彈性模數之分析 52
4.3 最大應力強度因子分析 54
4.4 總斷裂功分析 57
4.5 吸水率分析 59
4.6 溶出率分析 61
第五章 討論 62
5.1 理想義齒基底材之條件 62
5.2 依照不同測試基準之義齒基底材料試片備製對實驗結果的影響 64
5.3 影響數位列印義齒基底材性質的因素 66
5.4 義齒基底材乾燥與泡水測試差異 69
5.4.1 彎曲強度和彈性模數 70
5.4.2 最大應力強度因子和總斷裂功 71
5.4.3 吸水率和溶出率 72
5.4.4 新型列印義齒基底材之長期吸水物理性質 73
5.5 實驗的誤差與限制 74
第六章 結論 76
第七章 未來展望 77
參考文獻 136
-
dc.language.isozh_TW-
dc.subject3D列印樹脂zh_TW
dc.subject活動義齒基底zh_TW
dc.subject彎曲強度zh_TW
dc.subject彈性模數zh_TW
dc.subject吸水率zh_TW
dc.subject溶出率zh_TW
dc.subject斷裂韌性zh_TW
dc.subjectdenture base resinen
dc.subjectfracture toughnessen
dc.subjectwater solubilityen
dc.subjectwater sorptionen
dc.subjectflexural modulusen
dc.subjectflexural strengthen
dc.subject3D printingen
dc.title含超分枝聚氨酯丙烯酸酯的新型3D列印義齒基底樹脂材料泡水之六個月期間材料機械性質評估zh_TW
dc.titleMechanical Performances Assessment of Hyperbranched Polyurethane Acrylate Blended Resin for 3D Printing After Water Immersion up to 6 Monthsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李伯訓;鄭國忠zh_TW
dc.contributor.oralexamcommitteeBor-Shiunn Lee;Kuo-Chung Chengen
dc.subject.keyword3D列印樹脂,活動義齒基底,彎曲強度,彈性模數,吸水率,溶出率,斷裂韌性,zh_TW
dc.subject.keyword3D printing,denture base resin,flexural strength,flexural modulus,water sorption,water solubility,fracture toughness,en
dc.relation.page144-
dc.identifier.doi10.6342/NTU202502167-
dc.rights.note未授權-
dc.date.accepted2025-07-25-
dc.contributor.author-college醫學院-
dc.contributor.author-dept臨床牙醫學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
4.19 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved