請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99552完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 姚宗珍 | zh_TW |
| dc.contributor.advisor | Chung Chen Yao | en |
| dc.contributor.author | 李孟蓉 | zh_TW |
| dc.contributor.author | Meng-Rong Li | en |
| dc.date.accessioned | 2025-09-16T16:05:34Z | - |
| dc.date.available | 2025-09-17 | - |
| dc.date.copyright | 2025-09-16 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-25 | - |
| dc.identifier.citation | 1、 Haralabakis, N. B., & Tsiliagkou, K. (2004). The effect of six variables and their interrelation on the duration of orthodontic treatment. Hellenic Orthodontic Review, 7(1), 45–57.
2、 Meikle, M. C. (2006). The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt. European Journal of Orthodontics, 28(3), 221–240. 3、 Küchler, E. C., Schröder, A., Corso, P., Scariot, R., Spanier, G., Proff, P., & Kirschneck, C. (2019). Genetic polymorphisms influence gene expression of human periodontal ligament fibroblasts in the early phases of orthodontic tooth movement. Odontology, 108, 493–502. 4、 Beckwith, F. R., Ackerman, R. J., Jr., Cobb, C. M., & Tira, D. E. (1999). An evaluation of factors affecting duration of orthodontic treatment. American Journal of Orthodontics and Dentofacial Orthopedics, 115(4), 439–447. 5、 Jiang, N., Guo, W., Chen, M., Zheng, Y., Zhou, J., Kim, S. G., Embree, M. C., Song, K., Marão, H. F., & Mao, J. J. (2016). Periodontal ligament and alveolar bone in health and adaptation: Tooth movement. Frontiers of Oral Biology, 18, 1–8. 6、 Skidmore, K. J., Brook, K. J., Thomson, W. M., & Harding, W. J. (2006). Factors influencing treatment time in orthodontic patients. American Journal of Orthodontics and Dentofacial Orthopedics, 129(2), 230–238. 7、 Melo, A. C. E. O., Carneiro, L. O. T., Pontes, L. F., Cecim, R. L., Mattos, J. N. R., & Normando, D. (2013). Factors related to orthodontic treatment time in adult patients. Dental Press Journal of Orthodontics, 18(5), 59–63. 8、 Ren, Y., Maltha, J. C., & Kuijpers-Jagtman, A. M. (2003). Optimum force magnitude for orthodontic tooth movement: A systematic literature review. The Angle Orthodontist, 73(1), 86–92. 9、 Chang, M., Lin, H., Luo, M., Wang, J., & Han, G. (2015). Integrated miRNA and mRNA expression profiling of tension force-induced bone formation in periodontal ligament cells. In Vitro Cellular & Developmental Biology – Animal, 51, 797–807. 10、 Li, W., Zhao, J., Sun, W., Wang, H., Pan, Y., Wang, L., & Zhang, W. B. (2020). Osteocytes promote osteoclastogenesis via autophagy-mediated RANKL secretion under mechanical compressive force. Archives of Biochemistry and Biophysics, 694, Article 108594. 11、 Fisher, M. A., Wenger, R. M., & Hans, M. G. (2010). Pretreatment characteristics associated with orthodontic treatment duration. American Journal of Orthodontics and Dentofacial Orthopedics, 137(2), 178–186. 12、 Li, Y., Zhan, Q., Bao, M., Yi, J., & Li, Y. (2021). Biomechanical and biological responses of periodontium in orthodontic tooth movement: Update in a new decade. International Journal of Oral Science, 13(1), Article 20. 13、 Yu, J., Choi, Y. J., Choi, S. H., Jung, H. S., Lee, J. H., & Cha, J. Y. (2021). The effect of genetic polymorphisms on treatment duration following premolar extraction. Scientific Reports, 11, Article 15942. 14、 George, P., George, J. K., Krishnan, V., Vijayaraghavan, N., Rajendran, S. R., Chandran, B. M., & Thulasidharan, U. M. (2020). Periodontal ligament cells in adolescents and adults: Genetic level responses to orthodontic forces. American Journal of Orthodontics and Dentofacial Orthopedics, 158(6), 816–823. 15、 Klein, Y., Almog, D. M., Davidovitch, M., Reichenberg, E., & Dard, M. (2020). Immunorthodontics: In vivo gene expression of orthodontic tooth movement. Scientific Reports, 10(1), 9667. 16、 Kim, K., Kang, H. E., Yook, J. I., Yu, H. S., Kim, E., Cha, J. Y., & Choi, Y. J. (2020). Transcriptional expression in human periodontal ligament cells subjected to orthodontic force: An RNA-sequencing study. Journal of Clinical Medicine, 9(2), 358. 17、 Ratanasereeprasert, N., Vinitwatanakhun, J., Boonsiriseth, K., & Chantarangsu, S. (2023). Orthodontically induced changes to the genetic profile in periodontal ligament tissue and cytokine release in gingival crevicular fluid: A pilot investigation. Journal of Dental Sciences, 18(2), 621–628. 18、 Iwasaki, L., Chandler, J., Marx, D., Pandey, J., & Nickel, J. (2009). IL-1 gene polymorphisms, secretion in gingival crevicular fluid, and speed of human orthodontic tooth movement. Orthodontics & Craniofacial Research, 12(2), 129–140. 19、 Yamaguchi, M. (2009). RANK/RANKL/OPG during orthodontic tooth movement. Orthodontics & Craniofacial Research, 12(2), 113–119. 20、 Lombardo, L., Marafioti, M., Stefanoni, F., Mollica, F., & Siciliani, G. (2012). Load deflection characteristics and force level of nickel titanium initial archwires. The Angle Orthodontist, 82(3), 507–521. 21、 Lu, L. Y., Loi, F., Nathan, K., Lin, T. H., Pajarinen, J., Gibon, E., Nabeshima, A., Cordova, L., Jämsen, E., Yao, Z., & Goodman, S. B. (2017). Pro-inflammatory M1 macrophages promote osteogenesis by mesenchymal stem cells via the COX-2-prostaglandin E2 pathway. Journal of Orthopaedic Research, 35(11), 2378–2385. 22、 Funes, S. C., Rios, M., Escobar-Vera, J., & Kalergis, A. M. (2018). Implications of macrophage polarization in autoimmunity. Immunology, 154(2), 186–195. 23、 Hu, Y., Huang, J., Chen, C., Wang, Y., & Li, Y. (2023). Strategies of macrophages to maintain bone homeostasis and promote bone repair: A narrative review. Journal of Functional Biomaterials, 14(1), Article 18. 24、 Ullrich, N., Schröder, A., Küchler, E. C., Kirschneck, C., & Proff, P. (2019). The role of mechanotransduction versus hypoxia during simulated orthodontic compressive strain—An in vitro study of human periodontal ligament fibroblasts. International Journal of Oral Science, 11, 33. 25、 Lekic, P., & McCulloch, C. A. G. (1996). Periodontal ligament cell populations: The central role of fibroblasts in creating a unique tissue. The Anatomical Record, 245(2), 327–341. 26、 Yamamoto, K., Kishida, T., Sato, Y., Nishioka, K., Masui, T., Katayama, Y., & Mazda, O. (2015). Direct conversion of human fibroblasts into functional osteoblasts by defined factors. Proceedings of the National Academy of Sciences of the United States of America, 112(19), 6152–6157. 27、 Giannopoulou, C., Dudic, A., Pandis, N., & Kiliaridis, S. (2015). Slow and fast orthodontic tooth movement: An experimental study on humans. European Journal of Orthodontics, 38(4), 404–408. 28、 Behm, C., Zhao, Z., & Andrukhov, O. (2022). Immunomodulatory activities of periodontal ligament stem cells in orthodontic forces-induced inflammatory processes: Current views and future perspectives. Frontiers in Oral Health, 3, Article 877348. 29、 Klein, Y., Fleissig, O., Polak, D., Barenholz, Y., Mandelboim, O., & Chaushu, S. (2020). Immunorthodontics: In vivo gene expression of orthodontic tooth movement. Scientific Reports, 10, Article 8172. 30、 He, D., Kou, X., Luo, Q., Yang, R., Liu, D., Wang, X., Song, Y., Cao, H., Zeng, M., Gan, Y., & Zhou, Y. (2015). Enhanced M1/M2 macrophage ratio promotes orthodontic root resorption. Journal of Dental Research, 94(1), 129–139. 31、 Jacobs, C., Grimm, S., Ziebart, T., Walter, C., & Wehrbein, H. (2013). Osteogenic differentiation of periodontal fibroblasts is dependent on the strength of mechanical strain. Archives of Oral Biology, 58(7), 896–904. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99552 | - |
| dc.description.abstract | 個體差異會影響矯正後牙齒移動的速度,然而,關於人類個體變異的生物醫學研究仍然在初階。因此,本研究旨在探討矯正治療的前 7 天內,人類牙周韌帶(PDL)組織的基因表達變化。
研究對象共有12 名年輕患者,他們接受全口固定式矯正器治療,並在治療計畫中須包含四顆小臼齒移除。研究分為兩部分,第一部分是針對總 RNA 定序,共有9 名患者,在施加矯正力後的第 0 天(對照組)、第 1 天、第 3 天及第 7 天進行拔牙,共收集 36 顆牙齒。從拔除的牙齒收集新鮮 PDL 組織,採用 Illumina測序平台進行 RNA 外顯子組定序,進一步分析差異基因表達(DEGs)、基因本體(GO)、生物路徑分析(IPA)訊息傳導路徑的變化。第二部分是針對單細胞RNA 定序,共有3 名患者,其中兩位病患在施加矯正力後的第 0 天(對照組)、第 3 天進行拔牙,另一名患者在第 0 天(對照組)、第 1 天、第 3 天及第 7 天進行拔牙,共收集8 顆牙齒,從拔除的牙齒收集新鮮 PDL 組織,進行單細胞分離後,採用10x Genomics 平台進行定序,進一步使用均勻流行近似和投影(UMAP)、差異基因表達(DEGs)、基因本體(GO)分析結果。 總 RNA 定序結果主要分為兩部分:一是依據個體患者的基因表達變化,另一項是依照治療時間點分析。在個體層面,每位患者的 DEGs 變化有所不同,導致PCA 結果各具特徵。在不同的矯正時間點,GO 和 IPA 分析顯示,在 Day 1 相較於 Day 0 的階段,免疫相關通路開始活化,同時也觀察到與角質形成與皮膚發育相關的 GO term 富集。至 Day 3,免疫反應顯著增強。到了 Day 7,免疫球蛋白產生依然是最顯著的功能,而核小體組裝與 B 細胞受體訊號的重要性略降,可能反映出轉錄活性進入穩定階段。 RNA 單細胞定序結果,我們確立了巨噬細胞和纖維母細胞的聚類。整體結果顯示 Day 3 巨噬細胞已進入活化的免疫細胞狀態,具有增強的抗原呈現能力與發炎反應,並可能因機械刺激引發細胞反應與蛋白質降解路徑的活化。在纖維母細胞聚類中,透過 marker gene 表現特徵將其劃分為四種功能性子群: GO 分析顯示,Perivascular fibroblasts 類似血管平滑肌細胞,在穩定微血管結構、維持組織張力與參與組織修復中扮演關鍵角色; Osteogenic fibroblasts 具備高度與骨生成與組織重建相關的特性; Neural-associated fibroblasts 參與神經修復、再生,在神經豐富組織如牙周韌帶中扮演支持性角色; Inflammatory fibroblasts 是一類在發炎環境中活化、具免疫調節與基質重塑功能的細胞,可能在受機械刺激產生發炎反應或組織再生過程中扮演核心角色。 綜合總 RNA 定序和單細胞 RNA 定序的數據顯示,儘管單個患者的 DEGs呈現高度個體化特徵,但整體在與發炎相關的 GO 結果仍具有一定程度的相似性,未來能以本研究的結果和這些病患的臨床矯正治療速率,也就是關閉拔牙空間的時間,進行關聯和分析,以期展望精準醫療在矯正牙齒移動帶來基因學上的突破與預測。 | zh_TW |
| dc.description.abstract | Individual variability significantly influences the rate of tooth movement during orthodontic treatment. However, biomedical research on human-specific variation remains in its early stages. This study aims to investigate gene expression changes in human periodontal ligament (PDL) tissues during the first seven days of orthodontic force application.
Twelve young patients scheduled for full-mouth fixed appliance treatment with four premolar extractions were enrolled. The study comprised two parts. The first part involved bulk RNA sequencing from nine patients. A total of 36 teeth were extracted at four time points: day 0 (prior to force application, serving as control), day 1, day 3, and day 7. Fresh PDL tissues were collected from extracted teeth and subjected to whole transcriptome sequencing using the Illumina platform. Differential gene expression (DEG) analysis, Gene Ontology (GO), and Ingenuity Pathway Analysis (IPA) were conducted to assess molecular changes. The second part involved single-cell RNA sequencing in three patients. Two of them underwent tooth extraction on day 0 and day 3, while the third patient had extractions at day 0, day 1, day 3, and day 7, yielding eight samples. Single-cell suspensions from the PDL tissues were processed using the 10x Genomics platform, followed by analysis including UMAP clustering, DEG analysis, and GO annotation. The bulk RNA sequencing results were analyzed at both individual and temporal levels. DEG patterns varied across individuals, resulting in distinct features in principal component analysis (PCA). Time-course analysis revealed activation of immune-related pathways as early as day 1, along with GO enrichment in keratinization and epidermal development. Immune responses were markedly enhanced by day 3. By day 7, immunoglobulin production remained prominent, while the relevance of nucleosome assembly and B-cell receptor signaling diminished, suggesting stabilization of transcriptional activity. Single-cell RNA sequencing identified clusters of macrophages and fibroblasts. Macrophages on day 3 showed an activated immune profile, including enhanced antigen presentation and inflammatory signaling, possibly in response to mechanical stress. Fibroblasts were classified into four subtypes based on marker gene expression: (1) Perivascular fibroblasts, resembling vascular smooth muscle cells, are implicated in microvascular stabilization and tissue repair; (2) Osteogenic fibroblasts exhibit characteristics linked to bone formation and remodeling; (3) Neural-associated fibroblasts likely support nerve repair and regeneration, especially in innervated tissues like the PDL; and (4) Inflammatory fibroblasts, activated in inflammatory environments, contribute to immune modulation and extracellular matrix remodeling during inflammation or tissue regeneration. In conclusion, despite high inter-individual variability in DEGs, inflammation-related GO terms exhibited consistent enrichment across samples. These findings provide a foundation for correlating molecular signatures with clinical orthodontic treatment rates—specifically, the time required to close extraction spaces—paving the way for future advances in precision orthodontics and genomics-based prediction of tooth movement. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-16T16:05:34Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-16T16:05:34Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 I
誌謝 II 中文摘要 III Abstract V 目錄 VII 第一章 前言 1 第一節 個體基因差異對矯正牙齒移動的影響 1 第二節 矯正力作用下的基因表達變化 2 第三節 臨床應用與未來展望 4 第二章 材料方法 5 第一節 樣本採集 5 第二節 生物力學設計 5 第三節 牙周組織採集 5 第四節 總 RNA 樣本庫製備與定序分析 6 第五節 生物資訊學(DEGs、PCA、GO 和 IPA) 6 第六節 單細胞 RNA 樣本庫製備與定序分析 7 第七節 單細胞 RNA 數據分析 8 第八節 細胞類型註釋 8 第九節 基因本體 (GO) 富集分析 9 第三章 結果 10 第一節 總 RNA 樣本定序結果 10 第一項 主成分分析 10 第二項 差異表達基因分析 11 第三項 上調與下調基因的柱狀圖 12 第四項 生物學功能之時間動態變化趨勢 13 第五項 生物學功能網絡圖 15 第六項 各時間點之生物途徑分析 18 第二節 單細胞 RNA 樣本定序結果 20 第一項 原始與過濾後的 scRNA-seq 數據分佈比較 21 第二項 雙細胞 (Doublets) 檢測 22 第三項 批次效應修正與 Leiden聚類 24 第四項 細胞類型註釋 26 第五項 特定於巨噬細胞分析 27 第六項 特定於纖維母細胞的分析 33 第四章 討論 50 第一節 矯正初期之基因反應以第 3 天最為顯著,顯示為生物調控關鍵期 50 第二節 個體差異為轉錄反應的重要來源,呼應精準醫療發展需求 50 第三節 巨噬細胞轉向活化狀態,為免疫細胞對矯正刺激的時間性反應 51 第四節 纖維母細胞亞群的異質性反映出多樣的功能角色,與牙周環境重塑密切相關 52 第五節 Day 3 fibroblasts 轉入高代謝與活化狀態,提示修復與纖維化功能啟動 52 第六節 臨床應用與機制驗證的潛力 53 第五章 結論 55 第六章 研究限制與未來發展 55 第一節 樣本收集與處理 56 第二節 總 RNA 定序 56 第三節 單細胞 RNA 定序 57 第四節 跨平台整合與資料一致性的挑戰 57 第五節 臨床應用潛力 57 參考資料 58 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 牙周韌帶 | zh_TW |
| dc.subject | 矯正牙齒移動 | zh_TW |
| dc.subject | 單細胞 RNA 定序 | zh_TW |
| dc.subject | 總 RNA 定序 | zh_TW |
| dc.subject | bulk RNA sequencing | en |
| dc.subject | periodontal ligament | en |
| dc.subject | orthodontic tooth movement | en |
| dc.subject | single-cell RNA sequencing | en |
| dc.title | 矯正力量誘導刺激對人類牙周韌帶組織基因表達之影響 | zh_TW |
| dc.title | The Influence of Orthodontic Force-Induced Stimulation on Gene Expression in Human Periodontal Ligament. | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 賴亮全;陳翔瀚;張玉芳 | zh_TW |
| dc.contributor.oralexamcommittee | Liang Chuan Lai;Xiang Han Chen;Yu Fong Chang | en |
| dc.subject.keyword | 矯正牙齒移動,牙周韌帶,總 RNA 定序,單細胞 RNA 定序, | zh_TW |
| dc.subject.keyword | orthodontic tooth movement,periodontal ligament,bulk RNA sequencing,single-cell RNA sequencing, | en |
| dc.relation.page | 60 | - |
| dc.identifier.doi | 10.6342/NTU202502141 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-25 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 臨床牙醫學研究所 | - |
| dc.date.embargo-lift | 2025-09-17 | - |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 3.3 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
