請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99546完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 戴子安 | zh_TW |
| dc.contributor.advisor | Chi-An Dai | en |
| dc.contributor.author | 林謙 | zh_TW |
| dc.contributor.author | Cian Lin | en |
| dc.date.accessioned | 2025-09-10T16:37:21Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-17 | - |
| dc.identifier.citation | [1] M. Baniasadi and M. Minary-Jolandan, Alginate-Collagen Fibril Composite Hydrogel. Materials (Basel), 2015. 8(2): p. 799-814.
[2] E. K. Yetimoglu, M. V. Kahraman, Ö. Ercan, Z. S. Akdemir and N. K. Apohan, -vinylpyrrolidone/acrylic acid/2-acrylamido-2-methylpropane sulfonic acid based hydrogels:: Synthesis, characterization and their application in the removal of heavy metals. Reactive & Functional Polymers, 2007. 67(5): p. 451-460. [3] F. H. A. Rodrigues, A. G. B. Pereira, A. R. Fajardo and E. C. Muniz, Synthesis and characterization of chitosan‐graft‐poly(acrylic acid)/nontronite hydrogel composites based on a design of experiments. Journal of Applied Polymer Science, 2012. 128(5): p. 3480-3489. [4] T. T. Reddy and A. Takahara, Simultaneous and sequential micro-porous semi-interpenetrating polymer network hydrogel films for drug delivery and wound dressing applications. Polymer, 2009. 50(15): p. 3537-3546. [5] T. V. Chirila, An overview of the development of artificial corneas with porous skirts and the use of PHEMA for such an application. Biomaterials, 2001. 22(24): p. 3311-7. [6] A. Cesaretti, B. Carlotti, P. L. Gentili, C. Clementi, R. Germani and F. Elisei, Doxycycline and oxytetracycline loading of a zwitterionic amphoteric surfactant-gel and their controlled release. Phys Chem Chem Phys, 2014. 16(42): p. 23096-107. [7] O. M. Jensen and P. F. Hansen, Water-entrained cement-based materials II. Experimental observations. Cement and Concrete Research, 2002. 32(6): p. 973-978. [8] A. Kalhapure, R. Kumar, V. P. Singh and D. S. Pandey, Hydrogels: a boon for increasing agricultural productivity in water-stressed environment. Current Science, 2016. 111(11): p. 1773-1779. [9] X. P. Chen, G. R. Shan, J. Huang, Z. M. Huang and Z. X. Weng, Synthesis and properties of acrylic-based superabsorbent. Journal of Applied Polymer Science, 2004. 92(1): p. 619-624. [10] J. P. Baker, H. W. Blanch and J. M. Prausnitz, Swelling Properties of Acrylamide-Based Ampholytic Hydrogels - Comparison of Experiment with Theory. Polymer, 1995. 36(5): p. 1061-1069. [11] P. J. Flory, Principle of Polymer Chemistry, 1953. [12] Y. M. Mohan, P. S. K. Murthy, J. Sreeramulu and K. M. Raju, Swelling behavior of semi-interpenetrating polymer network hydrogels composed of poly(vinyl alcohol) and poly(acrylamide--Sodium methacrylate). Journal of Applied Polymer Science, 2005. 98(1): p. 302-314. [13] A. Pourjavadi, S. Barzegar and G. R. Mahdavinia, MBA-crosslinked Na-Alg/CMC as a smart full-polysaccharide superabsorbent hydrogels. Carbohydrate Polymers, 2006. 66(3): p. 386-395. [14] Z. S. Liu and G. L. Rempel, Preparation of superabsorbent polymers by crosslinking acrylic acid and acrylamide copolymers. Journal of Applied Polymer Science, 1997. 64(7): p. 1345-1353. [15] Y. Meng, J. Lu, Y. Cheng, Q. Li and H. Wang, Lignin-based hydrogels: A review of preparation, properties, and application. Int J Biol Macromol, 2019. 135: p. 1006-1019. [16] Y. Zheng, P. Li, J. P. Zhang and A. Q. Wang, Study on superabsorbent composite XVI. Synthesis, characterization and swelling behaviors of poly(sodium acrylate)/vermiculite superabsorbent composites. European Polymer Journal, 2007. 43(5): p. 1691-1698. [17] A. Pourjavadi, A. M. Harzandi and H. Hosseinzadeh, Modified carrageenan 3. Synthesis of a novel polysaccharide-based superabsorbent hydrogel via graft copolymerization of acrylic acid onto kappa-carrageenan in air. European Polymer Journal, 2004. 40(7): p. 1363-1370. [18] A. Pourjavadi and H. Salimi, New Protein-Based Hydrogel with Superabsorbing Properties: Effect of Monomer Ratio on Swelling Behavior and Kinetics. Industrial & Engineering Chemistry Research, 2008. 47(23): p. 9206-9213. [19] X. Y. Liu, C. H. Huang, C. H. Zhuang, K. C. Hsu and C. H. Huang, An amphoteric hydrogel: Synthesis and application as an internal curing agent of concrete. Journal of Applied Polymer Science, 2015. 132(26). [20] E. M. Ahmed, Hydrogel: Preparation, characterization, and applications: A review. J Adv Res, 2015. 6(2): p. 105-21. [21] Q. Z. Yan, W. F. Zhang, G. D. Lu, X. T. Su and C. C. Ge, Frontal copolymerization synthesis and property characterization of starch-graft-poly(acrylic acid) hydrogels. Chemistry, 2005. 11(22): p. 6609-15. [22] C. Y. Chang, B. Duan, J. Cai and L. N. Zhang, Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. European Polymer Journal, 2010. 46(1): p. 92-100. [23] A. Das, A. Babu, S. Chakraborty, J. F. R. Van Guyse, R. Hoogenboom and S. Maji, Poly(-isopropylacrylamide) and Its Copolymers: A Review on Recent Advances in the Areas of Sensing and Biosensing. Advanced Functional Materials, 2024. 34(37): p. 2402432. [24] F. Zamani-Babgohari, A. Irannejad, M. Kalantari Pour and G. R. Khayati, Synthesis of carboxymethyl starch co (polyacrylamide/ polyacrylic acid) hydrogel for removing methylene blue dye from aqueous solution. Int J Biol Macromol, 2024. 269(Pt 1): p. 132053. [25] Y. M. Mohan, T. Premkumar, D. K. Joseph and K. E. Geckeler, Stimuli-responsive poly(N-isopropylacrylamide-co-sodium acrylate) hydrogels: A swelling study in surfactant and polymer solutions. Reactive & Functional Polymers, 2007. 67(9): p. 844-858. [26] X. D. Nie, A. Adalati, J. Du, H. H. Liu, S. M. Xu and J. D. Wang, Preparation of amphoteric nanocomposite hydrogels based on exfoliation of montmorillonite via in-situ intercalative polymerization of hydrophilic cationic and anionic monomers. Applied Clay Science, 2014. 97-98: p. 132-137. [27] H. Gharekhani, A. Olad, A. Mirmohseni and A. Bybordi, Superabsorbent hydrogel made of NaAlg-g-poly(AA-co-AAm) and rice husk ash: Synthesis, characterization, and swelling kinetic studies. Carbohydr Polym, 2017. 168: p. 1-13. [28] S. M. Xu, R. L. Wu, X. J. Huang, L. Q. Cao and J. D. Wang, Effect of the anionic-group/cationic-group ratio on the swelling behavior and controlled release of agrochemicals of the amphoteric, superabsorbent polymer poly(acrylic acid--diallyldimethylammonium chloride). Journal of Applied Polymer Science, 2006. 102(2): p. 986-991. [29] W. F. Lee and G. H. Lin, Superabsorbent polymeric materials VIII:: Swelling behavior of crosslinked poly[sodium acrylate--trimethyl methacryloyloxyethyl ammonium iodide] in aqueous salt solutions. Journal of Applied Polymer Science, 2001. 79(9): p. 1665-1674. [30] Sudarshan and M. K. Surappa, Synthesis of fly ash particle reinforced A356 Al composites and their characterization. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2008. 480(1-2): p. 117-124. [31] A. Radenovic, J. Malina and T. Sofilic, Characterization of Ladle Furnace Slag from Carbon Steel Production as a Potential Adsorbent. Advances in Materials Science and Engineering, 2013. 2013(1): p. 198240. [32] 廖國裕, 混凝土中骨材與水泥漿界面處過渡區性質與耐久性之研究, 土木工程系所. 2004, 國立交通大學: 新竹市. p. 151. [33] C. Jolicoeur and M. A. Simard, Chemical admixture-cement interactions: Phenomenology and physico-chemical concepts. Cement & Concrete Composites, 1998. 20(2-3): p. 87-101. [34] S. Hanehara and K. Yamada, Interaction between cement and chemical admixture from the point of cement hydration, absorption behaviour of admixture, and paste rheology. Cement and Concrete Research, 1999. 29(8): p. 1159-1165. [35] 李文宏, 光纖量測技術於水泥質材料的熱膨脹系數與自體收縮之研究, 土木工程學研究所. 2004, 國立臺灣大學. p. 1-150. [36] P. Lura, O. M. Jensen and K. van Breugel, Autogenous shrinkage in high-performance cement paste: An evaluation of basic mechanisms. Cement and Concrete Research, 2003. 33(2): p. 223-232. [37] V. Mechtcherine, M. Gorges, C. Schroefl, A. Assmann, W. Brameshuber, A. B. Ribeiro, Effect of internal curing by using superabsorbent polymers (SAP) on autogenous shrinkage and other properties of a high-performance fine-grained concrete: results of a RILEM round-robin test. Materials and Structures, 2013. 47(3): p. 541-562. [38] X. Shang, B. Zhan, J. Li and R. Zhong, Novel microcapsules for internal curing of high-performance cementitious system. Sci Rep, 2020. 10(1): p. 8318. [39] H. X. D. Lee, H. S. Wong and N. R. Buenfeld, Self-sealing of cracks in concrete using superabsorbent polymers. Cement and Concrete Research, 2016. 79: p. 194-208. [40] J. Plank, E. Sakai, C. W. Miao, C. Yu and J. X. Hong, Chemical admixtures - Chemistry, applications and their impact on concrete microstructure and durability. Cement and Concrete Research, 2015. 78: p. 81-99. [41] D. Snoeck and N. De Belie, From straw in bricks to modern use of microfibers in cementitious composites for improved autogenous healing - A review. Construction and Building Materials, 2015. 95: p. 774-787. [42] V. Mechtcherine, E. Secrieru and C. Schröfl, Effect of superabsorbent polymers (SAPs) on rheological properties of fresh cement-based mortars - Development of yield stress and plastic viscosity over time. Cement and Concrete Research, 2015. 67: p. 52-65. [43] D. Snoeck, L. F. Velasco, A. Mignon, S. Van Vlierberghe, P. Dubruel, P. Lodewyckx, The effects of superabsorbent polymers on the microstructure of cementitious materials studied by means of sorption experiments. Cement and Concrete Research, 2015. 77: p. 26-35. [44] K. Kovler and S. Zhutovsky, Overview and future trends of shrinkage research. Materials and Structures, 2006. 39(9): p. 827-847. [45] E. Holt, Contribution of mixture design to chemical and autogenous shrinkage of concrete at early ages. Cement and Concrete Research, 2005. 35(3): p. 464-472. [46] O. M. Jensen and P. Lura, Techniques and materials for internal water curing of concrete. Materials and Structures, 2006. 39(9): p. 817-825. [47] A. Mignon, D. Snoeck, D. Schaubroeck, N. Luickx, P. Dubruel, S. Van Vlierberghe, pH-responsive superabsorbent polymers: A pathway to self-healing of mortar. Reactive & Functional Polymers, 2015. 93: p. 68-76. [48] L. P. Esteves, Recommended method for measurement of absorbency of superabsorbent polymers in cement-based materials. Materials and Structures, 2015. 48(8): p. 2397-2401. [49] J. Justs, M. Wyrzykowski, D. Bajare and P. Lura, Internal curing by superabsorbent polymers in ultra-high performance concrete. Cement and Concrete Research, 2015. 76: p. 82-90. [50] L. Senff, R. C. E. Modolo, G. Ascensao, D. Hotza, V. M. Ferreira and J. A. Labrincha, Development of mortars containing superabsorbent polymer. Construction and Building Materials, 2015. 95: p. 575-584. [51] C. Schroefl, V. Mechtcherine, P. Vontobel, J. Hovind and E. Lehmann, Sorption kinetics of superabsorbent polymers (SAPs) in fresh Portland cement-based pastes visualized and quantified by neutron radiography and correlated to the progress of cement hydration. Cement and Concrete Research, 2015. 75: p. 1-13. [52] H. Gonçalves, B. Gonçalves, L. Silva, F. Raupp-Pereira, L. Senff and J. A. Labrincha, Development of porogene-containing mortars for levelling the indoor ambient moisture. Ceramics International, 2014. 40(10): p. 15489-15495. [53] H. Chen, M. Wyrzykowski, K. Scrivener and P. Lura, Prediction of self-desiccation in low water-to-cement ratio pastes based on pore structure evolution. Cement and Concrete Research, 2013. 49: p. 38-47. [54] M. Wyrzykowski and P. Lura, Controlling the coefficient of thermal expansion of cementitious materials - A new application for superabsorbent polymers. Cement & Concrete Composites, 2013. 35(1): p. 49-58. [55] M. Wyrzykowski and P. Lura, The effect of external load on internal relative humidity in concrete. Cement and Concrete Research, 2014. 65: p. 58-63. [56] A. Assmann and H. W. Reinhardt, Tensile creep and shrinkage of SAP modified concrete. Cement and Concrete Research, 2014. 58: p. 179-185. [57] H. Beushausen, M. Gillmer and M. Alexander, The influence of superabsorbent polymers on strength and durability properties of blended cement mortars. Cement and Concrete Composites, 2014. 52: p. 73-80. [58] S. Laustsen, M. T. Hasholt and O. M. Jensen, and O.M. Jensen, Void structure of concrete with superabsorbent polymers and its relation to frost resistance of concrete. Materials and Structures, 2015. 48(1-2): p. 357-368. [59] X. M. Kong, Z. L. Zhang and Z. C. Lu, Effect of pre-soaked superabsorbent polymer on shrinkage of high-strength concrete. Materials and Structures, 2015. 48(9): p. 2741-2758. [60] K. Peng, L. Wu, Y. Zandi, A. S. Agdas, A. Majdi, N. Denic, Application of Polyacrylic Hydrogel in Durability and Reduction of Environmental Impacts of Concrete through ANN. Gels, 2022. 8(8). [61] 經濟部標準檢驗局, 水硬性水泥墁料抗壓強度檢驗法(用50 mm或2 in.立方體試體), in CNS 1010. 1993. [62] 藍漢中, 聚(丙烯酸/丙烯醯胺)/飛灰複合水膠的合成和性質研究, in 化學系. 2015, 國立臺灣師範大學: 台北市. p. 136. [63] 經濟部標準檢驗局, 水硬性水泥可塑稠性水泥漿及墁料之機械拌和法, in CNS 3655. 1973. [64] 經濟部標準檢驗局, 水硬性水泥試驗用之流動性台, in CNS 1012. 2012. [65] D. Snoeck, C. Schröfl and V. Mechtcherine, Recommendation of RILEM TC 260-RSC: testing sorption by superabsorbent polymers (SAP) prior to implementation in cement-based materials. Materials and Structures, 2018. 51(5). [66] 林永裕, 預拌混凝土砂石料短缺對混凝土品質之影響探討(下), in 技師報. 2009: 社團法人台灣省土木技師公會. [67] 林錦良, 兩性離子型水膠/爐石複合材料的合成和性質研究, in 化學系. 2016, 國立臺灣師範大學: 台北市. p. 102. [68] G. Baptista Junior, L. C. Nascimento, G. d. C. Xavier, S. N. Monteiro, C. M. F. Vieira, M. T. Marvila, Durability for coating mortars: Review of methodologies. Journal of Materials Research and Technology, 2024. 30: p. 657-671. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99546 | - |
| dc.description.abstract | 本研究旨在開發以複合水膠為基礎之內部養護與抗裂材料,並探討不同卜作嵐材料(飛灰與爐石)及水膠配方(台塑水膠與城乙水膠)對水泥砂漿性能之影響。研究中選用四組複合水膠配方(T1F3、C1F1、T1S2、C1S1),製備稠懸浮液並應用於水泥砂漿中,進行抗壓強度、吸水率、裂縫指數(C.I.)與礦物相分析(XRD),並透過傅立葉轉換紅外光譜(FT-IR)及掃描式電子顯微鏡(SEM)觀察其微觀結構特徵。
實驗結果顯示,複合水膠配方均可顯著提升水泥砂漿28天齡期抗壓強度,其添加台塑水膠0.1%、飛灰佔比20%的複合水膠T1F3的水泥砂漿強度最高達436.4kgf/cm2,並在不同鹽水濃度及陽離子環境下展現良好吸水性能與調控能力。FT-IR與SEM分析證實無機摻料與水膠間存在良好界面結合,台塑水膠0.1%、飛灰佔比20%的T1F3與台塑水膠0.1%、爐石佔比15%的T1S2展現出緻密均勻的微觀結構,對應於其優異的力學與吸水行為。圓盤裂縫實驗結果顯示,複合水膠於早期具顯著延緩收縮與裂縫生成之效果(C.I.=0)。此外,XRD結果驗證了複合水膠能促進C-S-H膠體生成,增強水泥膠結相穩定性。塗層實驗亦證實T1F3於水泥砂漿中具備良好抗濕功能,提升基材穩定性與耐久性。 綜合而言,本研究證實複合水膠材料T1F3具備多功能性,能有效改善水泥基材之內部養護、抗裂性能,促使結構穩定,對未來高性能混凝土與自養護工程應用具高度發展價值。 | zh_TW |
| dc.description.abstract | This study aims to develop composite hydrogel-based materials for internal curing and crack resistance, and to investigate the effects of different pozzolanic materials (fly ash and slag) and hydrogel formulations (Formosa hydrogel and Cheng Yi hydrogel) on the performance of cement mortar. Four composite hydrogel formulations (T1F3, C1F1, T1S2, and C1S1) were prepared as viscous suspensions and incorporated into cement mortar. A series of tests were conducted, including compressive strength, water absorption, crack index (C.I.), and mineralogical analysis using X-ray diffraction (XRD), as well as microstructural characterization via Fourier-transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM).
The experimental results showed that all composite hydrogel formulations significantly enhanced the 28-day compressive strength of cement mortar. Notably, the T1F3 formulation—containing 0.1% Formosa hydrogel and 20% fly ash—achieved the highest strength of 436.4 kgf/cm². It also exhibited excellent water absorption capacity and regulation under varying salt concentrations and cationic environments. FT-IR and SEM analyses confirmed strong interfacial bonding between the inorganic additives and hydrogel. T1F3 and T1S2 (0.1% Formosa hydrogel with 15% slag) exhibited compact and homogeneous microstructures, correlating with their superior mechanical strength and absorption behavior. The ring shrinkage test further demonstrated that composite hydrogels effectively delayed early-age shrinkage and crack formation (C.I. = 0). Moreover, XRD analysis verified that the composite hydrogels promoted the formation of C–S–H gels, enhancing the stability of the cementitious matrix. The coating test also confirmed that T1F3 provided excellent moisture resistance within the cement mortar, thereby improving the substrate’s stability and durability. In summary, this study confirms that the composite hydrogel formulation T1F3 possesses multifunctional capabilities, effectively enhancing internal curing and crack resistance of cement-based materials. It contributes to structural stability and holds significant potential for future applications in high-performance concrete and self-curing systems. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:37:21Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:37:21Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii ABSTRACT iii 目次 v 表次 ix 圖次 x 第一章 緒論 1 1.1 前言 1 1.2 研究目的 2 1.3 研究內容 2 第二章 文獻回顧 4 2.1 高吸水性水膠簡介 4 2.2 影響水膠膨潤之作用力 5 2.2.1 親水性基團對水的親和力 6 2.2.2 水膠內部與溶液離子滲透壓差 6 2.2.3 水膠的交聯密度 7 2.2.4 水溶液之pH值 8 2.2.5 鹽水溶液的影響 9 2.3 水膠的種類 10 2.3.1 天然水膠 10 2.3.2 人工合成水膠 11 2.4 無機材料簡介 12 2.4.1 燃煤飛灰 12 2.4.2 水淬爐石粉 13 2.5 水泥 14 2.5.1 卜特蘭水泥之組成 14 2.5.2 水泥之水化反應 15 2.5.3 卜作嵐反應 17 2.5.4 水泥漿水分存在形式 20 2.6 混凝土收縮變形的種類 22 2.6.1 乾燥收縮(drying shrinkage) 22 2.6.2 自體收縮(autogenous shrinkage) 22 2.6.3 塑性收縮(plastic shrinkage) 23 2.6.4 化學收縮(chemical shrinkage) 23 2.7 混凝土的養護 23 2.7.1 外部養護 24 2.7.2 內部養護 26 2.8 水膠在混凝土中作為自養護劑的應用 28 第三章 實驗設計與方法 30 3.1 實驗藥品與儀器 30 3.1.1 實驗藥品 30 3.1.2 實驗儀器 33 3.2 樣品製備 34 3.2.1 稀懸浮液製備 34 3.2.2 稠懸浮液製備 36 3.3 水泥砂漿抗壓強度測試 38 3.3.1 添加稀懸浮液 38 3.3.2 添加稠懸浮液 40 3.4 複合水膠材料性質分析與測量 44 3.4.1 複合水膠吸水率之測量 44 3.4.1.1 複合水膠在鹽水溶液中的吸水率 45 3.4.1.2 複合水膠在pore solution中的吸水率 45 3.4.2 複合水膠之FT-IR光譜分析 46 3.4.3 複合水膠之表面結構觀察 46 3.5 水泥砂漿圓盤裂縫測試 47 3.6 水泥砂漿水化產物之XRD分析 48 3.7 水泥砂漿/水泥漿塗層吸濕實驗 49 第四章 結果與討論 51 4.1 水泥砂漿抗壓強度之影響 51 4.1.1 稀懸浮液 51 4.1.2 稠懸浮液 53 4.1.2.1 飛灰系列 53 4.1.2.2 爐石系列 55 4.2 不同吸水環境對複合水膠吸水率影響(稠懸浮液) 57 4.2.1 複合水膠於0.1M鹽水溶液中不同時間下之吸水率分析 57 4.2.1.1 飛灰系列 57 4.2.1.2 爐石系列 60 4.2.2 複合水膠於不同濃度鹽水溶液中之吸水率分析 63 4.2.2.1 飛灰系列 63 4.2.2.2 爐石系列 67 4.2.3 複合水膠於不同價數陽離子鹽水中之吸水率分析 70 4.2.3.1 飛灰系列 70 4.2.3.2 爐石系列 71 4.2.4 複合水膠於pore solution中之吸水率分析 72 4.2.4.1 飛灰系列 72 4.2.4.2 爐石系列 73 4.3 複合水膠之FT-IR光譜分析(T1F3, C1F1, T1S2, C1S1) 74 4.4 複合水膠之表面結構觀察(T1F3, C1F1, T1S2, C1S1) 76 4.4.1 凍乾處理後之肉眼觀察表面形貌 76 4.4.2 凍乾處理後之SEM分析 78 4.5 複合水膠對水泥砂漿裂縫之影響(MT1F3, MC1F1, MT1S2, MC1S1) 80 4.6 水化產物C-S-H膠體之分析 84 4.6.1 飛灰和爐石與氫氧化鈣反應之探討 84 4.6.2 複合水膠對水泥砂漿水化程度之分析(MT1F3, MC1F1, MT1S2, MC1S1) 85 4.7 水泥砂漿塗層吸濕程度之分析 89 第五章 結論 90 REFERENCE 92 APPENDIX 100 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | SEM | zh_TW |
| dc.subject | 飛灰 | zh_TW |
| dc.subject | 爐石 | zh_TW |
| dc.subject | 複合水膠 | zh_TW |
| dc.subject | 水泥砂漿 | zh_TW |
| dc.subject | 抗壓強度 | zh_TW |
| dc.subject | 吸水率 | zh_TW |
| dc.subject | 圓盤裂縫 | zh_TW |
| dc.subject | XRD | zh_TW |
| dc.subject | FT-IR | zh_TW |
| dc.subject | 內部養護 | zh_TW |
| dc.subject | 水膠 | zh_TW |
| dc.subject | SEM | en |
| dc.subject | hydrogel | en |
| dc.subject | FT-IR | en |
| dc.subject | XRD | en |
| dc.subject | ring shrinkage | en |
| dc.subject | water absorption | en |
| dc.subject | compressive strength | en |
| dc.subject | cement mortar | en |
| dc.subject | composite hydrogel | en |
| dc.subject | slag | en |
| dc.subject | fly ash | en |
| dc.subject | internal curing | en |
| dc.title | 水膠與飛灰/爐石複合材料作為水泥砂漿的自養護劑 | zh_TW |
| dc.title | Hydrogel and Fly Ash, Slag Composite as Self-Curing Agent for Cement Mortars | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 邱文英;許貫中 | zh_TW |
| dc.contributor.coadvisor | Wen-Yen Chiu;Kung-Chung Hsu | en |
| dc.contributor.oralexamcommittee | 黃中和 | zh_TW |
| dc.contributor.oralexamcommittee | Chung-Ho Huang | en |
| dc.subject.keyword | 水膠,飛灰,爐石,複合水膠,水泥砂漿,抗壓強度,吸水率,圓盤裂縫,XRD,FT-IR,SEM,內部養護, | zh_TW |
| dc.subject.keyword | hydrogel,fly ash,slag,composite hydrogel,cement mortar,compressive strength,water absorption,ring shrinkage,XRD,FT-IR,SEM,internal curing, | en |
| dc.relation.page | 102 | - |
| dc.identifier.doi | 10.6342/NTU202501908 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-18 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | 2030-07-15 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2030-07-15 | 4.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
