請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99542完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江建文 | zh_TW |
| dc.contributor.advisor | Kien Voon Kong | en |
| dc.contributor.author | 張恩綺 | zh_TW |
| dc.contributor.author | En-Chi Chang | en |
| dc.date.accessioned | 2025-09-10T16:36:37Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-18 | - |
| dc.identifier.citation | Ali, A.; Xiangyu, G.; Radulescu, M.; Nassani, A. A. The Impact of China-US Technological Innovation, Transportation, and Power Generation on Energy, Environment, and Economic Growth Sustainability. Sci. Rep. 2024, 14 (1), 28712.
Shamoon, A.; Haleem, A.; Bahl, S.; Javaid, M.; Bala Garg, S.; Chandmal Sharma, R.; Garg, J. Environmental Impact of Energy Production and Extraction of Materials - A Review. Mater. Today 2022, 57, 936. Bach, W. Fossil Fuel Resources and Their Impacts on Environment and Climate. Int. J. Hydrogen Energy. 1981, 6 (2), 185. Hefner, M.; Marland, G.; Oda, T. The Changing Mix of Fossil Fuels Used and the Related Evolution of CO2 Emissions. Mitig. Adapt. Strateg. Glob. Chang. 2024, 29 (6), 56. Filonchyk, M.; Peterson, M. P.; Zhang, L.; Hurynovich, V.; He, Y. Greenhouse Gases Emissions and Global Climate Change: Examining the Influence of CO2, CH4, and N2O. Sci. Total Environ. 2024, 935, 173359. Lu, H.; Xi, D.; Qin, G. Environmental Risk of Oil Pipeline Accidents. Sci. Total Environ. 2023, 874, 162386. Echchelh, A. Oil and Natural Gas and Sustainability. In The Palgrave Handbook of Global Sustainability, Brinkmann, R. Ed.; Springer International Publishing, 2023; pp 47. World Energy Statistics and Balances. In International Energy Agency (IEA), 2025. Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M. D.; Wagner, N.; Gorini, R. The Role of Renewable Energy in the Global Energy Transformation. Energy Strat. Rev. 2019, 24, 38. Holechek, J. L.; Geli, H. M. E.; Sawalhah, M. N.; Valdez, R. A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050? In Sustainability, 2022; Vol. 14. Mehtab, A.; Ali, S. A.; Sadiq, I.; Shaheen, S.; Khan, H.; Fazil, M.; Pandit, N. A.; Naaz, F.; Ahmad, T. Hydrogen Energy as Sustainable Energy Resource for Carbon-Neutrality Realization. ACS SRM 2024, 1 (4), 604. Ge, L.; Zhang, B.; Huang, W.; Li, Y.; Hou, L.; Xiao, J.; Mao, Z.; Li, X. A Review of Hydrogen Generation, Storage, and Applications in Power System. J. Energy Storage 2024, 75, 109307. Panigrahi, P. K.; Chandu, B.; Motapothula, M. R.; Puvvada, N. Potential Benefits, Challenges and Perspectives of Various Methods and Materials Used for Hydrogen Storage. Energy Fuels 2024, 38 (4), 2630. Ang, T.-Z.; Salem, M.; Kamarol, M.; Das, H. S.; Nazari, M. A.; Prabaharan, N. A Comprehensive Study of Renewable Energy Sources: Classifications, Challenges and Suggestions. Energy Strat. Rev. 2022, 43, 100939. Szablowski, L.; Wojcik, M.; Dybinski, O. Review of Steam Methane Reforming as a Method of Hydrogen Production. Energy 2025, 316, 134540. Meloni, E.; Martino, M.; Palma, V. A Short Review on Ni Based Catalysts and Related Engineering Issues for Methane Steam Reforming. Catalysts 2020, 10 (3), 352. Thomas, J. S. G. The Complete Gasification of Coal. Nature 1923, 111 (2797), 778. Dai, F.; Zhang, S.; Luo, Y.; Wang, K.; Liu, Y.; Ji, X. Recent Progress on Hydrogen-Rich Syngas Production from Coal Gasification. Processes 2023, 11 (6), 1765. Breault, R. W. Gasification Processes Old and New: A Basic Review of the Major Technologies. Energies 2010, 3 (2), 216. Lang, C.; Sécordel, X.; Courson, C. Copper-Based Water Gas Shift Catalysts for Hydrogen Rich Syngas Production from Biomass Steam Gasification. Energy Fuels 2017, 31 (11), 12932. Alves, C. T.; Onwudili, J. A.; Ghorbannezhad, P.; Kumagai, S. A Review of the Thermochemistries of Biomass Gasification and Utilisation of Gas Products. Sustain. Energ. Fuels 2023, 7 (15), 3505. Alptekin, F. M.; Celiktas, M. S. Review on Catalytic Biomass Gasification for Hydrogen Production as a Sustainable Energy Form and Social, Technological, Economic, Environmental, and Political Analysis of Catalysts. ACS Omega 2022, 7 (29), 24918. Li, R.; Luan, J.; Zhang, Y.; Jiang, L.; Yan, H.; Chi, Q.; Yan, Z. A Review of Efficient Photocatalytic Water Splitting for Hydrogen Production. Renew. Sustain. Energy Rev. 2024, 206, 114863. Zhou, W.; Li, S.; Yang, Y.; Yao, J.; Chen, P.; Liu, J.; Wu, Y.; Li, Z.; Jin, F. Hydrogen Production Technologies from Water Decomposition: A Review. Next Energy 2025, 8, 100270. Li, X.; Zhang, C.; Geng, J.; Zong, S.; Wang, P. Photo(electro)catalytic Water Splitting for Hydrogen Production: Mechanism, Design, Optimization, and Economy. Molecules 2025, 30 (3), 630. Jafari, T.; Moharreri, E.; Amin, A. S.; Miao, R.; Song, W.; Suib, S. L. Photocatalytic Water Splitting-The Untamed Dream: A Review of Recent Advances. Molecules 2016, 21 (7). Maeda, K.; Domen, K. Photocatalytic Water Splitting: Recent Progress and Future Challenges. J. Phys. Chem. Lett. 2010, 1 (18), 2655. El-Shafie, M. Hydrogen Production by Water Electrolysis Technologies: A Review. Results Eng. 2023, 20, 101426. Isse, A. A.; Gennaro, A. Absolute Potential of the Standard Hydrogen Electrode and the Problem of Interconversion of Potentials in Different Solvents. J. Phys. Chem. B 2010, 114 (23), 7894. Shinagawa, T.; Takanabe, K. Towards Versatile and Sustainable Hydrogen Production through Electrocatalytic Water Splitting: Electrolyte Engineering. ChemSusChem 2017, 10 (7), 1318. Gebremariam, G. K.; Jovanović, A. Z.; Pašti, I. A. The Effect of Electrolytes on the Kinetics of the Hydrogen Evolution Reaction. Hydrogen 2023, 4 (4), 776. Suen, N.-T.; Hung, S.-F.; Quan, Q.; Zhang, N.; Xu, Y.-J.; Chen, H. M. Electrocatalysis for the Oxygen Evolution Reaction: Recent Development and Future Perspectives. Chem. Soc. Rev. 2017, 46 (2), 337. Li, C.; Baek, J.-B. Recent Advances in Noble Metal (Pt, Ru, and Ir)-Based Electrocatalysts for Efficient Hydrogen Evolution Reaction. ACS Omega 2020, 5 (1), 31. Wang, F.; Xiao, L.; Jiang, Y.; Liu, X.; Zhao, X.; Kong, Q.; Abdukayum, A.; Hu, G. Recent Achievements in Noble Metal-based Oxide Electrocatalysts for Water Splitting. Mater. Horiz. 2025, 12 (6), 1757. Wang, J.; Yang, H.; Li, F.; Li, L.; Wu, J.; Liu, S.; Cheng, T.; Xu, Y.; Shao, Q.; Huang, X. Single-site Pt-doped RuO2 Hollow Nanospheres with Interstitial C for High-performance Acidic Overall Water Splitting. Sci. Adv. 2022, 8 (9), 9271. Wang, S.; Lu, A.; Zhong, C.-J. Hydrogen Production from Water Electrolysis: Role of Catalysts. Nano Converg. 2021, 8 (1), 4. Kuge, K.; Yamauchi, K.; Sakai, K. Theoretical Study on the Mechanism of the Hydrogen Evolution Reaction Catalyzed by Platinum Subnanoclusters. Dalton Trans. 2023, 52 (3), 583. Chen, Z.; Duan, X.; Wei, W.; Wang, S.; Ni, B.-J. Recent Advances in Transition Metal-Based Electrocatalysts for Alkaline Hydrogen Evolution. J. Mater. Chem. A 2019, 7 (25), 14971. Ruqia, B.; Choi, S.-I. Pt and Pt–Ni(OH)2 Electrodes for the Hydrogen Evolution Reaction in Alkaline Electrolytes and Their Nanoscaled Electrocatalysts. ChemSusChem 2018, 11 (16), 2643. Tetteh, E. B.; Kim, M.; Savan, A.; Ludwig, A.; Chung, T. D.; Schuhmann, W. Reassessing the Intrinsic Hydrogen Evolution Reaction Activity of Platinum Using Scanning Electrochemical Cell Microscopy. Cell Rep. Phys. Sci. 2023, 4 (12), 101680. Yu, Q.; Zhang, Z.; Liu, H.; Kang, X.; Ge, S.; Li, S.; Gan, L.; Liu, B. Why Do Platinum Catalysts Show Diverse Electrocatalytic Performance? Fundam Res. 2023, 3 (5), 804. Chen, S.; Kucernak, A. Electrocatalysis Under Conditions of High Mass Transport: Investigation of Hydrogen Oxidation on Single Submicron Pt Particles Supported on Carbon. J. Phys. Chem. B 2004, 108 (37), 13984. Yang, T. T.; Patil, R. B.; McKone, J. R.; Saidi, W. A. Revisiting Trends in the Exchange Current for Hydrogen Evolution. Catal. Sci. Technol. 2021, 11 (20), 6832. Sen, R.; Das, S.; Nath, A.; Maharana, P.; Kar, P.; Verpoort, F.; Liang, P.; Roy, S. Electrocatalytic Water Oxidation: An Overview With an Example of Translation From Lab to Market. Front. Chem. 2022, 10, 861604. Tran, D. T.; Tran, P. K. L.; Malhotra, D.; Nguyen, T. H.; Nguyen, T. T. A.; Duong, N. T. A.; Kim, N. H.; Lee, J. H. Current Status of Developed Electrocatalysts for Water Splitting Technologies: From Experimental to Industrial Perspective. Nano Converg. 2025, 12 (1), 9. Chen, W.; Cao, J.; Fu, W.; Zhang, J.; Qian, G.; Yang, J.; Chen, D.; Zhou, X.; Yuan, W.; Duan, X. Molecular-Level Insights into the Notorious CO Poisoning of Platinum Catalyst. Angew. Chem., Int. Ed. 2022, 61 (16), e202200190. Escaño, M. C. S. First-principles Calculations of the Dissolution and Coalescence Properties of Pt Nanoparticle ORR Catalysts: The Effect of Nanoparticle Shape. Nano Res. 2015, 8 (5), 1689. Yu, K.; Groom, D. J.; Wang, X.; Yang, Z.; Gummalla, M.; Ball, S. C.; Myers, D. J.; Ferreira, P. J. Degradation Mechanisms of Platinum Nanoparticle Catalysts in Proton Exchange Membrane Fuel Cells: The Role of Particle Size. Chem Mater. 2014, 26 (19), 5540. Liu, B.; Liao, Q.; Zhang, X.; Du, J.; Ou, Y.; Xiao, J.; Kang, Z.; Zhang, Z.; Zhang, Y. Strain-Engineered van der Waals Interfaces of Mixed-Dimensional Heterostructure Arrays. ACS Nano 2019, 13 (8), 9057. Zhan, F.; Huang, L.; Luo, Y.; Chen, M.; Tan, R.; Liu, X.; Liu, G.; Feng, Z. Recent Advances on Support Materials for Enhanced Pt-based Catalysts: Applications in Oxygen Reduction Reactions for Electrochemical Energy Storage. J. Mater. Sci. 2025, 60 (5), 2199. Kim, H.; Robertson, A. W.; Kim, S. O.; Kim, J. M.; Warner, J. H. Resilient High Catalytic Performance of Platinum Nanocatalysts with Porous Graphene Envelope. ACS Nano 2015, 9 (6), 5947. Kim, M.-Y.; You, Y. S.; Han, H.-S.; Seo, G. Preparation of Highly Dispersive Platinum Catalysts Impregnated on Titania-Incorporated Silica Support. Catal. Lett. 2008, 120 (1), 40. Najafi, L.; Bellani, S.; Castelli, A.; Arciniegas, M. P.; Brescia, R.; Oropesa-Nuñez, R.; Martín-García, B.; Serri, M.; Drago, F.; Manna, L.; et al. Octapod-Shaped CdSe Nanocrystals Hosting Pt with High Mass Activity for the Hydrogen Evolution Reaction. Chem Mater. 2020, 32 (6), 2420. Vengatesan, S.; Kim, H.-J.; Kim, S.-K.; Oh, I.-H.; Lee, S.-Y.; Cho, E.; Ha, H. Y.; Lim, T.-H. High Dispersion Platinum Catalyst Using Mesoporous Carbon Support for Fuel Cells. Electrochim. Acta 2008, 54 (2), 856. Mabena, L. F.; Sinha Ray, S.; Mhlanga, S. D.; Coville, N. J. Nitrogen-doped Carbon Nanotubes as a Metal Catalyst Support. Appl. Nanosci. 2011, 1 (2), 67. Li, M.; Xu, F.; Li, H.; Wang, Y. Nitrogen-doped Porous Carbon Materials: Promising Catalysts or Catalyst Supports for Heterogeneous Hydrogenation and Oxidation. Catal. Sci. Technol. 2016, 6 (11), 3670. Fiorio, J. L.; Garcia, M. A. S.; Gothe, M. L.; Galvan, D.; Troise, P. C.; Conte-Junior, C. A.; Vidinha, P.; Camargo, P. H. C.; Rossi, L. M. Recent Advances in the Use of Nitrogen-doped Carbon Materials for the Design of Noble Metal Catalysts. Coord. Chem. Rev. 2023, 481, 215053. Alabadi, A.; Abbood, H. A.; Li, Q.; Jing, N.; Tan, B. Imine-Linked Polymer Based Nitrogen-Doped Porous Activated Carbon for Efficient and Selective CO2 Capture. Sci. Rep. 2016, 6 (1), 38614. Zhang, Y.; Li, Q.; Li, H.; Wang, L.; Hu, Y. Preparation and Characterization of N-doped Porous Carbon Derived from Chlorinated Polypropylene with Controllable Nitrogen Content and Specific Surface Area. Colloids Surf. A: Physicochem. Eng. Asp. 2021, 616, 126332. Torad, N. L.; Hu, M.; Ishihara, S.; Sukegawa, H.; Belik, A. A.; Imura, M.; Ariga, K.; Sakka, Y.; Yamauchi, Y. Direct Synthesis of MOF-Derived Nanoporous Carbon with Magnetic Co Nanoparticles toward Efficient Water Treatment. Small 2014, 10 (10), 2096. Diercks, C. S.; Kalmutzki, M. J.; Diercks, N. J.; Yaghi, O. M. Conceptual Advances from Werner Complexes to Metal–Organic Frameworks. ACS Cent. Sci. 2018, 4 (11), 1457. Zhong, G.; Liu, D.; Zhang, J. The Application of ZIF-67 and Its Derivatives: Adsorption, Separation, Electrochemistry and Catalysts. J. Mater. Chem. A 2018, 6 (5), 1887. Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. Exceptional Chemical and Thermal Stability of Zeolitic Imidazolate Frameworks. Proc. Natl. Acad. Sci. 2006, 103 (27), 10186. Jadhav, H. S.; Bandal, H. A.; Ramakrishna, S.; Kim, H. Critical Review, Recent Updates on Zeolitic Imidazolate Framework-67 (ZIF-67) and Its Derivatives for Electrochemical Water Splitting. Adv. Mater. 2022, 34 (11), 2107072. Li, X.; Li, Z.; Lu, L.; Huang, L.; Xiang, L.; Shen, J.; Liu, S.; Xiao, D.-R. The Solvent Induced Inter-Dimensional Phase Transformations of Cobalt Zeolitic-Imidazolate Frameworks. Chem. Eur. J. 2017, 23 (44), 10638. Zhang, J.; Zhang, T.; Yu, D.; Xiao, K.; Hong, Y. Transition from ZIF-L-Co to ZIF-67: a New Insight into the Structural Evolution of Zeolitic Imidazolate Frameworks (ZIFs) in Aqueous Systems. CrystEngComm 2015, 17 (43), 8212. Koczkur, K. M.; Mourdikoudis, S.; Polavarapu, L.; Skrabalak, S. E. Polyvinylpyrrolidone (PVP) in Nanoparticle Synthesis. Dalton Trans. 2015, 44 (41), 17883. Lu, G.; Li, S.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X.; Wang, Y.; Wang, X.; Han, S.; Liu, X.; et al. Imparting Functionality to a Metal–Organic Framework Material by Controlled Nanoparticle Encapsulation. Nat. Chem. 2012, 4 (4), 310. Wang, C.; Zhang, J.; Zhang, Z.; Ren, G.; Cai, D. One-step Conversion of Tannic Acid-modified ZIF-67 into Oxygen Defect Hollow Co3O4/Nitrogen-doped Carbon for Efficient Electrocatalytic Oxygen Evolution. RSC Adv. 2020, 10 (64), 38906. Wang, T.; He, Y.; Liu, Y.; Guo, F.; Li, X.; Chen, H.; Li, H.; Lin, Z. A ZIF-triggered rapid polymerization of dopamine renders Co/N-codoped cage-in-cage porous carbon for highly efficient oxygen reduction and evolution. Nano Energy 2021, 79, 105487. Hou, P.; Li, D.; Yang, N.; Wan, J.; Zhang, C.; Zhang, X.; Jiang, H.; Zhang, Q.; Gu, L.; Wang, D. Delicate Control on the Shell Structure of Hollow Spheres Enables Tunable Mass Transport in Water Splitting. Angew. Chem., Int. Ed. 2021, 60 (13), 6926. Yang, M.; Zhang, C. H.; Li, N. W.; Luan, D.; Yu, L.; Lou, X. W. Design and Synthesis of Hollow Nanostructures for Electrochemical Water Splitting. Adv. Sci. 2022, 9 (9), 2105135. Zhang, S. L.; Lu, X. F.; Wu, Z.-P.; Luan, D.; Lou, X. W. Engineering Platinum–Cobalt Nano-alloys in Porous Nitrogen-doped Carbon Nanotubes for Highly Efficient Electrocatalytic Hydrogen Evolution. Angew. Chem., Int. Ed. 2021, 60 (35), 19068. Gkantzou, E.; Chatzikonstantinou, A. V.; Fotiadou, R.; Giannakopoulou, A.; Patila, M.; Stamatis, H. Trends in the Development of Innovative Nanobiocatalysts and their Application in Biocatalytic Transformations. Biotechnol. Adv. 2021, 51, 107738. Zhao, X.; Liu, X.; Li, F.; Huang, M. MnO2@NiO Nanosheets@nanowires Hierarchical Structures with Enhanced Supercapacitive Properties. J. Mater. Sci. 2020, 55 (6), 2482. Fleury, J.-B.; Werner, M.; Guével, X. L.; Baulin, V. A. Protein Corona Modulates Interaction of Spiky Nanoparticles with Lipid Bilayers. J. Colloid. Interface Sci. 2021, 603, 550. Chen, Z.; Zhou, T.; Liu, Q.; Wang, Z.; Gu, R.; Guo, L.; Liu, Y. Three-Dimensional Flower-Like Bimetallic Nickel–Iron Selenide for Efficient Oxygen Evolution Reaction. J. Phys. Chem. C 2022, 126 (11), 5131. Niu, Q.; Yang, M.; Luan, D.; Li, N. W.; Yu, L.; Lou, X. W. Construction of Ni-Co-Fe Hydr(oxy)oxide@Ni-Co Layered Double Hydroxide Yolk-Shelled Microrods for Enhanced Oxygen Evolution. Angew. Chem., Int. Ed. 2022, 61 (49), 13049. Guo, X.; Xing, T.; Lou, Y.; Chen, J. Controlling ZIF-67 Crystals Formation through Various Cobalt Sources in Aqueous Solution. J. Solid State Chem. 2016, 235, 107. Saliba, D.; Ammar, M.; Rammal, M.; Al-Ghoul, M.; Hmadeh, M. Crystal Growth of ZIF-8, ZIF-67, and Their Mixed-Metal Derivatives. JACS 2018, 140 (5), 1812. Jain, M.; Joshi, B.; Poddar, P. Poly(N-vinylpyrrolidone)-Assisted Crystal Growth of Zeolitic Imidazolate Framework (ZIF-67) and Electrochemical Properties of Its Derivatives for Flexible Supercapacitors. Cryst. Growth Des. 2024, 24 (8), 3179. Deacon, A.; Briquet, L.; Malankowska, M.; Massingberd-Mundy, F.; Rudić, S.; Hyde, T. L.; Cavaye, H.; Coronas, J.; Poulston, S.; Johnson, T. Understanding the ZIF-L to ZIF-8 transformation from fundamentals to fully costed kilogram-scale production. Commun. Chem. 2022, 5 (1), 18. Zhao, J. Air-Flow Impacting: A New Mechanochemical Method for Continuous, Highly Efficient, Large-Scale Synthesis of Metal-Organic Frameworks and Mechanistic Research. Front. Mater. 2021, 8. Zhou, K.; Mousavi, B.; Luo, Z.; Phatanasri, S.; Chaemchuen, S.; Verpoort, F. Characterization and Properties of Zn/Co Zeolitic Imidazolate Frameworks vs. ZIF-8 and ZIF-67. J. Mater. Chem. A 2017, 5 (3), 952. Heide, P. v. d. Appendix B: Binding Energies (B.E.XPS or B.E.XRF) of the Elements. In X‐Ray Photoelectron Spectroscopy, 2011; pp 171. John F. Watts, J. W. Appendix 2: Table of Binding Energies Accessible with Al Kα Radiation. In An Introduction to Surface Analysis by XPS and AES, 2019; pp 249. Lo, K.-H.; Shanmugam, A.; Cheng, C.-C.; Wu, S.-J.; Juan, H.-Y.; Su, C.-H.; Lin, J.-Y.; Hsieh, C.-K. In Situ Synthesis of ZIF-67 Thin Films Using Low Temperature Chemical Vapor Deposition to Fabricate All-Solid-State Flexible Interdigital in-Planar Microsupercapacitors. Int. J. Energy Res. 2023, 2023, 1. Greczynski, G.; Hultman, L. A step-by-step Guide to Perform X-ray Photoelectron Spectroscopy. J. Appl. Phys. 2022, 132 (1). Hong, S.; Na, Y. S.; Choi, S.; Song, I. T.; Kim, W. Y.; Lee, H. Non-Covalent Self-Assembly and Covalent Polymerization Co-Contribute to Polydopamine Formation. Adv. Funct. Mater. 2012, 22 (22), 4711. Liu, Y.; Ai, K.; Lu, L. Polydopamine and Its Derivative Materials: Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields. Chem. Rev. 2014, 114 (9), 5057. Della Vecchia, N. F.; Luchini, A.; Napolitano, A.; D’Errico, G.; Vitiello, G.; Szekely, N.; d’Ischia, M.; Paduano, L. Tris Buffer Modulates Polydopamine Growth, Aggregation, and Paramagnetic Properties. Langmuir 2014, 30 (32), 9811. Cheng, W.; Zeng, X.; Chen, H.; Li, Z.; Zeng, W.; Mei, L.; Zhao, Y. Versatile Polydopamine Platforms: Synthesis and Promising Applications for Surface Modification and Advanced Nanomedicine. ACS Nano 2019, 13 (8), 8537. Mills, M. F.; Gilbert, R. G.; Napper, D. H. Effect of Polymerization Kinetics on Particle Morphology in Heterogeneous Systems. Macromol. 1990, 23 (19), 4247. Piletsky, S. A.; Mijangos, I.; Guerreiro, A.; Piletska, E. V.; Chianella, I.; Karim, K.; Turner, A. P. F. Polymer Cookery: Influence of Polymerization Time and Different Initiation Conditions on Performance of Molecularly Imprinted Polymers. Macromol. 2005, 38 (4), 1410. Ju, K.-Y.; Lee, Y.; Lee, S.; Park, S. B.; Lee, J.-K. Bioinspired Polymerization of Dopamine to Generate Melanin-Like Nanoparticles Having an Excellent Free-Radical-Scavenging Property. Biomacromolecules 2011, 12 (3), 625. Ball, V.; Frari, D. D.; Toniazzo, V.; Ruch, D. Kinetics of Polydopamine Film Deposition as a Function of pH and Dopamine Concentration: Insights in the Polydopamine Deposition Mechanism. J. Colloid. Interface Sci. 2012, 386 (1), 366. Batul, R.; Bhave, M.; P, J. M.; Yu, A. Polydopamine Nanosphere with In-Situ Loaded Gentamicin and Its Antimicrobial Activity. Molecules 2020, 25 (9). Waseda, Y.; Matsubara, E.; Shinoda, K. X-ray Diffraction Crystallography: Introduction, Examples and Solved Problems; Springer Science & Business Media, 2011. Heide, P. v. d. Spectral Interpretation. In X‐Ray Photoelectron Spectroscopy, 2011; pp 101. Liu, X.; Prewitt, C. T. High-temperature X-ray Diffraction Study of Co3O4: Transition from Normal to Disordered Spinel. Phys. Chem. Miner. 1990, 17, 168. Allen, G. C.; Paul, M. Chemical Characterization of Transition Metal Spinel-Type Oxides by Infrared Spectroscopy. Appl. Spectrosc. 1995, 49 (4), 451. Kim, M.; Hwang, S.; Yu, J.-S. Novel Ordered Nanoporous Graphitic C3N4 as a Support for Pt–Ru Anode Catalyst in Direct Methanol Fuel Cell. J. Mater. Chem. 2007, 17 (17), 1656. Patterson, A. L. The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 1939, 56 (10), 978. Lee, J. Y.; Kim, N. Y.; Shin, D. Y.; Park, H.-Y.; Lee, S.-S.; Joon Kwon, S.; Lim, D.-H.; Bong, K. W.; Son, J. G.; Kim, J. Y. Nitrogen-doped Graphene-wrapped Iron Nanofragments for High-performance Oxygen Reduction Electrocatalysts. J. Nanopart. Res. 2017, 19 (3), 98. Gao, Y.; Han, Z.; Hong, S.; Wu, T.; Li, X.; Qiu, J.; Sun, Z. ZIF-67-Derived Cobalt/Nitrogen-Doped Carbon Composites for Efficient Electrocatalytic N2 Reduction. ACS Appl. Energy Mater. 2019, 2 (8), 6071. Yin, H.; Zhu, J.; Chen, J.; Gong, J.; Nie, Q. PEG-templated Assembling of Co3O4 Nanosheets with Nanoparticles for Enhanced Sensitive Non-enzymatic Glucose Sensing Performance. J. Mater. Sci.: Mater. Electron. 2018, 29, 17305. Rieke, P. C.; Bentjen, S. B. Deposition of Cadmium Sulfide Films by Decomposition of Thiourea in Basic Solutions. Chem Mater. 1993, 5 (1), 43. Ulrich, F.; Zachariasen, W. XIV. Über die Kristallstruktur des α- und β-CdS, sowie des Wurtzits. 1925, 62 (1-6), 260. Lv, J.; Liu, J.; Zhang, J.; Dai, K.; Liang, C.; Wang, Z.; Zhu, G. Construction of Organic–Inorganic Cadmium Sulfide/Diethylenetriamine Hybrids for Efficient Photocatalytic Hydrogen Production. J. Colloid. Interface Sci. 2018, 512, 77. Xu, D.; Liu, Z.; Liang, J.; Qian, Y. Solvothermal Synthesis of CdS Nanowires in a Mixed Solvent of Ethylenediamine and Dodecanethiol. J. Phys. Chem. B 2005, 109 (30), 14344. AL-Mamoori, M. H.; Mahdi, D. K.; Alshrefi, S. M. Synthesis and Spectroscopic Study of CdS Nanoparticles Using Hydrothermal Method. In AIP Conference Proceedings, 2018; AIP Publishing: Vol. 1968. Alhammadi, S.; Reddy, V.; Gedi, S.; Park, H.; Sayed, M.; Shim, J.-J.; Kim, W. Performance of Graphene–CdS Hybrid Nanocomposite Thin Film for Applications in Cu(In,Ga)Se2 Solar Cell and H2 Production. Nanomaterials 2020, 10, 245. Sassin, M. B.; Chervin, C. N.; Rolison, D. R.; Long, J. W. Redox Deposition of Nanoscale Metal Oxides on Carbon for Next-Generation Electrochemical Capacitors. Acc. Chem. Res. 2013, 46 (5), 1062. Zoski, C. G. Handbook of Electrochemistry; Elsevier, 2006. Matthews, T.; Chabalala, M. P.; Mbokazi, S. P.; Maumau, T.; Mugadza, K.; Gallenberger, J.; Hofmann, J. P.; Dolla, T. H.; Maxakato, N. W. Multi-dimensional PtRu/Co3O4-Activated carbon Nano-Electrocatalyst: Metal–Support Interaction, and electronic contributions towards methanol electrooxidation in alkaline fuel cells. Fuel 2024, 359, 130460. Chen, J.; Wiley, B.; McLellan, J.; Xiong, Y.; Li, Z.-Y.; Xia, Y. Optical Properties of Pd−Ag and Pt−Ag Nanoboxes Synthesized via Galvanic Replacement Reactions. Nano Lett. 2005, 5 (10), 2058. Davey, W. P. Precision Measurements of the Lattice Constants of Twelve Common Metals. Phys. Rev. 1925, 25 (6), 753. Niu, K.-Y.; Kulinich, S. A.; Yang, J.; Zhu, A. L.; Du, X.-W. Galvanic Replacement Reactions of Active-Metal Nanoparticles. Chem. Eur. J. 2012, 18 (14), 4234. Bard, A. J.; Faulkner, L. R.; White, H. S. Electrochemical Methods: Fundamentals and Applications; John Wiley & Sons, 2022. McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. JACS 2013, 135 (45), 16977. McCrory, C. C. L.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices. JACS 2015, 137 (13), 4347. Anantharaj, S.; Ede, S.; Karthick, K.; Sankar, S. S.; Sangeetha, K.; Karthik, P.; Kundu, S. Precision and Correctness in the Evaluation of Electrocatalytic Water Splitting: Revisiting Activity Parameters with a Critical Assessment. Energy Environ. Sci. 2018, 11 (4), 744. Anantharaj, S.; Karthik, P. E.; Noda, S. The Significance of Properly Reporting Turnover Frequency in Electrocatalysis Research. Angew. Chem., Int. Ed. 2021, 60 (43), 23051. Ding, R.; Espinosa, I. M. P.; Loevlie, D.; Azadehranjbar, S.; Baker, A. J.; Mpourmpakis, G.; Martini, A.; Jacobs, T. D. Size-dependent Shape Distributions of Platinum Nanoparticles. Nanoscale Adv. 2022, 4 (18), 3978. Lide, D. R. CRC Handbook of Chemistry and Physics; CRC press, 2004. Krupski, K.; Moors, M.; Jóźwik, P.; Kobiela, T.; Krupski, A. Structure Determination of Au on Pt(111) Surface: LEED, STM and DFT Study. Materials (Basel) 2015, 8 (6), 2935. Somorjai, G. A.; Li, Y. Introduction to surface chemistry and catalysis; John Wiley & Sons, 2010. Voiry, D.; Chhowalla, M.; Gogotsi, Y.; Kotov, N. A.; Li, Y.; Penner, R. M.; Schaak, R. E.; Weiss, P. S. Best Practices for Reporting Electrocatalytic Performance of Nanomaterials. ACS Nano 2018, 12 (10), 9635. Costentin, C.; Passard, G.; Savéant, J.-M. Benchmarking of Homogeneous Electrocatalysts: Overpotential, Turnover Frequency, Limiting Turnover Number. JACS 2015, 137 (16), 5461. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99542 | - |
| dc.description.abstract | 鉑基電催化劑進行水裂解產氫由於其潔淨性與高效率而在永續能源技術中脫穎而出;然而,鉑的稀缺性與高昂成本成為應用上主要限制因素。為克服此問題,本研究設計了兩種電催化劑,透過將鉑分散於具先進奈米結構的不同載體上:(一)鉑鈷/氮摻雜多孔碳(PtCo/NPC),以及(二)鉑/硫化鎘奈米海膽(Pt/CdS NU)。在PtCo/NPC中,異原子摻雜賦予良好導電性,中空結構亦有助於質傳與高比表面積;在 Pt/CdS NU 中,鉑奈米粒子沉積於海膽尖刺上,有效暴露活性位點並防止團聚。在 0.5 M H2SO4(pH = 0)中的電化學測試顯示,Pt/CdS NU的過電位為 40.8 mV,而 PtCo/NPC 在 20.4 mV 處可達到相同電流密度,表現優於市售Pt/C(10 wt%)。恆電流測試進一步證實其操作穩定性:PtCo/NPC與Pt/CdS NU在10 mA·cm–2下連續操作50小時無明顯效能劣化,而過電位往低數值漂移可能發生了電解清洗現象。本研究展示了以氧化還原沉積法降低鉑用量,並同時保持高催化活性與穩定性的有效策略,為貴金屬電催化材料開發提供一個有效的策略。 | zh_TW |
| dc.description.abstract | Hydrogen production via water splitting using platinum electrocatalyst stands out among sustainable energy technologies due to its cleanliness and efficiency. However, the scarcity and exorbitant cost of platinum pose major limitations. To address this, two electrocatalysts with reduced platinum content were elaborated by dispersing platinum onto distinct support materials with advanced nanoarchitectures: (i) PtCo/N-doped porous carbon (PtCo/NPC), and (ii) Pt/CdS nanourchin (Pt/CdS NU). In PtCo/NPC, the hollow structure facilitates mass transfer and a large surface area, while heteroatom doping ensures good conductivity. For Pt/CdS NU, platinum nanoparticles are deposited on the spikes, effectively exposing active sites and preventing agglomeration. Electrochemical evaluation in 0.5 M H2SO4 (pH = 0) reveals that Pt/CdS NU exhibits an overpotential of 40.8 mV, while PtCo/NPC achieves the same current at 20.4 mV—surpassing commercial Pt/C (10 wt%). Chronopotentiometric tests show both PtCo/NPC and Pt/CdS NU have no performance degradation over 50 hours at 10 mA·cm–2, confirming excellent operational stability. This work demonstrates effective strategies using redox deposition to minimize platinum usage while maintaining high catalytic performance and stability. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:36:37Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:36:37Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Contents
Acknowledgement i 摘要 ii Abstract iii Contents iv List of Figures viii List of Schemes xv List of Tables xvi Chapter 1 Introduction 1 1.1 Overview: Energy Crisis and Renewable Sources 1 1.2 Hydrogen Production 3 1.3 Catalysts for Hydrogen Evolution Reaction 8 1.4 Support Materials for Platinum 12 1.4.1 The Nitrogen-Doped Porous Carbons 13 1.4.2 Other Support Materials and Their Unique Morphologies 16 1.5 Motivation 18 Chapter 2 Results and Discussion 19 2.1 Synthesis of ZIF-67-Derived Nitrogen-Doped Porous Carbon 19 2.1.1 Effect of the Hmim/Co on ZIF-67 19 2.1.2 Effect of the Use of Polyvinylpyrrolidone on ZIF-67 22 2.1.3 Optimization of Polydopamine Polymerization Reaction of ZIF-67@PDA 28 2.1.4 Pyrolysis of ZIF-67@PDA 39 2.2 Synthesis of Cadmium Sulfide Nanourchin 50 2.2.1 Effects of Hydrothermal Temperatures and DETA of CdS 50 2.3 Manufacturing Platinum Nanoparticles onto NPC and CdS NU 56 2.3.1 Synthesis of PtCo/NPC 56 2.3.2 Introduction of Platinum Nanoparticles on Cadmium Sulfide Nanourchins 65 Chapter 3 Application 71 3.1 HER Performance of PtCo/NPC 75 3.2 HER Performance of Pt/CdS NU 80 3.3 Stability and Mass Activity of PtCo/NPC and Pt/CdS NU 84 Chapter 4 Conclusion 88 Chapter 5 Experimental Section 89 5.1 General Information 89 5.1.1 Chemicals 89 5.2 Synthesis 91 5.2.1 Synthesis of ZIF-67 (Hmim/Co = 5, 10, 15, 30, 45) 91 5.2.2 Synthesis of PVP-Assisted ZIF-67 Polyhedrons (PVP = 0.1, 0.5, 1, 5, and 10; Hmim/Co = 45) 91 5.2.3 Preparation of Tris Buffer Solution 92 5.2.4 Synthesis of ZIF-67@PDA 92 5.2.5 Synthesis of Co/Nitrogen-Doped Porous Carbon (Co/NPC) 93 5.2.6 Synthesis of Pt-Co/Nitrogen-Doped Porous Carbon (PtCo/NPC) 93 5.2.7 Synthesis of Cadmium Sulfide Nanourchins (CdS NUs) and Nanosphere (CdS NS) 94 5.2.8 Synthesis of Pt/Cadmium Sulfide Nanourchins (Pt/CdS NU) 95 5.3 Characterization 96 5.4 Electrochemical Measurements 97 Reference 99 Appendix 119 | - |
| dc.language.iso | en | - |
| dc.subject | 析氫反應 | zh_TW |
| dc.subject | 鉑 | zh_TW |
| dc.subject | 氮摻雜多孔碳 | zh_TW |
| dc.subject | 硫化鎘 | zh_TW |
| dc.subject | 奈米海膽 | zh_TW |
| dc.subject | N-doped porous carbon | en |
| dc.subject | hydrogen evolution reaction | en |
| dc.subject | nanourchin | en |
| dc.subject | cadmium sulfide | en |
| dc.subject | platinum | en |
| dc.title | 析氫反應的鉑基高效電催化劑:鉑鈷/氮摻雜多孔碳與鉑/硫化鎘奈米海膽 | zh_TW |
| dc.title | Platinum-Based High-Performance Electrocatalysts for Hydrogen Evolution: PtCo/N-Doped Porous Carbon and Pt/CdS Nanourchin | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 廖尉斯;陳重佑 | zh_TW |
| dc.contributor.oralexamcommittee | Wei-Ssu Liao;Chong-You Chen | en |
| dc.subject.keyword | 析氫反應,鉑,氮摻雜多孔碳,硫化鎘,奈米海膽, | zh_TW |
| dc.subject.keyword | hydrogen evolution reaction,platinum,N-doped porous carbon,cadmium sulfide,nanourchin, | en |
| dc.relation.page | 122 | - |
| dc.identifier.doi | 10.6342/NTU202502062 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-21 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| dc.date.embargo-lift | 2030-07-18 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2030-07-18 | 4.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
