Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99539
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李金美zh_TW
dc.contributor.advisorChin-Mei Leeen
dc.contributor.author吳芷晴zh_TW
dc.contributor.authorZhi-Qing Wuen
dc.date.accessioned2025-09-10T16:36:05Z-
dc.date.available2025-09-11-
dc.date.copyright2025-09-10-
dc.date.issued2025-
dc.date.submitted2025-07-21-
dc.identifier.citationAlabadi, D., Oyama, T., Yanovsky, M.J., Harmon, F.G., Mas, P. and Kay, S.A. (2001) Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science, 293, 880–3.
Alabadi, D., Yanovsky, M.J., Mas, P., Harmer, S.L. and Kay, S.A. (2002) Critical role for CCA1 and LHY in maintaining circadian rhythmicity in Arabidopsis. Curr Biol, 12, 757–61.
Alonso, J.M., Stepanova, A.N., Leisse, T.J., et al. (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science, 301, 653–7.
Alvarez, M.A., Li, C., Lin, H., Joe, A., Padilla, M., Woods, D.P. and Dubcovsky, J. (2023) EARLY FLOWERING 3 interactions with PHYTOCHROME B and PHOTOPERIOD1 are critical for the photoperiodic regulation of wheat heading time. PLoS Genet, 19, e1010655.
Andrade, L., Lu, Y., Cordeiro, A., Costa, J.M.F., Wigge, P.A., Saibo, N.J.M. and Jaeger, K.E. (2022) The evening complex integrates photoperiod signals to control flowering in rice. Proc Natl Acad Sci U A, 119, e2122582119.
Austin, E., Geisler, A.N., Nguyen, J., Kohli, I., Hamzavi, I., Lim, H.W. and Jagdeo, J. (2021) Visible light. Part I: Properties and cutaneous effects of visible light. J Am Acad Dermatol, 84, 1219–1231.
Bauer, D., Viczian, A., Kircher, S., et al. (2004) Constitutive photomorphogenesis 1 and multiple photoreceptors control degradation of phytochrome interacting factor 3, a transcription factor required for light signaling in Arabidopsis. Plant Cell, 16, 1433–45.
Botto, J.F., Sanchez, R.A., Whitelam, G.C. and Casal, J.J. (1996) Phytochrome A Mediates the Promotion of Seed Germination by Very Low Fluences of Light and Canopy Shade Light in Arabidopsis. Plant Physiol, 110, 439–444.
Box, M.S., Huang, B.E., Domijan, M., et al. (2015) ELF3 controls thermoresponsive growth in Arabidopsis. Curr Biol, 25, 194–199.
Brightbill, C.M. and Sung, S. (2022) Temperature-mediated regulation of flowering time in Arabidopsis thaliana. aBIOTECH, 3, 78–84.
Buche, C., Poppe, C., Schafer, E. and Kretsch, T. (2000) eid1: a new Arabidopsis mutant hypersensitive in phytochrome A-dependent high-irradiance responses. Plant Cell, 12, 547–58.
Burgie, E.S., Bussell, A.N., Walker, J.M., Dubiel, K. and Vierstra, R.D. (2014) Crystal structure of the photosensing module from a red/far-red light-absorbing plant phytochrome. Proc Natl Acad Sci U A, 111, 10179–84.
Casal, J.J. and Balasubramanian, S. (2019) Thermomorphogenesis. Annu Rev Plant Biol, 70, 321–346.
Casal, J.J., Candia, A.N. and Sellaro, R. (2014) Light perception and signalling by phytochrome A. J Exp Bot, 65, 2835–45.
Chen, D., Lyu, M., Kou, X., et al. (2022) Integration of light and temperature sensing by liquid-liquid phase separation of phytochrome B. Mol Cell, 82, 3015-3029 e6.
Chen, M., Tao, Y., Lim, J., Shaw, A. and Chory, J. (2005) Regulation of phytochrome B nuclear localization through light-dependent unmasking of nuclear-localization signals. Curr Biol, 15, 637–42.
Chen, Z.J. and Sun, L.J. (2009) Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell, 33, 275–86.
Cheng, M.C., Enderle, B., Kathare, P.K., Islam, R., Hiltbrunner, A. and Huq, E. (2020) PCH1 and PCHL Directly Interact with PIF1, Promote Its Degradation, and Inhibit Its Transcriptional Function during Photomorphogenesis. Mol Plant, 13, 499–514.
Cheng, M.C., Kathare, P.K., Paik, I. and Huq, E. (2021) Phytochrome Signaling Networks. Annu Rev Plant Biol, 72, 217–244.
Covington, M.F., Maloof, J.N., Straume, M., Kay, S.A. and Harmer, S.L. (2008) Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biol, 9, R130.
Cuevas-Velazquez, C.L. and Dinneny, J.R. (2018) Organization out of disorder: liquid-liquid phase separation in plants. Curr Opin Plant Biol, 45, 68–74.
Delker, C., Quint, M. and Wigge, P.A. (2022) Recent advances in understanding thermomorphogenesis signaling. Curr Opin Plant Biol, 68, 102231.
Dieterle, M., Zhou, Y.C., Schafer, E., Funk, M. and Kretsch, T. (2001) EID1, an F-box protein involved in phytochrome A-specific light signaling. Genes Dev, 15, 939–44.
Dixon, L.E., Knox, K., Kozma-Bognar, L., Southern, M.M., Pokhilko, A. and Millar, A.J. (2011) Temporal repression of core circadian genes is mediated through EARLY FLOWERING 3 in Arabidopsis. Curr Biol, 21, 120–5.
Doyle, M.R., Davis, S.J., Bastow, R.M., McWatters, H.G., Kozma-Bognar, L., Nagy, F., Millar, A.J. and Amasino, R.M. (2002) The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature, 419, 74–7.
Emenecker, R.J., Holehouse, A.S. and Strader, L.C. (2020) Emerging Roles for Phase Separation in Plants. Dev Cell, 55, 69–83.
Enderle, B., Sheerin, D.J., Paik, I., Kathare, P.K., Schwenk, P., Klose, C., Ulbrich, M.H., Huq, E. and Hiltbrunner, A. (2017) PCH1 and PCHL promote photomorphogenesis in plants by controlling phytochrome B dark reversion. Nat Commun, 8, 2221.
Ezer, D., Jung, J.H., Lan, H., et al. (2017) The evening complex coordinates environmental and endogenous signals in Arabidopsis. Nat Plants, 3, 17087.
Fang, W., Vellutini, E., Perrella, G. and Kaiserli, E. (2022) TANDEM ZINC-FINGER/PLUS3 regulates phytochrome B abundance and signaling to fine-tune hypocotyl growth. Plant Cell, 34, 4213–4231.
Fankhauser, C. and Chen, M. (2008) Transposing phytochrome into the nucleus. Trends Plant Sci, 13, 596–601.
Farre, E.M., Harmer, S.L., Harmon, F.G., Yanovsky, M.J. and Kay, S.A. (2005) Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock. Curr Biol, 15, 47–54.
Feng, Z., Wang, M., Liu, Y., et al. (2024) Liquid-liquid phase separation of TZP promotes PPK-mediated phosphorylation of the phytochrome A photoreceptor. Nat Plants, 10, 798–814.
Feng, Z., Zioutopoulou, A., Xu, T., Li, J. and Kaiserli, E. (2025) TANDEM ZINC-FINGER/PLUS3: a multifaceted integrator of light signaling. Trends Plant Sci, 30, 654–664.
Franklin, K.A. and Quail, P.H. (2010) Phytochrome functions in Arabidopsis development. J Exp Bot, 61, 11–24.
Galvao, V.C. and Fankhauser, C. (2015) Sensing the light environment in plants: photoreceptors and early signaling steps. Curr Opin Neurobiol, 34, 46–53.
Gao, M., Lu, Y., Geng, F., et al. (2023) Phytochromes transmit photoperiod information via the evening complex in Brachypodium. Genome Biol, 24, 256.
Gelderen, K. van and Pierik, R. (2020) Warm days, relaxed RNA. Nat Plants, 6, 438–439.
Gingerich, D.J., Hellmann, H., Christians, M.J. and Stone, S.L. (2021) Editorial: Structure, Function, and Evolution of E3 Ligases and Targets. Front Plant Sci, 12, 767281.
Hahm, J., Kim, K., Qiu, Y. and Chen, M. (2020) Increasing ambient temperature progressively disassembles Arabidopsis phytochrome B from individual photobodies with distinct thermostabilities. Nat Commun, 11, 1660.
Han, Y.J., Kim, S.H. and Kim, J.I. (2024) Phytochrome phosphorylation in plant light signaling. Front Plant Sci, 15, 1259720.
Hardtke, C.S. and Deng, X.W. (2000) The cell biology of the COP/DET/FUS proteins. Regulating proteolysis in photomorphogenesis and beyond? Plant Physiol, 124, 1548–57.
Harmer, S.L. (2009) The circadian system in higher plants. Annu Rev Plant Biol, 60, 357–77.
Harmer, S.L. and Kay, S.A. (2005) Positive and negative factors confer phase-specific circadian regulation of transcription in Arabidopsis. Plant Cell, 17, 1926–40.
Hayes, S., Schachtschabel, J., Mishkind, M., Munnik, T. and Arisz, S.A. (2021) Hot topic: Thermosensing in plants. Plant Cell Env., 44, 2018–2033.
Hazen, S.P., Schultz, T.F., Pruneda-Paz, J.L., Borevitz, J.O., Ecker, J.R. and Kay, S.A. (2005) LUX ARRHYTHMO encodes a Myb domain protein essential for circadian rhythms. Proc Natl Acad Sci U A, 102, 10387–92.
Helfer, A., Nusinow, D.A., Chow, B.Y., Gehrke, A.R., Bulyk, M.L. and Kay, S.A. (2011) LUX ARRHYTHMO encodes a nighttime repressor of circadian gene expression in the Arabidopsis core clock. Curr Biol, 21, 126–33.
Hernando, C.E., Murcia, M.G., Pereyra, M.E., Sellaro, R. and Casal, J.J. (2021) Phytochrome B links the environment to transcription. J Exp Bot, 72, 4068–4084.
Herrero, E., Kolmos, E., Bujdoso, N., et al. (2012) EARLY FLOWERING4 recruitment of EARLY FLOWERING3 in the nucleus sustains the Arabidopsis circadian clock. Plant Cell, 24, 428–43.
Hicks, K.A., Millar, A.J., Carre, I.A., Somers, D.E., Straume, M., Meeks-Wagner, D.R. and Kay, S.A. (1996) Conditional circadian dysfunction of the Arabidopsis early-flowering 3 mutant. Science, 274, 790–2.
Hoang, Q.T.N., Han, Y.J. and Kim, J.I. (2019) Plant Phytochromes and their Phosphorylation. Int J Mol Sci, 20. Available at: https://www.ncbi.nlm.nih.gov/pubmed/31337079.
Hsu, P.Y., Devisetty, U.K. and Harmer, S.L. (2013) Accurate timekeeping is controlled by a cycling activator in Arabidopsis. Elife, 2, e00473.
Hsu, P.Y. and Harmer, S.L. (2014) Wheels within wheels: the plant circadian system. Trends Plant Sci, 19, 240–9.
Huang, H., Alvarez, S., Bindbeutel, R., et al. (2016) Identification of Evening Complex Associated Proteins in Arabidopsis by Affinity Purification and Mass Spectrometry. Mol Cell Proteomics, 15, 201–17.
Huang, H., Alvarez, S. and Nusinow, D.A. (2016) Data on the identification of protein interactors with the Evening Complex and PCH1 in Arabidopsis using tandem affinity purification and mass spectrometry (TAP-MS). Data Brief, 8, 56–60.
Huang, H., McLoughlin, K.E., Sorkin, M.L., Burgie, E.S., Bindbeutel, R.K., Vierstra, R.D. and Nusinow, D.A. (2019) PCH1 regulates light, temperature, and circadian signaling as a structural component of phytochrome B-photobodies in Arabidopsis. Proc Natl Acad Sci U A, 116, 8603–8608.
Huang, H. and Nusinow, D.A. (2016) Into the Evening: Complex Interactions in the Arabidopsis Circadian Clock. Trends Genet, 32, 674–686.
Huang, H., Yoo, C.Y., Bindbeutel, R., et al. (2016) PCH1 integrates circadian and light-signaling pathways to control photoperiod-responsive growth in Arabidopsis. Elife, 5, e13292.
Huang, W., Perez-Garcia, P., Pokhilko, A., Millar, A.J., Antoshechkin, I., Riechmann, J.L. and Mas, P. (2012) Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator. Science, 336, 75–9.
Huq, E., Al-Sady, B. and Quail, P.H. (2003) Nuclear translocation of the photoreceptor phytochrome B is necessary for its biological function in seedling photomorphogenesis. Plant J, 35, 660–4.
Hutin, S., Kumita, J.R., Strotmann, V.I., et al. (2023) Phase separation and molecular ordering of the prion-like domain of the Arabidopsis thermosensory protein EARLY FLOWERING 3. Proc Natl Acad Sci U A, 120, e2304714120.
Jiao, Y., Lau, O.S. and Deng, X.W. (2007) Light-regulated transcriptional networks in higher plants. Nat Rev Genet, 8, 217–30.
Jung, J.H., Barbosa, A.D., Hutin, S., et al. (2020) A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis. Nature, 585, 256–260.
Jung, J.H., Domijan, M., Klose, C., et al. (2016) Phytochromes function as thermosensors in Arabidopsis. Science, 354, 886–889.
Kevei, E., Schafer, E. and Nagy, F. (2007) Light-regulated nucleo-cytoplasmic partitioning of phytochromes. J Exp Bot, 58, 3113–24.
Khanna, R., Kikis, E.A. and Quail, P.H. (2003) EARLY FLOWERING 4 functions in phytochrome B-regulated seedling de-etiolation. Plant Physiol, 133, 1530–8.
Khanna, R., Shen, Y., Toledo-Ortiz, G., Kikis, E.A., Johannesson, H., Hwang, Y.S. and Quail, P.H. (2006) Functional profiling reveals that only a small number of phytochrome-regulated early-response genes in Arabidopsis are necessary for optimal deetiolation. Plant Cell, 18, 2157–71.
Kikis, E.A., Oka, Y., Hudson, M.E., Nagatani, A. and Quail, P.H. (2009) Residues clustered in the light-sensing knot of phytochrome B are necessary for conformer-specific binding to signaling partner PIF3. PLoS Genet, 5, e1000352.
Kim, C., Kwon, Y., Jeong, J., Kang, M., Lee, G.S., Moon, J.H., Lee, H.J., Park, Y.I. and Choi, G. (2023) Phytochrome B photobodies are comprised of phytochrome B and its primary and secondary interacting proteins. Nat Commun, 14, 1708.
Kim, Chanhee, Kwon, Y., Jeong, J., Kang, M., Lee, G.S., Moon, J.H., Lee, H.-J., Park, Y.-I. and Choi, G. (2023) Phytochrome B photobodies are comprised of phytochrome B and its primary and secondary interacting proteins. Nat. Commun., 14, 1708.
Kim, J.I., Shen, Y., Han, Y.J., Park, J.E., Kirchenbauer, D., Soh, M.S., Nagy, F., Schafer, E. and Song, P.S. (2004) Phytochrome phosphorylation modulates light signaling by influencing the protein-protein interaction. Plant Cell, 16, 2629–40.
Kim, W.Y., Fujiwara, S., Suh, S.S., et al. (2007) ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature, 449, 356–60.
Kinmonth-Schultz, H.A., Golembeski, G.S. and Imaizumi, T. (2013) Circadian clock-regulated physiological outputs: dynamic responses in nature. Semin Cell Dev Biol, 24, 407–13.
Kircher, S., Gil, P., Kozma-Bognar, L., et al. (2002) Nucleocytoplasmic partitioning of the plant photoreceptors phytochrome A, B, C, D, and E is regulated differentially by light and exhibits a diurnal rhythm. Plant Cell, 14, 1541–55.
Kolmos, E., Herrero, E., Bujdoso, N., Millar, A.J., Toth, R., Gyula, P., Nagy, F. and Davis, S.J. (2011) A reduced-function allele reveals that EARLY FLOWERING3 repressive action on the circadian clock is modulated by phytochrome signals in Arabidopsis. Plant Cell, 23, 3230–46.
Krahmer, J. and Fankhauser, C. (2024) Environmental Control of Hypocotyl Elongation. Annu Rev Plant Biol, 75, 489–519.
Lee, H.J., Ha, J.H., Kim, S.G., et al. (2016) Stem-piped light activates phytochrome B to trigger light responses in Arabidopsis thaliana roots. Sci Signal, 9, ra106.
Legris, M., Ince, Y.C. and Fankhauser, C. (2019) Molecular mechanisms underlying phytochrome-controlled morphogenesis in plants. Nat Commun, 10, 5219.
Legris, M., Klose, C., Burgie, E.S., et al. (2016) Phytochrome B integrates light and temperature signals in Arabidopsis. Science, 354, 897–900.
Legris, M., Nieto, C., Sellaro, R., Prat, S. and Casal, J.J. (2017) Perception and signalling of light and temperature cues in plants. Plant J, 90, 683–697.
Li, J., Li, G., Wang, H. and Wang Deng, X. (2011) Phytochrome signaling mechanisms. Arab. Book, 9, e0148.
Li, X., Liang, T. and Liu, H. (2022) How plants coordinate their development in response to light and temperature signals. Plant Cell, 34, 955–966.
Liu, B., Kanazawa, A., Matsumura, H., Takahashi, R., Harada, K. and Abe, J. (2008) Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene. Genetics, 180, 995–1007.
Liu, X.L., Covington, M.F., Fankhauser, C., Chory, J. and Wagner, D.R. (2001) ELF3 encodes a circadian clock-regulated nuclear protein that functions in an Arabidopsis PHYB signal transduction pathway. Plant Cell, 13, 1293–304.
Lorrain, S., Allen, T., Duek, P.D., Whitelam, G.C. and Fankhauser, C. (2008) Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. Plant J, 53, 312–23.
Loudet, O., Michael, T.P., Burger, B.T., Le Mette, C., Mockler, T.C., Weigel, D. and Chory, J. (2008) A zinc knuckle protein that negatively controls morning-specific growth in Arabidopsis thaliana. Proc Natl Acad Sci U A, 105, 17193–8.
Lu, X., Zhou, Y., Fan, F., Peng, J. and Zhang, J. (2020) Coordination of light, circadian clock with temperature: The potential mechanisms regulating chilling tolerance in rice. J Integr Plant Biol, 62, 737–760.
Lu, X.D., Zhou, C.M., Xu, P.B., Luo, Q., Lian, H.L. and Yang, H.Q. (2015) Red-light-dependent interaction of phyB with SPA1 promotes COP1-SPA1 dissociation and photomorphogenic development in Arabidopsis. Mol Plant, 8, 467–78.
Marrocco, K., Zhou, Y., Bury, E., Dieterle, M., Funk, M., Genschik, P., Krenz, M., Stolpe, T. and Kretsch, T. (2006) Functional analysis of EID1, an F-box protein involved in phytochrome A-dependent light signal transduction. Plant J, 45, 423–38.
Matsushita, T., Mochizuki, N. and Nagatani, A. (2003) Dimers of the N-terminal domain of phytochrome B are functional in the nucleus. Nature, 424, 571–4.
McClung, C.R. (2011) The genetics of plant clocks. Adv Genet, 74, 105–39.
Mizoguchi, T., Wheatley, K., Hanzawa, Y., Wright, L., Mizoguchi, M., Song, H.R., Carre, I.A. and Coupland, G. (2002) LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis. Dev Cell, 2, 629–41.
Moon, J., Parry, G. and Estelle, M. (2004) The ubiquitin-proteasome pathway and plant development. Plant Cell, 16, 3181–95.
Muller, N.A., Wijnen, C.L., Srinivasan, A., et al. (2016) Domestication selected for deceleration of the circadian clock in cultivated tomato. Nat Genet, 48, 89–93.
Muller, N.A., Zhang, L., Koornneef, M. and Jimenez-Gomez, J.M. (2018) Mutations in EID1 and LNK2 caused light-conditional clock deceleration during tomato domestication. Proc Natl Acad Sci U A, 115, 7135–7140.
Nagatani, A. (2004) Light-regulated nuclear localization of phytochromes. Curr Opin Plant Biol, 7, 708–11.
Nagatani, A. (2010) Phytochrome: structural basis for its functions. Curr Opin Plant Biol, 13, 565–70.
Nakamichi, N., Kiba, T., Henriques, R., Mizuno, T., Chua, N.H. and Sakakibara, H. (2010) PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock. Plant Cell, 22, 594–605.
Nakamichi, N., Kita, M., Ito, S., Yamashino, T. and Mizuno, T. (2005) PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, together play essential roles close to the circadian clock of Arabidopsis thaliana. Plant Cell Physiol, 46, 686–98.
Nguyen, K.M. and Busino, L. (2020) The Biology of F-box Proteins: The SCF Family of E3 Ubiquitin Ligases. Adv Exp Med Biol, 1217, 111–122.
Nieto, C., Lopez-Salmeron, V., Daviere, J.M. and Prat, S. (2015) ELF3-PIF4 interaction regulates plant growth independently of the Evening Complex. Curr Biol, 25, 187–193.
Niwa, Y., Yamashino, T. and Mizuno, T. (2009) The circadian clock regulates the photoperiodic response of hypocotyl elongation through a coincidence mechanism in Arabidopsis thaliana. Plant Cell Physiol, 50, 838–54.
Nohales, M.A. (2021) Spatial Organization and Coordination of the Plant Circadian System. Genes Basel, 12.
Nomoto, Y., Kubozono, S., Miyachi, M., Yamashino, T., Nakamichi, N. and Mizuno, T. (2012) A circadian clock- and PIF4-mediated double coincidence mechanism is implicated in the thermosensitive photoperiodic control of plant architectures in Arabidopsis thaliana. Plant Cell Physiol, 53, 1965–73.
Nozue, K., Covington, M.F., Duek, P.D., Lorrain, S., Fankhauser, C., Harmer, S.L. and Maloof, J.N. (2007) Rhythmic growth explained by coincidence between internal and external cues. Nature, 448, 358–61.
Nusinow, D.A., Helfer, A., Hamilton, E.E., King, J.J., Imaizumi, T., Schultz, T.F., Farre, E.M. and Kay, S.A. (2011) The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature, 475, 398–402.
Oakenfull, R.J. and Davis, S.J. (2017) Shining a light on the Arabidopsis circadian clock. Plant Cell Env., 40, 2571–2585.
Oka, Y., Matsushita, T., Mochizuki, N., Suzuki, T., Tokutomi, S. and Nagatani, A. (2004) Functional analysis of a 450-amino acid N-terminal fragment of phytochrome B in Arabidopsis. Plant Cell, 16, 2104–16.
Paik, I. and Huq, E. (2019) Plant photoreceptors: Multi-functional sensory proteins and their signaling networks. Semin Cell Dev Biol, 92, 114–121.
Park, E., Kim, J., Lee, Y., Shin, J., Oh, E., Chung, W.I., Liu, J.R. and Choi, G. (2004) Degradation of phytochrome interacting factor 3 in phytochrome-mediated light signaling. Plant Cell Physiol, 45, 968–75.
Pokhilko, A., Fernandez, A.P., Edwards, K.D., Southern, M.M., Halliday, K.J. and Millar, A.J. (2012) The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops. Mol Syst Biol, 8, 574.
Qin, C., Li, H., Zhang, S., et al. (2023) GmEID1 modulates light signaling through the Evening Complex to control flowering time and yield in soybean. Proc Natl Acad Sci U A, 120, e2212468120.
Qiu, Y., Pasoreck, E.K., Reddy, A.K., Nagatani, A., Ma, W., Chory, J. and Chen, M. (2017) Mechanism of early light signaling by the carboxy-terminal output module of Arabidopsis phytochrome B. Nat Commun, 8, 1905.
Quail, P.H. (2002) Phytochrome photosensory signalling networks. Nat Rev Mol Cell Biol, 3, 85–93.
Reed, J.W., Nagatani, A., Elich, T.D., Fagan, M. and Chory, J. (1994) Phytochrome A and Phytochrome B Have Overlapping but Distinct Functions in Arabidopsis Development. Plant Physiol, 104, 1139–1149.
Reed, J.W., Nagpal, P., Poole, D.S., Furuya, M. and Chory, J. (1993) Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell, 5, 147–57.
Rockwell, N.C., Su, Y.S. and Lagarias, J.C. (2006) Phytochrome structure and signaling mechanisms. Annu Rev Plant Biol, 57, 837–58.
Ronald, J. and Davis, S.J. (2019) Focusing on the nuclear and subnuclear dynamics of light and circadian signalling. Plant Cell Env., 42, 2871–2884.
Ronald, J., Su, C., Wang, L. and Davis, S.J. (2022) Cellular localization of Arabidopsis EARLY FLOWERING3 is responsive to light quality. Plant Physiol, 190, 1024–1036.
Ruckle, M.E., Burgoon, L.D., Lawrence, L.A., Sinkler, C.A. and Larkin, R.M. (2012) Plastids are major regulators of light signaling in Arabidopsis. Plant Physiol, 159, 366–90.
Sakamoto, K. and Nagatani, A. (1996) Nuclear localization activity of phytochrome B. Plant J, 10, 859–68.
Sanchez, S.E., Rugnone, M.L. and Kay, S.A. (2020) Light Perception: A Matter of Time. Mol Plant, 13, 363–385.
Seaton, D.D., Toledo-Ortiz, G., Ganpudi, A., Kubota, A., Imaizumi, T. and Halliday, K.J. (2018) Dawn and photoperiod sensing by phytochrome A. Proc Natl Acad Sci U A, 115, 10523–10528.
Seo, D., Park, J., Park, J., Hwang, G., Seo, P.J. and Oh, E. (2023) ZTL regulates thermomorphogenesis through TOC1 and PRR5. Plant Cell Env., 46, 1442–1452.
Sharrock, R.A. (2008) The phytochrome red/far-red photoreceptor superfamily. Genome Biol, 9, 230.
Sharrock, R.A. and Quail, P.H. (1989) Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes Dev, 3, 1745–57.
Sheerin, D.J. and Hiltbrunner, A. (2017) Molecular mechanisms and ecological function of far-red light signalling. Plant Cell Env., 40, 2509–2529.
Shen, H., Moon, J. and Huq, E. (2005) PIF1 is regulated by light-mediated degradation through the ubiquitin-26S proteasome pathway to optimize photomorphogenesis of seedlings in Arabidopsis. Plant J, 44, 1023–35.
Shen, Y., Khanna, R., Carle, C.M. and Quail, P.H. (2007) Phytochrome induces rapid PIF5 phosphorylation and degradation in response to red-light activation. Plant Physiol, 145, 1043–51.
Shim, J.S. and Imaizumi, T. (2015) Circadian clock and photoperiodic response in Arabidopsis: from seasonal flowering to redox homeostasis. Biochemistry, 54, 157–70.
Silva, C.S., Nayak, A., Lai, X., et al. (2020) Molecular mechanisms of Evening Complex activity in Arabidopsis. Proc Natl Acad Sci U A, 117, 6901–6909.
Sineshchekov, V. and Koppel, L. (2022) Phytochrome A in plants comprises two structurally and functionally distinct populations - water-soluble phyA’ and amphiphilic phyA’’. Biophys Rev, 14, 905–921.
Staudt, A.M., Kretsch, T. and Hiltbrunner, A. (2023) EID1 promotes the response to canopy shade in Arabidopsis thaliana by repressing the action of phytochrome A. MicroPubl Biol, 2023. Available at: https://www.ncbi.nlm.nih.gov/pubmed/38152059.
Strasser, B., Sanchez-Lamas, M., Yanovsky, M.J., Casal, J.J. and Cerdan, P.D. (2010) Arabidopsis thaliana life without phytochromes. Proc Natl Acad Sci U A, 107, 4776–81.
Su, Y., Ngea, G.L.N., Wang, K., Lu, Y., Godana, E.A., Ackah, M., Yang, Q. and Zhang, H. (2024) Deciphering the mechanism of E3 ubiquitin ligases in plant responses to abiotic and biotic stresses and perspectives on PROTACs for crop resistance. Plant Biotechnol J, 22, 2811–2843.
Tracz, M. and Bialek, W. (2021) Beyond K48 and K63: non-canonical protein ubiquitination. Cell Mol Biol Lett, 26, 1.
Tu, Y.-T., Yen, T.-C., Chuo, G.-L., Wu, Z.-Q., Jinn, T.-L. and Lee, C.-M. (2024) Arabidopsis EID1 E3 ubiquitin ligase regulates acquired thermotolerance by modulating HSBP translocation. bioRxiv, 2024.12.22.627358.
Van Buskirk, E.K., Reddy, A.K., Nagatani, A. and Chen, M. (2014) Photobody Localization of Phytochrome B Is Tightly Correlated with Prolonged and Light-Dependent Inhibition of Hypocotyl Elongation in the Dark. Plant Physiol, 165, 595–607.
Waadt, R. and Kudla, J. (2008) In Planta Visualization of Protein Interactions Using Bimolecular Fluorescence Complementation (BiFC). CSH Protoc, 2008, pdb prot4995.
Wagner, D., Koloszvari, M. and Quail, P.H. (1996) Two Small Spatially Distinct Regions of Phytochrome B Are Required for Efficient Signaling Rates. Plant Cell, 8, 859–871.
Wang, S., Lv, X., Zhang, J., Chen, D., Chen, S., Fan, G., Ma, C. and Wang, Y. (2022) Roles of E3 Ubiquitin Ligases in Plant Responses to Abiotic Stresses. Int J Mol Sci, 23. Available at: https://www.ncbi.nlm.nih.gov/pubmed/35216424.
Xu, X., Paik, I., Zhu, L. and Huq, E. (2015) Illuminating Progress in Phytochrome-Mediated Light Signaling Pathways. Trends Plant Sci, 20, 641–650.
Xu, Y. and Zhu, Z. (2021) PIF4 and PIF4-Interacting Proteins: At the Nexus of Plant Light, Temperature and Hormone Signal Integrations. Int J Mol Sci, 22. Available at: https://www.ncbi.nlm.nih.gov/pubmed/34638641.
Yoo, S.-D., Cho, Y.-H. and Sheen, J. (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc., 2, 1565–1572.
Zhang, S., Li, C., Zhou, Y., et al. (2018) TANDEM ZINC-FINGER/PLUS3 Is a Key Component of Phytochrome A Signaling. Plant Cell, 30, 835–852.
Zhao, L., Zhao, J., Zhong, K., Tong, A. and Jia, D. (2022) Targeted protein degradation: mechanisms, strategies and application. Signal Transduct Target Ther, 7, 113.
Zhao, Y., Shi, H., Pan, Y., Lyu, M., Yang, Z., Kou, X., Deng, X.W. and Zhong, S. (2023) Sensory circuitry controls cytosolic calcium-mediated phytochrome B phototransduction. Cell, 186, 1230-1243 e14.
Zhou, Y.C., Dieterle, M., Buche, C. and Kretsch, T. (2002) The negatively acting factors EID1 and SPA1 have distinct functions in phytochrome A-specific light signaling. Plant Physiol, 128, 1098–108.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99539-
dc.description.abstract光訊號在植物的生長、發育及環境適應中扮演關鍵角色。除了光以外,生理時鐘亦調控多種生長途徑,並與光訊號路徑整合,以優化植物對環境變化的反應。EMPFINDLICHER IM DUNKELROTEN LICHT 1(EID1)是一個帶有F-box domain的 E3 泛素連接酶,過去研究指出其在番茄中參與生物時鐘節律調控,而在大豆中則透過與時鐘調控因子 Evening Complex(EC)相關的 J complex 交互作用,調節光週期所介導的開花路徑。EID1 在阿拉伯芥中,被視為 phyA 訊號途徑的負向調控者。然而,在阿拉伯芥中,EID1 在整合光訊號與生理時鐘兩條路徑間所扮演的角色仍不清楚。
先前我們實驗室利用 TurboID 鄰近蛋白標記技術,鑑定出可能與EID1有交互作用並與光訊號與時鐘調路徑相關的蛋白質,當中包括phytochrome B(phyB)、EARLY FLOWERING 3(ELF3)以及 GIGANTEA(GI)。本篇論文中,我進一步確定了 EID1 與 phyA、phyB、GI以及 EC 三個核心成員(ELF3、ELF4 與 LUX)之間的交互作用。發現EID1 透過轉譯後機制,在長日照條件下影響 ELF3 蛋白的節律性累積的穩定性。然而EID1 並不影響與ELF3相關的時鐘基因的晝夜節律。在下胚軸伸長的調控方面,EID1 在長日照或短日照的白光條件下皆不影響下胚軸生長;然而,在連續紅光下,EID1 則表現為下胚軸生長的正向調控者。儘管 EID1並不影響 PHYB 蛋白的晝夜節律,但會在特定紅光條件下改變phyB在細胞核中的定位。此外,我們也發現已知與 phyB 核定位相關的蛋白 PCH1.2與 EID1 有物理性的交互作用。綜上所述,本論文結果指出:EID1 可能透過調控 phyB 的核內定位,抑或透過調節 ELF3 的節律性累積,進而參與了在紅光條件下對下胚軸伸長的調控。
zh_TW
dc.description.abstractLight signaling is fundamental for plant growth, development, and environmental adaptation. In addition to light, the circadian clock also orchestrates various growth pathways and integrates with light signaling networks to optimize plant responses to environmental changes. EMPFINDLICHER IM DUNKELROTEN LICHT 1 (EID1), an F-box E3 ubiquitin ligase, has been implicated in circadian regulation in tomato and photoperiod-mediated flowering pathway in soybean through interaction with the clock regulator Evening Complex (EC)-related J complex. EID1 is known as a negative regulator of the phyA signaling pathway. However, the role of EID1 in integrating light and circadian pathways in Arabidopsis thaliana remains unclear.
Previously, our lab employed TurboID-based proximity labeling and identified potential interactions between EID1 and multiple light signaling and clock regulator proteins, including photoreceptor phytochrome B (phyB), EC component EARLY FLOWERING 3 (ELF3), and GIGANTEA (GI). In this study, I determined the interactions between EID1, phyA, phyB, GI, and all three Evening Complex components, including ELF3, ELF4, and LUX ARRHYTHMO (LUX). Notably, EID1 is required to maintain the rhythmic accumulation of ELF3 protein under long-day conditions via a post-translational mechanism, while it does not affect the circadian rhythms of ELF3-related clock genes under diurnal light cycles. For the regulation of hypocotyl elongation, EID1 did not alter hypocotyl elongation under white light in either long- or short-day conditions. However, under continuous red light, EID1 acted as a positive regulator of hypocotyl growth. While EID1 did not influence the diurnal expression of PHYB protein, it affected its nuclear localization under specific red-light conditions. Interestingly, we also found that PCH1.2, a known phyB interactor involved in nuclear translocation, physically interacts with EID1. Together, my findings suggest that EID1 modulates hypocotyl elongation under red light by regulating the nuclear localization of phyB or the rhythmic accumulation of ELF3.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:36:05Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-10T16:36:05Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsContents
口試委員會審定書 II
致謝 III
中文摘要 IV
Abstract VI
Contents VIII
Abbreviations XI
List of tables and figures XIV
Introduction 1
Light signaling pathway in plants 1
Phytochromes 1
Phytochrome B 4
The circadian clock and the Evening Complex (EC) 5
Evening Complex and phyB integrate light, circadian clock, and temperature signals to regulate hypocotyl elongation 8
PCH1 interacts with phyB to regulate its photoconversion and activities 10
EMPFINDLICHER IN DUNKELROTEM LICHT 1 (EID1) 15
Motivation and objectives 17
Materials and Methods 19
Plant material and growth conditions 19
Construction of plasmids 20
Agrobacterium-mediated transformation 21
Genomic DNA extraction and genotyping 22
Yeast Two-Hybrid Assay 22
Bimolecular fluorescence complementation assay (BiFC) 24
Floral dip transformation method 26
In vivo bioluminescence assays 26
RNA extraction, Reverse Transcript RT-PCR, and Real-time Quantitative PCR (RT-qPCR) 27
Measurement of hypocotyl length 29
Protoplast Isolation and Transfection 34
GUS staining assay 36
Results 39
EID1 had the interaction with Evening complex, and PHYB, but not GI and PHYA 39
EID1 would modulate the rhythm of ELF3 protein expression under long-day conditions through post-translational regulation 42
EID1 does not influence the circadian rhythm of EC-related clock genes 45
EID1 did not affect the hypocotyl elongation pathway under long-day and short-day conditions 47
EID1 regulates the hypocotyl elongation phenotype under red light conditions 48
EID1 affected the nuclear localization of phyB 48
PCH1.2, a phyB interactor, may be involved in the EID1-mediated phyB regulation 50
Discussion 53
Arabidopsis F-box protein EID1 may modulate hypocotyl growth by regulating the PHYB and Evening complex under red light conditions 53
PHYB might act as a bridge between EID1 and the Evening Complex 53
Preliminary evidence for indirect EID1–ELF3 Interaction 54
PHYB protein size shift and its implications for EID1-mediated regulation 56
The effect of EID1 on hypocotyl elongation depends on specific light wavelengths 58
Potential causes of PHYB-GFP aggregation and mislocalization in protoplast assays 59
EID1 bridges far-red and red light signaling pathways through phytochrome interactions 61
Dissecting EID1’s interaction with phyB and the Evening complex under warm temperature 64
Comparison between entrained and free-running conditions reveals EID1’s role in circadian stability 68
Figures 71
Appendix Table 111
Appendix Figure 117
References 169
-
dc.language.isoen-
dc.subjectphyBzh_TW
dc.subject晝夜節律zh_TW
dc.subject紅光zh_TW
dc.subjectEID1zh_TW
dc.subject下胚軸伸長zh_TW
dc.subjectELF3zh_TW
dc.subjecthypocotyl elongationen
dc.subjectELF3en
dc.subjectcircadian clocken
dc.subjectEID1en
dc.subjectphyBen
dc.subjectred lighten
dc.title探討阿拉伯芥F-box蛋白EID1透過與phyB以及ELF3交互作用在生物時鐘與下胚軸生長的影響zh_TW
dc.titleInvestigating Arabidopsis F-box protein EID1 in modulating circadian clock and hypocotyl growth through interacting with phyB and ELF3en
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳素幸;謝旭亮;蔡皇龍zh_TW
dc.contributor.oralexamcommitteeShu-Hsing Wu;Hsu-Liang Hsieh ;Huang-Lung Tsaien
dc.subject.keywordEID1,phyB,ELF3,下胚軸伸長,紅光,晝夜節律,zh_TW
dc.subject.keywordEID1,phyB,ELF3,hypocotyl elongation,red light,circadian clock,en
dc.relation.page179-
dc.identifier.doi10.6342/NTU202501808-
dc.rights.note未授權-
dc.date.accepted2025-07-22-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept植物科學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
29.78 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved