請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99537完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王兆麟 | zh_TW |
| dc.contributor.advisor | Jaw-Lin Wang | en |
| dc.contributor.author | 簡于涵 | zh_TW |
| dc.contributor.author | Yu-Han Chien | en |
| dc.date.accessioned | 2025-09-10T16:35:44Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-16 | - |
| dc.identifier.citation | [1] David M. Wilson, Mark R. Cookson, Ludo Van Den Bosch, Henrik Zetterberg, David M. Holtzman, Ilse Dewachter. 2023. Hallmarks of neurodegenerative diseases. Cell. 186(4): 693-714.
[2] Lamptey RNL, Chaulagain B, Trivedi R, Gothwal A, Layek B, Singh J. 2022. A Review of the Common Neurodegenerative Disorders: Current Therapeutic Approaches and the Potential Role of Nanotherapeutics. Int J Mol Sci. 23(3): 1851. [3] Yu Cai, Yangqiqi Zhang, Shuo Leng, Yuanyuan Ma, Quan Jiang, Qiuting Wen, Shenghong Ju, Jiani Hu. 2024. The relationship between inflammation, impaired glymphatic system, and neurodegenerative disorders: A vicious cycle. Neurobiology of Disease. 192. 106426. [4] Lulu Xie et al. 2013. Sleep Drives Metabolite Clearance from the Adult Brain. Science. 342(6156): 373-377. [5] Zou, W., Pu, T., Feng, W. et al. 2019. Blocking meningeal lymphatic drainage aggravates Parkinson’s disease-like pathology in mice overexpressing mutated α-synuclein. Transl Neurodegener. 8(7). [6] Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M. 2012. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 4(147): 147ra111. [7] Benveniste H, Liu X, Koundal S, Sanggaard S, Lee H, Wardlaw J. 2019. The Glymphatic System and Waste Clearance with Brain Aging: A Review. Gerontology. 65(2): 106-119. [8] Jessen NA, Munk AS, Lundgaard I, Nedergaard M. 2015. The Glymphatic System: A Beginner's Guide. Neurochem Res. 40(12): 2583-99 [9] Salehpour F, Khademi M, Bragin DE, DiDuro JO. 2022. Photobiomodulation Therapy and the Glymphatic System: Promising Applications for Augmenting the Brain Lymphatic Drainage System. International Journal of Molecular Sciences. 23(6): 2975. [10] Peters, M.E., Lyketsos, C.G. 2023. The glymphatic system’s role in traumatic brain injury-related neurodegeneration. Mol Psychiatry. 28: 2707-2715. [11] Rasmussen MK, Mestre H, Nedergaard M. 2018. The glymphatic pathway in neurological disorders. Lancet Neurol. 17(11): 1016-1024 [12] Das N, Dhamija R, Sarkar S. 2024. The role of astrocytes in the glymphatic network: a narrative review. Metab Brain Dis. 39(3): 453-465. [13] Taylor J. Pedersen, Samantha A. Keil, Warren Han, Marie X. Wang, Jeffrey J. Iliff. 2023. The effect of aquaporin-4 mis-localization on Aβ deposition in mice, Neurobiology of Disease, 181. 106100. [14] Szlufik, Stanisław, Kamila Kopeć, Stanisław Szleszkowski, and Dariusz Koziorowski. 2024. Glymphatic System Pathology and Neuroinflammation as Two Risk Factors of Neurodegeneration. Cells. 13(3): 286. [15] Mader, S.; Brimberg, L. 2019. Aquaporin-4 Water Channel in the Brain and Its Implication for Health and Disease. Cells. 8(2): 90. [16] M. Pekny, M. Pekna. 2016. Reactive gliosis in the pathogenesis of CNS diseases. Biochimica et Biophysica Acta. 1862(3): p. 483-491. [17] Gao, C., Jiang, J., Tan, Y. et al. 2023. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets. Sig Transduct Target Ther. 8(359). [18] Zhang L, Zhang J and You Z. 2018. Switching of the Microglial Activation Phenotype Is a Possible Treatment for Depression Disorder. Front Cell Neurosci. 12(306). [19] Daisuke Ito, Yoshinori Imai, Keiko Ohsawa, Kazuyuki Nakajima, Yasuo Fukuuchi, Shinichi Kohsaka. 1998. Microglia-specific localisation of a novel calcium binding protein, IBA1. Molecular Brain Research. 57(1): p. 1-9. [20] Formolo, D.A., Yu, J., Lin, K. et al. 2023. Leveraging the glymphatic and meningeal lymphatic systems as therapeutic strategies in Alzheimer’s disease: an updated overview of nonpharmacological therapies. Mol Neurodegeneration. 18(26). [21] Ren, H., Luo, C., Feng, Y., Yao, X., Shi, Z., Liang, F., Kang, J.X., Wan, J.-B., Pei, Z. and Su, H. 2017. Omega-3 polyunsaturated fatty acids promote amyloid-β clearance from the brain through mediating the function of the glymphatic system. The FASEB Journal. 31(1): p. 282-293. [22] Zhang, B., Li, W., Zhuo, Y. et al. 2021. L-3-n-Butylphthalide Effectively Improves the Glymphatic Clearance and Reduce Amyloid-β Deposition in Alzheimer’s Transgenic Mice. J Mol Neurosci. 71(6): p. 1266–1274. [23] Chen S-Y, Gao Y, Sun J-Y, Meng X-L, Yang D, Fan L-H, Xiang L and Wang P. 2020. Traditional Chinese Medicine: Role in Reducing β-Amyloid, Apoptosis, Autophagy, Neuroinflammation, Oxidative Stress, and Mitochondrial Dysfunction of Alzheimer’s Disease. Front. Pharmacol. 11:497. [24] Zhou, Xb., Zhang, Yx., Zhou, Cx. et al. 2022. Chinese Herbal Medicine Adjusting Brain Microenvironment via Mediating Central Nervous System Lymphatic Drainage in Alzheimer’s Disease. Chin. J. Integr. Med. 28(1): p. 176-184. [25] Liang, Pei-zhe, Li, Li, Zhang, Ya-nan, Shen, Yan, Zhang, Li-li, Zhou, Jie, Wang, Zhi-jie, Wang, Shu, Yang, Sha. 2021. Electroacupuncture Improves Clearance of Amyloid-β through the Glymphatic System in the SAMP8 Mouse Model of Alzheimer’s Disease. Neural Plasticity. p. 11. 9960304. [26] Chen X, Dong G-Y, Wang L-X. 2020. High-frequency transcranial magnetic stimulation protects APP/PS1 mice against Alzheimer’s disease progress by reducing APOE and enhancing autophagy. Brain Behav. 10(8): e01740. [27] Semyachkina-Glushkovskaya, O.; Penzel, T.; Blokhina, I.; Khorovodov, A.; Fedosov, I.; Yu, T.; Karandin, G.; Evsukova, A.; Elovenko, D.; Adushkina, V.; et al. 2021. Night Photostimulation of Clearance of Beta-Amyloid from Mouse Brain: New Strategies in Preventing Alzheimer’s Disease. Cells. 10(12):3289. [28] Dong-xu Liu, Xia He, Dan Wu, Qun Zhang, Chao Yang, Feng-yin Liang, Xiao-fei He, Guang-yan Dai, Zhong Pei, Yue Lan, Guang-qing Xu. 2017. Continuous theta burst stimulation facilitates the clearance efficiency of the glymphatic pathway in a mouse model of sleep deprivation. Neuroscience Letters. 653: p. 189-194. [29] Meng-ni Li, Ying-hua Jing, Cheng Wu, Xue Li, Feng-yin Liang, Ge Li, Pei Dai, Hui-xian Yu, Zhong Pei, Guang-qing Xu, Yue Lan. 2020. Continuous theta burst stimulation dilates meningeal lymphatic vessels by up-regulating VEGF-C in meninges. Neuroscience Letters. 735. 135197. [30] Ekaterina Zinchenko, Nikita Navolokin, Alexander Shirokov, Boris Khlebtsov, Alexander Dubrovsky, Elena Saranceva, Arkady Abdurashitov, Alexander Khorovodov, Andrey Terskov, Aysel Mamedova, Maria Klimova, Ilana Agranovich, Dmitry Martinov, Valery Tuchin, Oxana Semyachkina-Glushkovskaya, and Jurgen Kurts. 2019. Pilot study of transcranial photobiomodulation of lymphatic clearance of beta-amyloid from the mouse brain: breakthrough strategies for non-pharmacologic therapy of Alzheimer’s disease. Biomed Opt Express. 10(8): p. 4003–4017. [31] Lee, Y., Choi, Y., Park, EJ. et al. 2020. Improvement of glymphatic–lymphatic drainage of beta-amyloid by focused ultrasound in Alzheimer’s disease model. Sci Rep. 10(1):16144. [32] Liu Y, Hu PP, Zhai S, Feng WX, Zhang R, Li Q, Marshall C, Xiao M, Wu T. 2022. Aquaporin 4 deficiency eliminates the beneficial effects of voluntary exercise in a mouse model of Alzheimer's disease. Neural Regen Res. 17(9): p. 2079-2088. [33] Stephanie von Holstein-Rathlou, Nicolas Caesar Petersen, Maiken Nedergaard. 2018. Voluntary running enhances glymphatic influx in awake behaving, young mice. Neuroscience Letters. 662: p. 253-258. [34] Kim S, Jo Y, Kook G, et al. 2021. Transcranial focused ultrasound stimulation with high spatial resolution. Brain Stimul. 14(2): p. 290-300. [35] Sachin Gupta, Mustafa Mudhafar, Yogini Dilip Borole, V. Mahalakshmi, Janjhyam Venkata Naga Ramesh, Muhammad Attique Khan. 2025. Optimizing transcranial focused ultrasound parameters: A methodological advancement in non-invasive brain stimulation for next-gen clinical applications. Neuroscience Informatics. 5(2). 100204 [36] Yaya Zhang, Na Pang, Xiaowei Huang, Wen Meng, Long Meng, Bingchang Zhang, Zhengye Jiang, Jing Zhang, Zhou Yi, Zhiyu Luo, Zhanxiang Wang, Lili Niu. 2023. Ultrasound deep brain stimulation decelerates telomere shortening in Alzheimer's disease and aging mice. Fundamental Research. 3(3): p. 469-478. [37] Davide Folloni, Lennart Verhagen, Rogier B. Mars, Elsa Fouragnan, Charlotte Constans, Jean-François Aubry, Matthew F.S. Rushworth, Jérôme Sallet. 2019. Manipulation of Subcortical and Deep Cortical Activity in the Primate Brain Using Transcranial Focused Ultrasound Stimulation. Neuron. 101(6): p. 1109-1116. [38] Jeffrey J. Iliff, Minghuan Wang, Douglas M. Zeppenfeld, Arun Venkataraman, Benjamin A. Plog, Yonghong Liao, Rashid Deane and Maiken Nedergaard. 2013. Cerebral Arterial Pulsation Drives Paravascular CSF–Interstitial Fluid Exchange in the Murine Brain. Journal of Neuroscience. 33(46): p. 18190-18199. [39] Yusuf Tufail, Alexei Matyushov, Nathan Baldwin, Monica L. Tauchmann, Joseph Georges, Anna Yoshihiro, Stephen I. Helms Tillery, William J. Tyler. 2010. Transcranial Pulsed Ultrasound Stimulates Intact Brain Circuits. Neuron. 66(5): p. 681-694. [40] Uddin, S.M.Z.; Komatsu, D.E.; Motyka, T.; Petterson, S. 2021. Low-Intensity Continuous Ultrasound Therapies—A Systematic Review of Current State-of-the-Art and Future Perspectives. J Clin Med. 10(12):2698. [41] El-Bialy, T., Kaur, H. 2018. Acoustic Description and Mechanical Action of Low-Intensity Pulsed Ultrasound (LIPUS). Therapeutic Ultrasound in Dentistry. [42] Wang S, Meng W, Ren Z, Li B, Zhu T, Chen H, Wang Z, He B, Zhao D and Jiang H. 2020. Ultrasonic Neuromodulation and Sonogenetics: A New Era for Neural Modulation. Front Physiol. 11:787. [43] Murthi, S.B., Ferguson, M., Sisley, A.C. 2010. Ultrasound Physics and Equipment. 9780387798295. [44] Nelson, T.R., Fowlkes, J.B., Abramowicz, J.S. and Church, C.C. 2009. Ultrasound Biosafety Considerations for the Practicing Sonographer and Sonologist. Journal of Ultrasound in Medicine. 28(2):139-50. [45] Quadri, S. A., Waqas, M., Khan, I., Khan, M. A., Suriya, S. S., Farooqui, M., & Fiani, B. 2018. High-intensity focused ultrasound: past, present, and future in neurosurgery. Neurosurgical Focus. 44(2): E16. [46] Xin Z, Lin G, Lei H, Lue TF, Guo Y. 2016. Clinical applications of low-intensity pulsed ultrasound and its potential role in urology. Transl Androl Urol. 5(2):255-66. [47] Marketing Clearance of Diagnostic Ultrasound Systems and Transducers, Guidance for Industry and Food and Drug Administration Staff [48] AFG1000 Series Arbitrary/Function Generator Quick Start User Manual [49] 1020L POWER AMPLIFIER data sheet [50] Yan-rui Sun, Qian-Kun Lv, Jun-Yi Liu, Fen Wang, Chun-Feng Liu. 2025. New perspectives on the glymphatic system and the relationship between glymphatic system and neurodegenerative diseases. Neurobiology of Disease. 205. 106791. [51] Mestre, H., Tithof, J., Du, T., Song, W., Peng, W., Sweeney, A. M., Olveda, G., Thomas, J. H., Nedergaard, M., & Kelley, D. H. 2018. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nature communications. 9(1), 4878 [52] Kress, B.T., Iliff, J.J., Xia, M., Wang, M., Wei, H.S., Zeppenfeld, D., Xie, L., Kang, H., Xu, Q., Liew, J.A., Plog, B.A., Ding, F., Deane, R. and Nedergaard, M. 2014. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol. 76(6): 845-61 [53] Jocelyn A. Castellanos, Carson G. Cornett, David H. Gonzalez, Liqiao Li, Karla Luna, Holly R. Middlekauff, Rajat Gupta, Maria C. Jordan, Dennis Rünger, Yifang Zhu, Xuesi M. Shao, Kenneth P. Roos, Jesus A. Araujo, 2025. Electronic cigarettes alter cardiac rhythm and heart rate variability hyperacutely in mice. Toxicology and Applied Pharmacology. 495. 117174 [54] Tanaka N, Dalton N, Mao L, Rockman HA, Peterson KL, Gottshall KR, et al. 1996. Transthoracic echocardiography in models of cardiac disease in the mouse. Circulation. 94(5):1109-17. [55] Chari Y. T. Hart, John C. Burnett, Jr., and Margaret M. Redfield. 2001. Effects of avertin versus xylazine-ketamine anesthesia on cardiac function in normal mice. American Journal of Physiology-Heart and Circulatory Physiology. 281(5): H1938-H1945 [56] Piotr Hadaczek, Yoji Yamashita, Hanna Mirek, Laszlo Tamas, Martha C. Bohn, Charles Noble, John W. Park, Krystof Bankiewicz. 2006. The “Perivascular Pump” Driven by Arterial Pulsation Is a Powerful Mechanism for the Distribution of Therapeutic Molecules within the Brain. Molecular Therapy. 14(1): p. 69-78. [57] Kyrtsos CR, Baras JS. 2015. Modeling the Role of the Glymphatic Pathway and Cerebral Blood Vessel Properties in Alzheimer’s Disease Pathogenesis. PLoS ONE. 10(10): e0139574. [58] C.-H. Wu, W.-H. Liao, Y.-C. Chu, M.-Y. Hsiao, Y. Kung, J.-L. Wang, W.-S. Chen. 2024. Very Low-Intensity Ultrasound Facilitates Glymphatic Influx and Clearance via Modulation of the TRPV4-AQP4 Pathway. Adv Sci. 11(47): e2401039 [59] Villain H, Benkahoul A, Drougard A, Lafragette M, Muzotte E, Pech S, Bui E, Brunet A, Birmes P and Roullet P. 2016. Effects of Propranolol, a β-noradrenergic Antagonist, on Memory Consolidation and Reconsolidation in Mice. Front. Behav. Neurosci. 10:49. [60] D.A. Czech, K.A. Nielson, K.K. Laubmeier. 2000. Chronic Propranolol Induces Deficits in Retention but Not Acquisition Performance in the Water Maze in Mice. Neurobiology of Learning and Memory. 74(1): p. 17-26. [61] Wu H, Su H, Zhu C, Wu S, Cui S and Zhou M. 2023.Establishment and effect evaluation of a stress cardiomyopathy mouse model induced by different doses of isoprenaline. Exp Ther Med. 25(4): 166. [62] Su H, Liu M, Wang S, Tian B, Hu H, Ma L-K and Pan J. 2025. Co-administration of isoprenaline and phenylephrine induced a new HFrEF mouse model through activation of both SNS and RAAS. Front. Cardiovasc. Med. 12:1531509. [63] Díaz-Castro, B., Robel, S., & Mishra, A. 2023. Astrocyte Endfeet in Brain Function and Pathology: Open Questions. Annual review of neuroscience. 46: p. 101-121 [64] Hol, E. M., & Pekny, M. 2015. Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Current opinion in cell biology. 32: p. 121-130. [65] Lee, Y., Messing, A., Su, M., & Brenner, M. 2008. GFAP promoter elements required for region-specific and astrocyte-specific expression. Glia. 56(5): p. 481-493. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99537 | - |
| dc.description.abstract | 隨者人口高齡化,現在的患有神經退化性疾病的患者也隨之增多,為社會與家庭帶來沉重的負擔。而這些疾病的成因大多與腦中蛋白質沉積有關,像Tau、Aβ,或是α-syn等。已有研究證實大腦可以透過膠淋巴系統循環清除這些腦部生理代謝廢物,且已有許多研究正在探討該如何促進膠淋巴系統循環,包括藥物治療、侵入性、非侵入性刺激,以及自主運動等方式。
而目前尚未有非侵入性的低強度超音波刺激研究,故本研究觀察了不同心律是否會影響腦脊髓液擴散至腦中的速率,以了解心律對膠淋巴系統循環的影響,並探討小鼠進行低強度超音波刺激後,是否可以促進腦脊髓液流入。 我們在研究中證實了不同的心律將影響腦脊髓液流入腦實質的速度,當心律越快時,腦脊髓液流入的速度就越快;心律越慢時,流入的速度則越慢,而小鼠經過低強度超音波刺激後,其腦脊髓液流入的速度也得到了顯著性的改善。 藉由本研究證實,膠淋巴系統循環與心律兩者之間呈現正向關係。未來若將低強度超音波刺激應用於臨床,其刺激能量該如何界定,仍須抱持著謹慎的態度進行探討。總體而言,此次的研究結果表明,低強度超音波刺激具有治療神經退化性疾病的潛能。 | zh_TW |
| dc.description.abstract | Neurodegenerative diseases are increasingly prevalent with aging populations, largely due to the accumulation of misfolded proteins such as Tau, beta-amyloid, and alpha-synuclein. Recent studies have proven that the brain can clean metabolic waste through the glymphatic system. Various methods have been explored to enhance glymphatic circulation,
However, there is no research on non-invasive low-intensity ultrasound stimulation. In this study, we observe whether different heart rate will affect the rate of CSF diffusion into the brain, and to explore whether low-intensity ultrasound stimulation of mice can promote CSF influx. Results showed that heart rate will affect the rate of CSF influx into brain; faster heart rates, the faster the CSF flows in, while slower heart rates have the opposite effect. After low-intensity ultrasound stimulation of mice, the speed of CSF influx was significantly improved. This study confirmed that there is a positive relationship between the lymphatic system circulation and heart rate. While these findings suggest the therapeutic potential of ultrasound in treating neurodegenerative diseases, further studies are required to determine its clinical applicability and safety. Overall, the results of this study suggest that low-intensity ultrasound stimulation has the potential to treat neurodegenerative diseases. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:35:44Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:35:44Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 中文摘要 iv Abstract v 目次 vi 圖次 viii 表次 x 第一章 緒論 1 1.1 神經退化性疾病 1 1.2 膠淋巴系統 2 1.3 膠淋巴系統中的關鍵蛋白 4 1.3.1 AQP4水通道(Aquaporin-4 Water Channel) 4 1.3.2星狀細胞(Astrocytes) 5 1.3.3 小膠質細胞(Microglia) 6 1.4 現今治療方式及研究 7 1.5 研究目的與重要性 8 1.6 超音波參數定義 9 第二章 材料與方法 11 2.1研究方法 11 2.2 不同心律小鼠實驗 11 2.2.1 心律藥物濃度控制 12 2.2.2 實驗操作步驟 12 2.2.3 腦組織切片樣本製備 13 2.2.4 螢光顯微鏡拍攝參數 15 2.2.5 螢光分析參數 16 2.4 超音波刺激系統 17 2.4.1 刺激設備與探頭 17 2.4.1.1訊號產生器(Functiongenerator) 17 2.4.1.2功率放大器(Amplifier) 18 2.4.1.3 陶瓷壓電片(PZT-Probe) 18 2.4.2 刺激系統能量量測 19 2.4.3 刺激系統升溫量測 20 第三章 實驗結果 22 第四章 討論 24 4.1心律小鼠實驗結果與討論 24 4.1.1小鼠模型心律異常緩慢 24 4.1.2 心律小鼠與CSF滲透率 24 4.1.3 低強度超音波刺激與CSF滲透率 25 第五章 結論與未來展望 27 第六章 參考文獻 28 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 心律 | zh_TW |
| dc.subject | 膠淋巴系統 | zh_TW |
| dc.subject | 低強度超音波 | zh_TW |
| dc.subject | low-intensity ultrasound | en |
| dc.subject | Glymphatic system | en |
| dc.subject | heart rate | en |
| dc.title | 探討心律對腦脊髓液滲透率的影響 | zh_TW |
| dc.title | Investigation of Heart Rate on CSF Influx | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳文翔;陳志成;蕭仲凱 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-shiang Chen;Chih-Cheng Chen;Jong-Kai Hsiao | en |
| dc.subject.keyword | 膠淋巴系統,心律,低強度超音波, | zh_TW |
| dc.subject.keyword | Glymphatic system,heart rate,low-intensity ultrasound, | en |
| dc.relation.page | 36 | - |
| dc.identifier.doi | 10.6342/NTU202501609 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-18 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 醫學工程學系 | - |
| dc.date.embargo-lift | 2030-07-07 | - |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 2.06 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
