請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99536完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 胡春美 | zh_TW |
| dc.contributor.advisor | Chun-Mei Hu | en |
| dc.contributor.author | 吳丹霓 | zh_TW |
| dc.contributor.author | Dan-Ni Wu | en |
| dc.date.accessioned | 2025-09-10T16:35:32Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-15 | - |
| dc.identifier.citation | 1. Hicks, J. Genome, proteome, and metabolome: where are we going? Ultrastruct Pathol 27, 289-294 (2003).
2. Walenta, S., Schroeder, T. & Mueller-Klieser, W. Lactate in solid malignant tumors: potential basis of a metabolic classification in clinical oncology. Curr Med Chem 11, 2195-2204 (2004). 3. Bollard, M.E., Stanley, E.G., Lindon, J.C., Nicholson, J.K. & Holmes, E. NMR-based metabonomic approaches for evaluating physiological influences on biofluid composition. NMR in Biomedicine 18, 143-162 (2005). 4. Nicholson, J.K., Lindon, J.C. & Holmes, E. 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29, 1181-1189 (1999). 5. Brindle, J.T. et al. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nature Medicine 8, 1439-1445 (2002). 6. Bouatra, S. et al. The Human Urine Metabolome. PloS one 8, e73076 (2013). 7. Simerville, J.A., Maxted, W.C. & Pahira, J.J. Urinalysis: a comprehensive review. Am Fam Physician 71, 1153-1162 (2005). 8. Walker, H.K., Hall, W.D. & Hurst, J.W. Clinical methods: the history, physical, and laboratory examinations. (1990). 9. Milani, D.A.Q. & Jialal, I. in StatPearls [Internet] (StatPearls Publishing, 2023). 10. Echeverry, G., Hortin, G.L. & Rai, A.J. Introduction to urinalysis: historical perspectives and clinical application. The urinary proteome: methods and protocols, 1-12 (2010). 11. Chan, A.W. et al. 1H-NMR urinary metabolomic profiling for diagnosis of gastric cancer. British Journal of Cancer 114, 59-62 (2016). 12. Stephens, N.S. et al. Urinary NMR metabolomic profiles discriminate inflammatory bowel disease from healthy. Journal of Crohn's and Colitis 7, e42-e48 (2013). 13. Wang, Z. et al. NMR-based metabolomic techniques identify potential urinary biomarkers for early colorectal cancer detection. Oncotarget 8, 105819 (2017). 14. Casadei-Gardini, A. et al. (1)H-NMR Based Serum Metabolomics Highlights Different Specific Biomarkers between Early and Advanced Hepatocellular Carcinoma Stages. Cancers (Basel) 12 (2020). 15. Lema, C. et al. 1H NMR serum metabolomic profiling of patients at risk of cardiovascular diseases performing stress test. Scientific Reports 10, 17838 (2020). 16. Corona, G. et al. 1H-NMR Plasma Lipoproteins Profile Analysis Reveals Lipid Metabolism Alterations in HER2-Positive Breast Cancer Patients. Cancers 13, 5845 (2021). 17. Wishart, D.S. Quantitative metabolomics using NMR. TrAC Trends in Analytical Chemistry 27, 228-237 (2008). 18. Graham, E. et al. Integration of genomics and metabolomics for prioritization of rare disease variants: a 2018 literature review. Journal of Inherited Metabolic Disease 41, 435-445 (2018). 19. Hou, Y.-C.C. et al. Precision medicine integrating whole-genome sequencing, comprehensive metabolomics, and advanced imaging. Proceedings of the National Academy of Sciences 117, 3053-3062 (2020). 20. Bharti, S.K. & Roy, R. Quantitative 1H NMR spectroscopy. TrAC Trends in Analytical Chemistry 35, 5-26 (2012). 21. Weljie, A.M., Newton, J., Mercier, P., Carlson, E. & Slupsky, C.M. Targeted Profiling: Quantitative Analysis of 1H NMR Metabolomics Data. Analytical Chemistry 78, 4430-4442 (2006). 22. Tredwell, G.D., Bundy, J.G., De Iorio, M. & Ebbels, T.M. Modelling the acid/base 1 H NMR chemical shift limits of metabolites in human urine. Metabolomics 12, 1-10 (2016). 23. Cook, J.D., Strauss, K.A., Caplan, Y.H., LoDico, C.P. & Bush, D.M. Urine pH: the effects of time and temperature after collection. Journal of analytical toxicology 31, 486-496 (2007). 24. Yang, W., Wang, Y., Zhou, Q. & Tang, H. Analysis of human urine metabolites using SPE and NMR spectroscopy. Science in China Series B: Chemistry 51, 218-225 (2008). 25. Lauridsen, M., Hansen, S.H., Jaroszewski, J.W. & Cornett, C. Human Urine as Test Material in 1H NMR-Based Metabonomics: Recommendations for Sample Preparation and Storage. Analytical Chemistry 79, 1181-1186 (2007). 26. Xiao, C., Hao, F., Qin, X., Wang, Y. & Tang, H. An optimized buffer system for NMR-based urinary metabonomics with effective pH control, chemical shift consistency and dilution minimization. Analyst 134, 916-925 (2009). 27. Lindon, J.C., Nicholson, J.K. & Everett, J.R. in Annual Reports on NMR Spectroscopy, Vol. 38. (ed. G.A. Webb) 1-88 (Academic Press, 1999). 28. Beneduci, A., Chidichimo, G., Dardo, G. & Pontoni, G. Highly routinely reproducible alignment of 1H NMR spectral peaks of metabolites in huge sets of urines. Analytica Chimica Acta 685, 186-195 (2011). 29. Tredwell, G.D., Bundy, J.G., De Iorio, M. & Ebbels, T.M.D. Modelling the acid/base 1H NMR chemical shift limits of metabolites in human urine. Metabolomics 12, 152 (2016). 30. Gil, A. et al. Stability of energy metabolites-An often overlooked issue in metabolomics studies: A review. Electrophoresis 36, 2156-2169 (2015). 31. Miller, I.J. et al. Real-time health monitoring through urine metabolomics. NPJ digital medicine 2, 109 (2019). 32. Wang, T. et al. Individual variability in human urinary metabolites identifies age‐related, body mass index‐related, and sex‐related biomarkers. Molecular Genetics & Genomic Medicine 9, e1738 (2021). 33. Posma, J.M. et al. Nutriome–metabolome relationships provide insights into dietary intake and metabolism. Nature food 1, 426-436 (2020). 34. Higashiura, Y. et al. Low urine pH predicts new onset of diabetes mellitus during a 10‐year period in men: BOREAS‐DM1 study. Journal of Diabetes Investigation 11, 1490-1497 (2020). 35. Maalouf, N.M., Cameron, M.A., Moe, O.W., Adams-Huet, B. & Sakhaee, K. Low Urine pH: A Novel Feature of the Metabolic Syndrome. Clinical Journal of the American Society of Nephrology 2, 883-888 (2007). 36. Nakanishi, N. et al. Low urine pH is a predictor of chronic kidney disease. Kidney and Blood Pressure Research 35, 77-81 (2012). 37. Emwas, A.H. et al. Standardizing the experimental conditions for using urine in NMR-based metabolomic studies with a particular focus on diagnostic studies: a review. Metabolomics 11, 872-894 (2015). 38. Kostenbauder, H.B., Portnoff, J.B. & Swintosky, J.V. Control of Urine pH and Its Effect on Sulfaethidole Excretion in Humans. Journal of Pharmaceutical Sciences 51, 1084-1089 (1962). 39. Bilobrov, V.M., Chugaj, A.V. & Bessarabov, V.I. Urine pH variation dynamics in healthy individuals and stone formers. Urol Int 45, 326-331 (1990). 40. Emwas, A.-H. et al. Recommendations and Standardization of Biomarker Quantification Using NMR-Based Metabolomics with Particular Focus on Urinary Analysis. Journal of Proteome Research 15, 360-373 (2016). 41. Bernini, P. et al. Standard operating procedures for pre-analytical handling of blood and urine for metabolomic studies and biobanks. Journal of biomolecular NMR 49, 231-243 (2011). 42. Wishart, D.S. et al. HMDB: a knowledgebase for the human metabolome. Nucleic acids research 37, D603-D610 (2009). 43. Wu, D.N. et al. Investigation of pH-dependent (1)H NMR urine metabolite profiles for diagnosis of obesity-related disordering. Int J Obes (Lond) 49, 688-697 (2025). 44. Fajiculay, E. & Hsu, C.-P. BioSANS: A software package for symbolic and numeric biological simulation. PLOS ONE 17, e0256409 (2022). 45. Dan-Ni Wu, E.F., Supporting information_pH intelligence program. Vol. V1 (Mendeley Data; 2024). 46. Lee, J., Chang, H.K. & Lee, S. Association of low urine pH as a metabolic feature with abdominal obesity. Journal of International Medical Research 48, 0300060519898615 (2020). 47. NMR Mixture Analysis (Chenomix Inc. Chenomix Inc. , 2009). 48. Roberts, J.D. Basic Principles of Organic Chemistry. (1977). 49. Benjamin, K.M. & Savage, P.E. Hydrothermal reactions of methylamine. The Journal of Supercritical Fluids 31, 301-311 (2004). 50. Lv, S.-S. et al. Stability of Hydrated Methylamine: Structural Characteristics and H2N···H–O Hydrogen Bonds. The Journal of Physical Chemistry A 119, 3770-3779 (2015). 51. Kusalik, P.G., Bergman, D. & Laaksonen, A. The local structure in liquid methylamine and methylamine–water mixtures. The Journal of Chemical Physics 113, 8036-8046 (2000). 52. Barr, D.B. et al. Urinary creatinine concentrations in the US population: implications for urinary biologic monitoring measurements. Environmental health perspectives 113, 192-200 (2005). 53. Arndt, T. Urine-creatinine concentration as a marker of urine dilution: reflections using a cohort of 45,000 samples. Forensic science international 186, 48-51 (2009). 54. TALBOT, N.B. & BROUGHTON, F. Measurement of obesity by the creatinine coefficient. American Journal of Diseases of Children 55, 42-50 (1938). 55. Salek, R.M. et al. A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human. Physiological genomics 29, 99-108 (2007). 56. Dan-Ni WU, E.F., Chao-Ping HSU, Chun-Mei HU, Li-Wen LEE, Der-Lii M. TZOU, Vol. V1 (Mendeley Data; 2024). 57. Ross, A., Schlotterbeck, G., Dieterle, F. & Senn, H. Chapter 3-NMR Spectroscopy Techniques for Application to 280 Metabonomics. The Handbook of Metabonomics and Metabolomics, edited by Lindon, JC, Nicholson, JK, and Holmes, E, 55-112. 58. Jiang, L., Huang, J., Wang, Y. & Tang, H. Eliminating the dication-induced intersample chemical-shift variations for NMR-based biofluid metabonomic analysis. Analyst 137, 4209-4219 (2012). 59. Asiago, V.M. et al. Use of EDTA to minimize ionic strength dependent frequency shifts in the 1 H NMR spectra of urine. Metabolomics 4, 328-336 (2008). 60. Rinella, M.E. et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 78, 1966-1986 (2023). 61. EASL-EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J Hepatol 81, 492-542 (2024). 62. Lee, E.J. et al. Prevalence of nonalcoholic fatty liver disease in pediatrics and adolescents: a systematic review and meta-analysis. World Journal of Pediatrics 20, 569-580 (2024). 63. Lind, L. et al. Comparison of four non-alcoholic fatty liver disease detection scores in a Caucasian population. World Journal of Hepatology 12, 149 (2020). 64. Contreras, D., Gonzalez-Rocha, A., Clark, P., Barquera, S. & Denova-Gutierrez, E. Diagnostic accuracy of blood biomarkers and non-invasive scores for the diagnosis of NAFLD and NASH: Systematic review and meta-analysis. Ann Hepatol 28, 100873 (2023). 65. Abozaid, Y.J. et al. Plasma Circulating Metabolites Associated With Steatotic Liver Disease and Liver Enzymes: A Multiplatform Population-Based Study. Gastro Hep Advances 4, 100551 (2025). 66. Bhat, N. & Mani, A. Dysregulation of lipid and glucose metabolism in nonalcoholic fatty liver disease. Nutrients 15, 2323 (2023). 67. Masoodi, M. et al. Metabolomics and lipidomics in NAFLD: biomarkers and non-invasive diagnostic tests. Nature reviews Gastroenterology & hepatology 18, 835-856 (2021). 68. Sasso, M. et al. Liver steatosis assessed by controlled attenuation parameter (CAP) measured with the XL probe of the FibroScan: a pilot study assessing diagnostic accuracy. Ultrasound in medicine & biology 42, 92-103 (2016). 69. Sasso, M. et al. Controlled attenuation parameter (CAP): a novel VCTE™ guided ultrasonic attenuation measurement for the evaluation of hepatic steatosis: preliminary study and validation in a cohort of patients with chronic liver disease from various causes. Ultrasound in medicine & biology 36, 1825-1835 (2010). 70. Miyake, T. et al. Low urine pH is associated with non-alcoholic fatty liver disease: a community-based cross-sectional study. Internal Medicine 57, 2799-2805 (2018). 71. Okamura, T. et al. Low urine pH is a risk for non-alcoholic fatty liver disease: a population-based longitudinal study. Clinics and Research in Hepatology and Gastroenterology 42, 570-576 (2018). 72. Wu, D.N. et al. Investigation of pH-dependent (1)H NMR urine metabolite profiles for diagnosis of obesity-related disordering. Int J Obes (Lond) (2024). 73. Sedlmeier, A. et al. The human metabolic profile reflects macro-and micronutrient intake distinctly according to fasting time. Scientific Reports 8, 12262 (2018). 74. May, D.H. et al. Metabolomic profiling of urine: response to a randomised, controlled feeding study of select fruits and vegetables, and application to an observational study. British journal of nutrition 110, 1760-1770 (2013). 75. Clarke, E.D., Rollo, M.E., Pezdirc, K., Collins, C.E. & Haslam, R.L. Urinary biomarkers of dietary intake: a review. Nutrition Reviews 78, 364-381 (2020). 76. Asrih, M. & Jornayvaz, F.R. Diets and nonalcoholic fatty liver disease: the good and the bad. Clinical Nutrition 33, 186-190 (2014). 77. Mosca, A. et al. Beverage consumption and paediatric NAFLD. Eating and Weight Disorders-Studies on Anorexia, Bulimia and Obesity 21, 581-588 (2016). 78. Clemente, M.G., Mandato, C., Poeta, M. & Vajro, P. Pediatric non-alcoholic fatty liver disease: Recent solutions, unresolved issues, and future research directions. World journal of gastroenterology 22, 8078 (2016). 79. Alisi, A., Feldstein, A.E., Villani, A., Raponi, M. & Nobili, V. Pediatric nonalcoholic fatty liver disease: a multidisciplinary approach. Nature reviews Gastroenterology & hepatology 9, 152-161 (2012). 80. Moore, M.P., Cunningham, R.P., Dashek, R.J., Mucinski, J.M. & Rector, R.S. A fad too far? Dietary strategies for the prevention and treatment of NAFLD. Obesity 28, 1843-1852 (2020). 81. Mundi, M.S. et al. Evolution of NAFLD and its management. Nutrition in Clinical Practice 35, 72-84 (2020). 82. Mitchel, E. & Lavine, J. the management of paediatric nonalcoholic fatty liver disease. Alimentary pharmacology & therapeutics 40, 1155-1170 (2014). 83. Tacke, F. et al. EASL–EASD–EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). Journal of Hepatology (2024). 84. Troisi, J. et al. Urinary metabolomics in pediatric obesity and NAFLD identifies metabolic pathways/metabolites related to dietary habits and gut-liver axis perturbations. Nutrients 9, 485 (2017). 85. Dong, S. et al. Urinary metabolomics analysis identifies key biomarkers of different stages of nonalcoholic fatty liver disease. World Journal of Gastroenterology 23, 2771 (2017). 86. Ahn, S.B. Noninvasive serum biomarkers for liver steatosis in nonalcoholic fatty liver disease: Current and future developments. Clin Mol Hepatol 29, S150-s156 (2023). 87. Chae, W. et al. Association of Metabolic Signatures with Nonalcoholic Fatty Liver Disease in Pediatric Population. Metabolites 12 (2022). 88. Moolla, A. et al. Accurate non-invasive diagnosis and staging of non-alcoholic fatty liver disease using the urinary steroid metabolome. Aliment Pharmacol Ther 51, 1188-1197 (2020). 89. Rinella, M.E. Nonalcoholic fatty liver disease: a systematic review. Jama 313, 2263-2273 (2015). 90. Ratziu, V. et al. Sampling variability of liver biopsy in nonalcoholic fatty liver disease. Gastroenterology 128, 1898-1906 (2005). 91. Zhu, Y. et al. A prospective comparison of three ultrasound-based techniques in quantitative diagnosis of hepatic steatosis in NAFLD. Abdom Radiol (NY) 49, 81-92 (2024). 92. Bedogni, G. et al. The Fatty Liver Index: a simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol 6, 33 (2006). 93. Kim, H.Y. Recent advances in nonalcoholic fatty liver disease metabolomics. Clin Mol Hepatol 27, 553-559 (2021). 94. Masarone, M. et al. Untargeted metabolomics as a diagnostic tool in NAFLD: discrimination of steatosis, steatohepatitis and cirrhosis. Metabolomics 17, 12 (2021). 95. Holeček, M. Branched-chain amino acids in health and disease: metabolism, alterations in blood plasma, and as supplements. Nutr Metab (Lond) 15, 33 (2018). 96. Wieland, A., Frank, D.N., Harnke, B. & Bambha, K. Systematic review: microbial dysbiosis and nonalcoholic fatty liver disease. Aliment Pharmacol Ther 42, 1051-1063 (2015). 97. Chassaing, B., Etienne-Mesmin, L. & Gewirtz, A.T. Microbiota-liver axis in hepatic disease. Hepatology 59, 328-339 (2014). 98. Vogt, J.A. & Wolever, T.M. Fecal acetate is inversely related to acetate absorption from the human rectum and distal colon. J Nutr 133, 3145-3148 (2003). 99. Da Silva, H.E. et al. Nonalcoholic fatty liver disease is associated with dysbiosis independent of body mass index and insulin resistance. Sci Rep 8, 1466 (2018). 100. Jumpertz, R. et al. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr 94, 58-65 (2011). 101. Ji, X. et al. Effects of chitooligosaccharides on the rebalance of gut microorganisms and their metabolites in patients with nonalcoholic fatty liver disease. Journal of Functional Foods 77, 104333 (2021). 102. Raman, M. et al. Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 11, 868-875.e861-863 (2013). 103. Gao, Y. et al. Alterations of gut microbiota-derived metabolites in gestational diabetes mellitus and clinical significance. J Clin Lab Anal 36, e24333 (2022). 104. Heda, R. et al. Non-alcoholic fatty liver and chronic kidney disease: Retrospect, introspect, and prospect. World J Gastroenterol 27, 1864-1882 (2021). 105. Adesso, S. et al. Effect of Indoxyl Sulfate on the Repair and Intactness of Intestinal Epithelial Cells: Role of Reactive Oxygen Species' Release. Int J Mol Sci 20 (2019). 106. Huang, Y. et al. Indoxyl sulfate induces intestinal barrier injury through IRF1-DRP1 axis-mediated mitophagy impairment. Theranostics 10, 7384-7400 (2020). 107. Liu, J., Wu, A., Cai, J., She, Z.-G. & Li, H. The contribution of the gut-liver axis to the immune signaling pathway of NAFLD. Frontiers in Immunology 13 (2022). 108. Liang, W. et al. Establishment of a general NAFLD scoring system for rodent models and comparison to human liver pathology. PLoS One 9, e115922 (2014). 109. Rinella, M.E. & Sanyal, A.J. Management of NAFLD: a stage-based approach. Nat Rev Gastroenterol Hepatol 13, 196-205 (2016). 110. Byrne, C.D. & Targher, G. NAFLD: A multisystem disease. Journal of Hepatology 62, S47-S64 (2015). 111. Chhimwal, J., Patial, V. & Padwad, Y. Beverages and Non-alcoholic fatty liver disease (NAFLD): Think before you drink. Clinical Nutrition 40, 2508-2519 (2021). 112. Cole, B.K., Feaver, R.E., Wamhoff, B.R. & Dash, A. Non-alcoholic fatty liver disease (NAFLD) models in drug discovery. Expert Opin Drug Discov 13, 193-205 (2018). 113. Schuster, S., Cabrera, D., Arrese, M. & Feldstein, A.E. Triggering and resolution of inflammation in NASH. Nature Reviews Gastroenterology & Hepatology 15, 349-364 (2018). 114. Armstrong, M.J., Adams, L.A., Canbay, A. & Syn, W.K. Extrahepatic complications of nonalcoholic fatty liver disease. Hepatology 59, 1174-1197 (2014). 115. Bonora, E. & Targher, G. Increased risk of cardiovascular disease and chronic kidney disease in NAFLD. Nature reviews Gastroenterology & hepatology 9, 372-381 (2012). 116. Negi, C.K., Babica, P., Bajard, L., Bienertova-Vasku, J. & Tarantino, G. Insights into the molecular targets and emerging pharmacotherapeutic interventions for nonalcoholic fatty liver disease. Metabolism 126, 154925 (2022). 117. Dixon, J.B., Bhathal, P.S., Hughes, N.R. & O'Brien, P.E. Nonalcoholic fatty liver disease: Improvement in liver histological analysis with weight loss. Hepatology 39, 1647-1654 (2004). 118. Shah, K. et al. Diet and exercise interventions reduce intrahepatic fat content and improve insulin sensitivity in obese older adults. Obesity (Silver Spring) 17, 2162-2168 (2009). 119. Heintz-Buschart, A. & Wilmes, P. Human Gut Microbiome: Function Matters. Trends in Microbiology 26, 563-574 (2018). 120. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59-65 (2010). 121. Adak, A. & Khan, M.R. An insight into gut microbiota and its functionalities. Cellular and Molecular Life Sciences 76, 473-493 (2019). 122. Festi, D. et al. Gut microbiota and metabolic syndrome. World J Gastroenterol 20, 16079-16094 (2014). 123. Guo, K., Xu, S. & Zeng, Z. “Liver–gut” axis: A target of traditional Chinese medicine for the treatment of non-alcoholic fatty liver disease. Frontiers in Endocrinology Volume 13 - 2022 (2022). 124. Tokuhara, D. Role of the gut microbiota in regulating non-alcoholic fatty liver disease in children and adolescents. Frontiers in Nutrition 8, 700058 (2021). 125. Compare, D. et al. Gut–liver axis: the impact of gut microbiota on non alcoholic fatty liver disease. Nutrition, Metabolism and Cardiovascular Diseases 22, 471-476 (2012). 126. Aron-Wisnewsky, J. et al. Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders. Nature Reviews Gastroenterology & Hepatology 17, 279-297 (2020). 127. Nier, A., Engstler, A.J., Maier, I.B. & Bergheim, I. Markers of intestinal permeability are already altered in early stages of non-alcoholic fatty liver disease: Studies in children. PLoS One 12, e0183282 (2017). 128. Ley, R.E., Turnbaugh, P.J., Klein, S. & Gordon, J.I. Human gut microbes associated with obesity. nature 444, 1022-1023 (2006). 129. Hildebrandt, M.A. et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 137, 1716-1724. e1712 (2009). 130. Indiani, C.M.d.S.P. et al. Childhood obesity and firmicutes/bacteroidetes ratio in the gut microbiota: a systematic review. Childhood obesity 14, 501-509 (2018). 131. Stojanov, S., Berlec, A. & Štrukelj, B. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms 8, 1715 (2020). 132. Nakayama, J. et al. Diversity in gut bacterial community of school-age children in Asia. Scientific Reports 5, 8397 (2015). 133. Sakamoto, M. & Ohkuma, M. Reclassification of Xylanibacter oryzae Ueki et al. 2006 as Prevotella oryzae comb. nov., with an emended description of the genus Prevotella. Int J Syst Evol Microbiol 62, 2637-2642 (2012). 134. Thomas, F., Hehemann, J.H., Rebuffet, E., Czjzek, M. & Michel, G. Environmental and gut bacteroidetes: the food connection. Front Microbiol 2, 93 (2011). 135. Jian, H., Liu, Y., Wang, X., Dong, X. & Zou, X. Akkermansia muciniphila as a Next-Generation Probiotic in Modulating Human Metabolic Homeostasis and Disease Progression: A Role Mediated by Gut-Liver-Brain Axes? Int J Mol Sci 24 (2023). 136. Hsu, C.L. & Schnabl, B. The gut–liver axis and gut microbiota in health and liver disease. Nature Reviews Microbiology 21, 719-733 (2023). 137. Pabst, O. et al. Gut–liver axis: barriers and functional circuits. Nature Reviews Gastroenterology & Hepatology 20, 447-461 (2023). 138. Bauer, K.C., Littlejohn, P.T., Ayala, V., Creus-Cuadros, A. & Finlay, B.B. Nonalcoholic Fatty Liver Disease and the Gut-Liver Axis: Exploring an Undernutrition Perspective. Gastroenterology 162, 1858-1875.e1852 (2022). 139. Lagier, J.C. et al. Culturing the human microbiota and culturomics. Nat Rev Microbiol 16, 540-550 (2018). 140. Ding, L.Y. et al. Porphyromonas gingivalis-derived lipopolysaccharide causes excessive hepatic lipid accumulation via activating NF-κB and JNK signaling pathways. Oral Dis 25, 1789-1797 (2019). 141. Ritze, Y. et al. Lactobacillus rhamnosus GG protects against non-alcoholic fatty liver disease in mice. PLoS One 9, e80169 (2014). 142. Uchino, S., Bellomo, R. & Goldsmith, D. The meaning of the blood urea nitrogen/creatinine ratio in acute kidney injury. Clin Kidney J 5, 187-191 (2012). 143. Urashima, M. et al. BUN/Cr ratio as an index of gastrointestinal bleeding mass in children. J Pediatr Gastroenterol Nutr 15, 89-92 (1992). 144. Schindhelm, R.K. et al. Alanine aminotransferase as a marker of non-alcoholic fatty liver disease in relation to type 2 diabetes mellitus and cardiovascular disease. Diabetes/Metabolism Research and Reviews 22, 437-443 (2006). 145. Flores-Guerrero, J.L. et al. Circulating trimethylamine-N-oxide is associated with all-cause mortality in subjects with nonalcoholic fatty liver disease. Liver Int 41, 2371-2382 (2021). 146. Chen, Y.M. et al. Associations of gut-flora-dependent metabolite trimethylamine-N-oxide, betaine and choline with non-alcoholic fatty liver disease in adults. Sci Rep 6, 19076 (2016). 147. Tan, X. et al. Trimethylamine N-Oxide Aggravates Liver Steatosis through Modulation of Bile Acid Metabolism and Inhibition of Farnesoid X Receptor Signaling in Nonalcoholic Fatty Liver Disease. Mol Nutr Food Res 63, e1900257 (2019). 148. Greiner, T. & Bäckhed, F. Effects of the gut microbiota on obesity and glucose homeostasis. Trends Endocrinol Metab 22, 117-123 (2011). 149. Nicholson, J.K. et al. Host-gut microbiota metabolic interactions. Science 336, 1262-1267 (2012). 150. Chang, Y.Y. et al. Preventive effects of taurine on development of hepatic steatosis induced by a high-fat/cholesterol dietary habit. J Agric Food Chem 59, 450-457 (2011). 151. Chen, X. et al. Taurine supplementation prevents ethanol-induced decrease in serum adiponectin and reduces hepatic steatosis in rats. Hepatology 49, 1554-1562 (2009). 152. Nonaka, H., Tsujino, T., Watari, Y., Emoto, N. & Yokoyama, M. Taurine prevents the decrease in expression and secretion of extracellular superoxide dismutase induced by homocysteine: amelioration of homocysteine-induced endoplasmic reticulum stress by taurine. Circulation 104, 1165-1170 (2001). 153. Leandro, J.G.B. et al. Exogenous citrate impairs glucose tolerance and promotes visceral adipose tissue inflammation in mice. British Journal of Nutrition 115, 967-973 (2016). 154. Branco, J.R. et al. Dietary citrate acutely induces insulin resistance and markers of liver inflammation in mice. The Journal of Nutritional Biochemistry 98, 108834 (2021). 155. Ashbrook, M.J. et al. Citrate modulates lipopolysaccharide-induced monocyte inflammatory responses. Clinical and Experimental Immunology 180, 520-530 (2015). 156. Branco, J.R. et al. Citrate enrichment in a Western diet reduces weight gain via browning of adipose tissues without resolving diet-induced insulin resistance in mice. Food & Function 13, 10947-10955 (2022). 157. Ritze, Y., Bárdos, G., Hubert, A., Böhle, M. & Bischoff, S.C. Effect of tryptophan supplementation on diet-induced non-alcoholic fatty liver disease in mice. Br J Nutr 112, 1-7 (2014). 158. Ganesan, R. et al. Characteristics of microbiome-derived metabolomics according to the progression of alcoholic liver disease. Hepatol Int 18, 486-499 (2024). 159. Yao, S. et al. Role of lactate and lactate metabolism in liver diseases (Review). Int J Mol Med 54 (2024). 160. Scheiner, B. et al. Acid-base disorders in liver disease. J Hepatol 67, 1062-1073 (2017). 161. Shokryzadan, P. et al. Conjugated linoleic acid: A potent fatty acid linked to animal and human health. Crit Rev Food Sci Nutr 57, 2737-2748 (2017). 162. Fuke, G. & Nornberg, J.L. Systematic evaluation on the effectiveness of conjugated linoleic acid in human health. Crit Rev Food Sci Nutr 57, 1-7 (2017). 163. Kawano, Y. et al. Microbiota imbalance induced by dietary sugar disrupts immune-mediated protection from metabolic syndrome. Cell 185, 3501-3519.e3520 (2022). 164. Krishnan, S. et al. Gut Microbiota-Derived Tryptophan Metabolites Modulate Inflammatory Response in Hepatocytes and Macrophages. Cell Reports 28, 3285 (2019). 165. Aoki, R. et al. Commensal microbe-derived acetate suppresses NAFLD/NASH development via hepatic FFAR2 signalling in mice. Microbiome 9, 188 (2021). 166. Pucino, V. et al. Lactate Buildup at the Site of Chronic Inflammation Promotes Disease by Inducing CD4(+) T Cell Metabolic Rewiring. Cell Metab 30, 1055-1074.e1058 (2019). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99536 | - |
| dc.description.abstract | 本論文針對脂肪變性肝病(SLD)的診斷與管理中的關鍵缺口進行探討,該疾病在肥胖兒童中尤為普遍。當前的診斷方法具侵入性或對早期偵測敏感度不足,而有效的藥物治療亦相當有限。本研究致力於開發一種新穎的非侵入性診斷方法,並探討腸道微生物群在SLD發病機制中的作用。
第一部分 介紹了一種pH依賴性的核磁共振(NMR)尿液代謝體學方法,可直接測定原始尿液中的代謝物,無需調整pH值,從而提高對肥胖相關代謝疾病的診斷準確性。本方法建立了pH 依賴性的化學位移資料庫,並鑑定出尿液濃度校準物及pH探針,以增強訊號識別能力並提高樣本穩定性。 第二部分 驗證了pH依賴性NMR方法在三個獨立兒童SLD隊列中的臨床應用價值,發現異丁酸與纈氨酸在非空腹尿液中可作為高度準確的早期生物標誌物(AUC 0.955),強調非空腹尿液採集的重要性。隨後,在臨床相關的小鼠SLD模型中進行驗證,進一步確認該方法的診斷潛力。此外,在飲食逆轉的小鼠SLD模型中,發現靛基硫酸(indoxylsulfuric acid)可作為監測SLD改善的新型腸道微生物標誌物。 第三部分 研究了腸道微生物群失調與 SLD 發病機制之間的關聯。在小鼠模型中進行16S rRNA定序,鑑定出SLD相關的致病菌Faecalibaculum rodentium與Olsenella massiliensis,以及具有益生菌特性的Duncaniella freteri。進一步的體內外研究顯示,這些致病菌促進肝臟脂肪變性,而D. freteri能有效減少肝臟脂質累積,其效果優於常見的Lactobacillus rhamnosus GG。這突顯了益生菌治療在SLD管理中的潛力,以及腸道菌群在疾病進展與逆轉中的關鍵作用。 本論文提供了一種創新的非侵入性尿液代謝體學平台,用於SLD的早期診斷與監測,並闡明了腸道微生物群失調在SLD進展中的作用。研究成果為診斷與治療SLD提供了新策略,深化了對腸–肝互動的理解,並有助於改善兒童SLD的臨床管理。 | zh_TW |
| dc.description.abstract | This dissertation addresses critical gaps in the diagnosis and management of steatotic liver disease (SLD), a prevalent condition, especially in obese children. Current screening methods are invasive or lack sensitivity for early detection, and effective pharmacological treatments are limited. This research focused on developing a non-invasive, novel diagnostic approach and exploring the role of gut microbiota in SLD pathogenesis.
Part I introduces a pH-dependent nuclear magnetic resonance (NMR) urine metabolomics method that quantifies metabolites in native urine, eliminating the need for pH adjustments and improving diagnostic accuracy for obesity-associated metabolic disorders. This method establishes a pH-dependent chemical shift database and identifies a urine concentration calibrator and a pH probe, enhancing signal recognition and sample stability. Part II demonstrated the clinical utility of the pH-dependent NMR method for pediatric SLD detection across three independent cohorts, revealing isobutyric acid and valine as highly accurate early-stage biomarkers (AUC 0.955) in non-fasting urine, underscoring the importance of non-fasting collection. Subsequent validation in a clinically relevant murine SLD model confirmed the method's diagnostic potential. Additionally, a diet-reversal murine SLD model identified indoxylsulfuric acid as a novel microbial biomarker for monitoring SLD regression. Part III investigates the mechanistic link between gut microbiota dysbiosis and SLD pathogenesis in the murine models. 16S rRNA sequencing identified Faecalibaculum rodentium and Olsenella massiliensis as SLD-associated pathobionts and Duncaniella freteri as a beneficial probiotic. In vitro and in vivo studies demonstrated that the pathobionts promote hepatic steatosis while D. freteri effectively reduces lipid accumulation, surpassing commonly used Lactobacillus rhamnosus GG. This highlights the potential of probiotic interventions for SLD management and the role of gut microbiota in both disease progression and regression. This dissertation provides a novel, noninvasive urine metabolomics platform for early SLD detection and monitoring and elucidates the role of gut dysbiosis in SLD progression. The findings offer innovative diagnostic and therapeutic strategies, advancing our understanding of gut–liver interactions and improving pediatric SLD management. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:35:32Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:35:32Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
Acknowledgment ii Contents iv Figure of Contents viii Table of Contents xiv 論文全文摘要 xvii Thesis Preface xviii Chapter 1 Characterizing pH-dependent Effects to Enhance In-Vitro Urine Metabolomics Analysis 1 摘要 1 Abstract 2 1.1 Introduction 3 1.2 Materials and Methods 8 1.2.1 Patient recruitments 8 1.2.2 Materials 8 1.2.3 Urine sample preparation 8 1.2.4 1H NMR spectroscopy acquisition and processing 9 1.2.5 Metabolite identification 10 1.2.6 Metabolite quantification 10 1.2.7 pH-dependent concentration variations 11 1.2.8 Statistical analysis 11 1.2.9 A novel “pH Intelligence” program for estimating urine metabolite concentration under pathophysiological pHs 12 1.3 Results and Discussion 13 1.3.1 Result 13 1.3.2 Discussion 21 Chapter 2 Utilizing pH-dependent Urine Metabolomics Analysis to Advance Early Detection and Monitoring of Pediatric Steatotic Liver Disease 59 摘要 59 Abstract 60 2.1 Introduction 61 2.2 Methods and Materials 66 2.2.1 Patient recruitment 66 2.2.2 Body composition analysis and hepatic steatosis assessment in children 67 2.2.3 Establishment of a clinical murine model recapitulates SLD in the pediatric population 67 2.2.4 Development of a murine model for examining the dietary modulation of SLD reversal 68 2.2.5 Body composition analysis and liver ultrasonography in a murine model 69 2.2.6 Biophysical, biochemical, and histological measurements in a murine model 69 2.2.7 Preparation of Urine Samples for pH-dependent 1H NMR Metabolomics Analysis 70 2.2.8 1H NMR Spectroscopy Acquisition and Processing 70 2.2.9 Metabolomics Analysis 71 2.2.10 Statistical Analysis 71 2.3 Results and Discussion 72 2.3.1 Result 72 2.3.2 Discussion 82 Chapter 3 Uncovering Potential Gut Microbial Drivers and Probiotic Candidates for Pediatric Steatotic Liver Disease in a Young Mouse Model 159 摘要 159 Abstract 161 3.1 Introduction 163 3.2 Methods and Materials 173 3.2.1 Chemicals 173 3.2.2 Animal Study for SLD Models 173 3.2.3 Animal Study for Pathobionts Treatments 174 3.2.4 Animal Study for Probiotic Treatments 175 3.2.5 Biophysical, Biochemical, and Histological Evaluation 176 3.2.6 Sample Preparation for 1H NMR Analysis 176 3.2.7 1H NMR spectroscopy acquisition and processing 177 3.2.8 1H NMR Metabolomics Analysis 178 3.2.9 Cell Cultures 178 3.2.10 Cell Viability Assay with CCK8 179 3.2.11 Cellular Lipid Accumulation Following Pathobionts Treatment 179 3.2.12 Amelioration of Lipid Accumulation by Probiotic Treatment 180 3.2.13 Cell Oil Red O (ORO) Staining 180 3.2.14 Tissue Lipidomics Analysis by UPLC-QTOF-MS 181 3.2.15 Cultivation of gut microorganisms 181 3.2.16 Fecal Microbiota 16s Ribosomal Gene Analysis 183 3.2.17 Statistical Analysis 184 3.3 Results and Discussion 186 3.3.1 Result 186 3.3.2 Discussion 197 Chapter 4 Perspective 249 Chapter 5 Future Direction 250 Chapter 6 Reference 253 Chapter 7 List of publications 268 Chapter 8 Note on the originality of this thesis 269 Chapter 9 CV 270 Chapter 10 Appendix 273 | - |
| dc.language.iso | en | - |
| dc.subject | 尿液代謝體學 | zh_TW |
| dc.subject | 核磁共振分析(NMR) | zh_TW |
| dc.subject | 脂肪性肝病(SLD) | zh_TW |
| dc.subject | 非空腹生物標誌物 | zh_TW |
| dc.subject | 腸道微生物群 | zh_TW |
| dc.subject | 微生物代謝物 | zh_TW |
| dc.subject | 益生菌 | zh_TW |
| dc.subject | Gut microbiota | en |
| dc.subject | Nuclear magnetic resonance (NMR) | en |
| dc.subject | Steatotic liver disease (SLD) | en |
| dc.subject | Probiotics | en |
| dc.subject | Microbial metabolites | en |
| dc.subject | Non-fasting biomarker | en |
| dc.subject | Urine metabolomics | en |
| dc.title | 革新體外代謝分析技術:用於兒童脂肪肝病的早期檢測與機制探討 | zh_TW |
| dc.title | Revolutionizing In-Vitro Metabolic Analysis for Early Detection of Pediatric Steatotic Liver Disease and Mechanistic Investigations | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 梁博煌 | zh_TW |
| dc.contributor.coadvisor | Po-Huang Liang | en |
| dc.contributor.oralexamcommittee | 涂熊林;許昭萍;鄭永銘;張以承;李莉文 | zh_TW |
| dc.contributor.oralexamcommittee | Hsiung-Lin Tu;Chao-Ping Hsu;Yung-Ming Jeng;Yi-Cheng Chang;Li-Wen Lee | en |
| dc.subject.keyword | 尿液代謝體學,核磁共振分析(NMR),脂肪性肝病(SLD),非空腹生物標誌物,腸道微生物群,微生物代謝物,益生菌, | zh_TW |
| dc.subject.keyword | Urine metabolomics,Nuclear magnetic resonance (NMR),Steatotic liver disease (SLD),Non-fasting biomarker,Gut microbiota,Microbial metabolites,Probiotics, | en |
| dc.relation.page | 282 | - |
| dc.identifier.doi | 10.6342/NTU202501839 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-17 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生化科學研究所 | - |
| dc.date.embargo-lift | 2030-07-14 | - |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 36.79 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
