Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99532Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 柯佳吟 | zh_TW |
| dc.contributor.advisor | Chia-Ying Ko | en |
| dc.contributor.author | 楊子媱 | zh_TW |
| dc.contributor.author | Tzu-Yao Yang | en |
| dc.date.accessioned | 2025-09-10T16:34:46Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-18 | - |
| dc.identifier.citation | Banerjee, S., Schlaeppi, K., & van der Heijden, M. G. A. (2018). Keystone taxa as drivers of microbiome structure and functioning. Nature Reviews Microbiology, 16(9), 567-576.
Benesty, J., Chen, J. D., Huang, Y. T., & Cohen, I. (2009). Pearson Correlation Coefficient. Noise Reduction in Speech Processing (pp. 1-4). Birkhofer, K., Bylund, H., Dalin, P., Ferlian, O., Gagic, V., Hamback, P. A., Klapwijk, M., Mestre, L., Roubinet, E., Schroeder, M., Stenberg, J. A., Porcel, M., Bjorkman, C., & Jonsson, M. (2017). Methods to identify the prey of invertebrate predators in terrestrial field studies. Ecology and Evolution, 7(6), 1942-1953. Bishop, J. (2006). Standardizing fishery-dependent catch and effort data in complex fisheries with technology change. Reviews in Fish Biology and Fisheries, 16(1), 21-38. Campbell, R. A. (2004). CPUE standardisation and the construction of indices of stock abundance in a spatially varying fishery using general linear models. Fisheries Research, 70(2-3), 209-227. Carr, A., Diener, C., Baliga, N. S., & Gibbons, S. M. (2019). Use and abuse of correlation analyses in microbial ecology. International Society for Microbial Ecology, 13, 2647–2655. Chen, L. C., Weng, J. S., Naimullah, M., Hsiao, P. Y., Tseng, C. T., Lan, K. W., & Chuang, C. C. (2021). Distribution and Catch Rate Characteristics of Narrow-Barred Spanish Mackerel (Scomberomorus commerson) in Relation to Oceanographic Factors in the Waters Around Taiwan. Frontiers in Marine Science, 8. Chin, C. P., Su, K. Y., & Liu, K. M. (2023). Assessing the Fishing Impact on the Marine Ecosystem of Guishan Island in the Northeastern Waters of Taiwan Using Ecopath and Ecosim. Journal of Marine Science and Engineering, 11(12). Chung, N. C., Miasojedow, B., Startek, M., & Gambin, A. (2019). Jaccard/Tanimoto similarity test and estimation methods for biological presence-absence data. BMC Bioinformatics, 20(Suppl 15), 644. Detmer, T. M., McCutchan, J. H., & Lewis, W. M. (2016). Predator driven changes in prey size distribution stabilize secondary production in lacustrine food webs. Limnology and Oceanography, 62(2), 592-605. Dorn, N. J., Mittelbach, G. G., & Kellogg, W. K. (1999). More than predator and prey : A review of interactions between fish and crayfish. Vie et Milieu / Life & Environment, 229-237. Elton, C., & Nicholson, M. (1942). The Ten-Year Cycle in Numbers of the Lynx in Canada. Journal of Animal Ecology, 11(2), 215-244. Faust, K., & Raes, J. (2012). Microbial interactions: from networks to models. Nature Reviews Microbiology, 10(8), 538-550. Fennie, H. W., Seary, R., Muhling, B. A., Bograd, S. J., Brodie, S., Cimino, M. A., Hazen, E. L., Jacox, M. G., McHuron, E. A., Melin, S., Santora, J. A., Suca, J. J., Thayer, J. A., Thompson, A. R., Warzybok, P., & Tommasi, D. (2023). An anchovy ecosystem indicator of marine predator foraging and reproduction. Proceedings of the Royal Society B-Biological Sciences, 290(1992), 20222326. Fischer, S. H., De Oliveira, J. A. A., Mumford, J. D., & Kell, L. T. (2022). Risk equivalence in data‐limited and data‐rich fisheries management: An example based on the ICES advice framework. Fish and Fisheries, 24(2), 231-247. Fokkema, W., van der Jeugd, H. P., Lameris, T. K., Dokter, A. M., Ebbinge, B. S., de Roos, A. M., Nolet, B. A., Piersma, T., & Olff, H. (2020). Ontogenetic niche shifts as a driver of seasonal migration. Oecologia, 193(2), 285-297. Fuhrman, J. A., Cram, J. A., & Needham, D. M. (2015). Marine microbial community dynamics and their ecological interpretation. Nature Reviews Microbiology, 13(3), 133-146. Fuji, T., Nakayama, S. I., Hashimoto, M., Miyamoto, H., Kamimura, Y., Furuichi, S., Oshima, K., & Suyama, S. (2023). Biological interactions potentially alter the large-scale distribution pattern of the small pelagic fish, Pacific saury Cololabis saira. Marine Ecology Progress Series, 704, 99-117. Fujita, R. (2021). The assessment and management of data limited fisheries: Future directions. Marine Policy, 133. Goetsch, C., Gulka, J., Friedland, K. D., Winship, A. J., Clerc, J., Gilbert, A., Goyert, H. F., Stenhouse, I. J., Williams, K. A., Willmott, J. R., Rekdahl, M. L., Rosenbaum, H. C., & Adams, E. M. (2023). Surface and subsurface oceanographic features drive forage fish distributions and aggregations: Implications for prey availability to top predators in the US Northeast Shelf ecosystem. Ecology and Evolution, 13(7), e10226. Gulka, J., Berlin, A. M., Friedland, K. D., Gilbert, A. T., Goetsch, C., Montevecchi, W. A., Perry, M., Stenhouse, I. J., Williams, K. A., & Adams, E. M. (2023). Assessing individual movement, habitat use, and behavior of non-breeding marine birds in relation to prey availability in the US Atlantic. Marine Ecology Progress Series, 711, 77-99. Hamza, F., Valsala, V., & Varikoden, H. (2022). The puzzle of the anchovy–sardine inverse fishery at the south‐eastern coast of the Arabian Sea and climate variability. Fish and Fisheries, 23(5), 1025-1038. Hsieh, C. H., Chen, C. S., Chiu, T. S., Lee, K. T., Shieh, F. J., Pan, J. Y., & Lee, M. A. (2009). Time series analyses reveal transient relationships between abundance of larval anchovy and environmental variables in the coastal waters southwest of Taiwan. Fisheries Oceanography, 18(2), 102-117. Hunsicker, M. E., Ciannelli, L., Bailey, K. M., Buckel, J. A., Wilson White, J., Link, J. S., Essington, T. E., Gaichas, S., Anderson, T. W., Brodeur, R. D., Chan, K. S., Chen, K., Englund, G., Frank, K. T., Freitas, V., Hixon, M. A., Hurst, T., Johnson, D. W., Kitchell, J. F.,…Zador, S. (2011). Functional responses and scaling in predator-prey interactions of marine fishes: contemporary issues and emerging concepts. Ecology Letters, 14(12), 1288-1299. Kawase, T., Kyogoku, D., Kawatsu, K., Katayama, N., Miki, T., & Kondoh, M. (2023). Time series analysis showing how different environmental conditions affect the interspecific interactions of Callosobruchus maculatus and Callosobruchus chinensis. Population Ecology, 66(1), 6-21. Kim, J. W., Rooper, C. N., Nishijima, S., Oshima, K., Day, R., & Zavolokin, A. (2024). Effects of Kuroshio Current Variability and Pacific Decadal Oscillation on Recent Decline in Chub Mackerel (Scomber japonicus) Catch in the Northwestern Pacific in the 2020s. North Pacific Fisheries Commission. Koehn, L. E., Essington, T. E., Marshall, K. N., Sydeman, W. J., Szoboszlai, A. I., Thayer, J. A., & Anderson, E. (2017). Trade-offs between forage fish fisheries and their predators in the California Current. ICES Journal of Marine Science, 74(9), 2448-2458. Lee, M. A., Huang, W. P., Shen, Y. L., Weng, J. S., Semedi, B., Wang, Y. C., & Chan, J. W. (2021). Long-Term Observations of Interannual and Decadal Variation of Sea Surface Temperature in the Taiwan Strait. Journal of Marine Science and Technology, 29(4). Lee, M. A., Mondal, S., Teng, S. Y., Nguyen, M. L., Lin, P., Wu, J. H., & Mondal, B. K. (2023). Fishery-based adaption to climate change: the case of migratory species flathead grey mullet (Mugil cephalus L.) in Taiwan Strait, Northwestern Pacific. PeerJ, 11, e15788. Lin, Y. J., Lai, C. C., Chen, H. S., Chen, T. C., Chen, K. S., Hanafi, N., Meng, P. J., Fang, Y. C., Chen, C. Y., Yen, H. M., & Chen, M. H. (2025). Spatial patterns of essential fish habitats in the western Taiwan coast. Estuarine, Coastal and Shelf Science, 317. Liu, G., Sun, P., Gao, J., Zimmermann, F., Tian, Y., & Heino, M. (2024). Pelagic and demersal fish population rebuilding in response to fisheries-induced evolution in exploited China Seas. Ecological Indicators, 168. Lynam, C. P., Llope, M., Mollmann, C., Helaouet, P., Bayliss-Brown, G. A., & Stenseth, N. C. (2017). Interaction between top-down and bottom-up control in marine food webs. Proceedings of the National Academy of Sciences of the United States of America, 114(8), 1952-1957. Montanari, A., Rosso, R., & Taqqu, M. S. (1997). Fractionally differenced ARIMA models applied to hydrologic time series: Identification, estimation, and simulation. Water Resources Research, 33(5), 1035-1044. Moraes, L. E., Paes, E., Garcia, A., Möller, O., & Vieira, J. (2012). Delayed response of fish abundance to environmental changes: a novel multivariate time-lag approach. Marine Ecology Progress Series, 456, 159-168. Nazir, A., Lin, T. H., Kuo, T. H., Shirai, K., Wang, P. L., & Shiao, J. C. (2024). Seasonal distribution and population genetic structure of Psenopsis anomala (Japanese butterfish) inferred from otolith oxygen isotope ratios and mitochondrial DNA. Estuarine, Coastal and Shelf Science, 309. Pandey, R. S., & Liou, Y. A. (2022). Sea surface temperature (SST) and SST anomaly (SSTA) datasets over the last four decades (1977-2016) during typhoon season (May to November) in the entire Global Ocean, North Pacific Ocean, Philippine Sea, South China sea, and Eastern China Sea. Data Brief, 45, 108646. Pearson, K. (1909). Determination of the Coefficient of Correlation. Science, 30, 23-25. Probst, W. N., Stelzenmüller, V., & Fock, H. O. (2012). Using cross-correlations to assess the relationship between time-lagged pressure and state indicators: an exemplary analysis of North Sea fish population indicators. ICES Journal of Marine Science, 69(4), 670-681. Razavi, S., & Vogel, R. (2018). Prewhitening of hydroclimatic time series? Implications for inferred change and variability across time scales. Journal of Hydrology, 557, 109-115. Ren, J., Liu, Q., Ma, Y., Ji, Y., Xu, B., Xue, Y., & Zhang, C. (2025). Spatio-Temporal Distribution of Four Trophically Dependent Fishery Species in the Northern China Seas Under Climate Change. Biology (Basel), 14(2). Scharf, F. S., Juanes, F., & Rountree, R. A. (2000). Predator size - prey size relationships of marine fish predators: interspecific variation and effects of ontogeny and body size on trophic-niche breadth. Marine Ecology Progress Series, 208, 229–248. Sinnickson, D., Harris, H. E., & Chagaris, D. (2023). Assessing Energetic Pathways and Time Lags in Estuarine Food Webs. Ecosystems, 26(7), 1468-1488. Stone, L., & Roberts, A. (1990). The checkerboard score and species distributions. Oecologia, 85, 74-79. Sydeman, W. J., Dedman, S., Garcı´a-Reyes, M., Thompson, S. A., Thayer, J. A., Bakun, A., & MacCall, A. D. (2020). Sixty-five years of northern anchovy population studies in the southern California Current: a review and suggestion for sensible management. ICES Journal of Marine Science, 77(2), 486-499. Takasuka, A., Oozeki, Y., & Aoki, I. (2007). Optimal growth temperature hypothesis: Why do anchovy flourish and sardine collapse or vice versa under the same ocean regime? Canadian Journal of Fisheries and Aquatic Sciences, 64(5), 768-776. Tsai, C. F., Chen, P. Y., Chen, C. P., Lee, M. A., Shiah, G. Y., & Lee, K. T. (1997). Fluctuation in abundance of larval anchovy and environmental conditions in coastal waters off south-western Taiwan as associated with the El NinÄo±Southern Oscillation. Fisheries Oceanography, 6(4), 238-249. Tu, C. Y., Tseng, Y. H., Chiu, T. S., Shen, M. L., & Hsieh, C. H. (2012). Using coupled fish behavior–hydrodynamic model to investigate spawning migration of Japanese anchovy, Engraulis japonicus, from the East China Sea to Taiwan. Fisheries Oceanography, 21(4), 255-268. Tzeng, W. N., Wang, Y. T., & Chern, Y. T. (1997). Species Composition and Distribution of Fish Larvae in Yenliao Bay, Northeastern Taiwan. Zoological Studies, 36(2), 146-158. Veech, J. A., & Peres‐Neto, P. (2012). A probabilistic model for analysing species co‐occurrence. Global Ecology and Biogeography, 22(2), 252-260. Wu, Y. L., Lim, I. C. L., Li, L., Chen, L. C., Hsiao, P. Y., Lee, W. Y., & Lan, K. W. (2024). The evolution of resource management in Taiwanese fisheries: coastal and offshore perspectives. PeerJ, 12, e18434. Zhang, J. M., Chen, Y. F., Zhou, X. X., Huang, J. X., Dong, X. H., Zhu, S. L., & Shen, Y. J. (2025). Fish Community Diversity and Spatiotemporal Dynamics in the Downstream of the Fujiang River Based on Environmental DNA. Fishes, 10(2). 丘臺生. (1999). 海洋生物本土性教材(二)台灣的仔稚魚 國立海洋生物博物館籌備處. 江偉全, 林憲忠, 張綦璿, 蔡富元, & 許紅虹. (2020). 臺灣東部海域黑皮旗魚移動與行為研究. 水產研究, 12. 何珈欣, 賴繼昌, 黃建智, & 翁進興. (2021). 臺灣南部海域日本帶魚攝食初步研究探討. 水產研究, 75, 6-9. 吳春基, 林俊辰, & 蘇偉成. (2006). 台灣東部海域產鬼頭刀之食性研究. 水產研究, 14(1), 13-27. 邵廣昭. (1997). 臺灣魚類資料庫 網路電子版 http://fishdb.sinica.edu.tw 陳宗雄, & 簡春潭. (1982). 台灣沿岸魩鱙漁業資源調查研究 魩、鱙與鯖、鰺之關係. Bulletin of Taiwan Fisheries Research, 34. 地方主管機關訂定魩鱙漁業管理規範原則, (2025). 農業部. 漁業署. (2014). 沿近海重要漁業資源管理與利用之調查研究. 行政院農業委員會 漁業署. (2015). 臺灣常見經濟性水產動植物圖鑑. 漁業署. (2024). 漁業調查統計手冊. 蔡政南. (2014). 台灣東部海域雨傘旗魚之營養階層結構與攝食生態研究 國立臺灣大學. 賴繼昌, 黃星翰, 何珈欣, 黃建智, & 吳龍靜. (2015). 臺灣西南海域水文環境變動對大棘大眼鯛漁況之影響. 水產研究, 23(2), 15-25. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99532 | - |
| dc.description.abstract | 海洋生態系中,生物間交互關係難以直接觀察,過往研究常透過出現-不出現資料與豐度資料推測物種間關聯。物種共同出現(Co-occurrence)與物種間相似之豐度趨勢可能反映互利、掠食或具相似環境偏好等關係,而物種相互迴避(Co-exclusion)與物種間相反之豐度趨勢則可能代表競爭、躲避掠食者行為或具相異之環境偏好。魩鱙作為鯷鯡科仔稚魚,是臺灣沿近海重要經濟魚類,也是多種海洋魚類的獵食對象,尤見常見經濟性成魚。本研究探討魩鱙與12項經濟魚類的時空關聯性,以判斷潛在的生物交互作用。資料使用1997至2020年漁業年報與2009至2020年魩鱙卸魚聲明,涵蓋主要捕撈魩鱙的9個縣市,將資料轉換為出現-不出現,建立Jaccard相似度(Jaccard similarity)共現性網絡與機率模型(Probabilistic model)共現性網絡評估魚類間共現機率;除魩鱙外之12項魚類皆使用漁業年報進行產量除以漁船數計算單位努力量(Catch per unit effort,簡稱CPUE),惟漁業年報於2009年後缺少魩鱙漁船數資料,因此將根據資料來源分為第一期(1997至2008年)與第二期(2009至2020年),單位努力量經標準化後作為魚類相對豐度指標。後續分析進一步建立魚類之間的Pearson相關性(Pearson correlation)網絡探討其空間相關性,並套用時間序列分析檢視魩鱙與其他魚類在不同時間差下之豐度相關性。結果顯示,整體魚類產量逐年下降,桃園市、新竹縣市與台中市以底棲魚類產量最多,新北市、高雄市、屏東市、宜蘭縣與花蓮縣則以大型掠食性魚類產量最高;Jaccard相似度與機率模型共現性網絡未呈現顯著之共現關係,但在Pearson相關性網絡中,第一期之魩鱙與底棲魚類之空間相關性較高,第二期則與大型掠食性魚類有較強之空間相關性;時間序列分析中,第一期之魩鱙與多數底棲魚類(石首魚科、合齒魚科、大棘大眼鯛與刺鯧)、小型大洋性魚類(鯔科)與1項大型掠食性魚類(鯊魚類)在同一年間具有相關性;第二期則與2項底棲魚類(鯛科與石首魚科)、小型大洋性魚類(鯔科)與1項大型掠食性魚類(鯊魚類)有具時間差(一年以上)之相關性,並與2項底棲魚類(大棘大眼鯛及刺鯧)在同一年間具有相關性。綜合上述結果,魩鱙與沿近海經濟魚類之關係隨時空而有所異,可能因為生物交互作用、海洋環境或資料來源不同等因素所影響。本研究對魩鱙與其他經濟魚類之潛在互動關係進行初步探討,有助於為臺灣沿海生態系帶來進一步之了解。 | zh_TW |
| dc.description.abstract | In marine ecosystems, direct observations of biological interactions are challenging. Therefore, presence-absence and abundance data are often used to infer potential interspecific relationships. Co-occurrence and similar abundance trends between species may reflect mutualism, predation, similar environmental preferences, or niche overlap. In contrast, co-exclusion and opposite abundance trends may indicate competition, predator avoidance, or difference environmental preferences. As larval fish of Engraulidae and Clupeidae, engraulid serve not only as prey for marine predators but also as an important fishery resource in Taiwan. This research aimed to investigate the spatiotemporal relationships between engraulid and 12 commercial fishes to see potential ecological interactions. We used production and fish boat number data from fishery report in 1997-2020 and engraulid landing report in 2009-2020, covering 9 districts with consistent engraulid fishing. The data were converted into presence-absence to construct Jaccard similarity co-occurrence networks and probabilistic model co-occurrence networks to assess co-occurrence probabilities. Catch per unit effort (CPUE) was calculated for the 12 fish species (excluding engraulid) through dividing annual catch by the number of boat number from fisheries report. Since boat data for engraulid were not available after 2009, the analyses with engraulid CPUE were divided into two periods: period 1 (1997-2008) and period 2 (2009-2020). Standardized CPUE was used as a proxy for relative abundance. Pearson correlation networks were used to explore spatial correlations, while time series analysis was applied to examine abundance correlations at different time lags. Results showed an overall decline in total fish production over the years. Taoyuan City, Hsinchu County and City, and Taichung City had higher productions of demersal fishes, while New Taipei City, Kaohsiung City, Pingtung County, Ilan County, and Hualien County had greater productions of large predatory fishes. Neither Jaccard nor probabilistic co-occurrence networks showed significant co-occurrence patterns. However, in the Pearson correlation networks, engraulid exhibited stronger spatial correlations with demersal fishes in period 1, and stronger spatial correlations with large predatory fishes in period 2. Time series analysis indicated that in period 1, engraulid had correlations with 4 demersal fishes (Sciaenidae, Synodontidae, Priacanthus macracanthus, and Psenopsis anomala), 1 small pelagic fish (Mugilidae) and 1 large predatory fish (Shark) in the same year. In period 2, lagged correlations (more than 1 year) emerged with 2 demersal fishes (Sparidae and Sciaenidae), 1 small pelagic fish (Mugilidae), and 1 large predatory fish (Shark). Correlation in the same year were observed with 2 demersal fishes (Priacanthus macracanthus and Psenopsis anomala). In summary, the spatiotemporal relationships between engraulid and other commercial fishes varied across time and districts, potentially driven by ecological interactions, environmental conditions, or fishing activities. This study provides insights into potential interactions between engraulid and other offshore commercial fishes, contributing to a better understanding of Taiwan’s coastal ecosystems. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:34:46Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:34:46Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
致謝 i 摘要 ii Abstract iv 目次 vi 圖次 viii 表次 ix 圖附錄 x 一、前言 1 1.1 生物交互關係 1 1.2 餌料魚生態特性 2 1.3 魩鱙生態特性與生物交互關係 2 1.4 常用於判別生物交互關係之分析 3 1.5 研究動機 5 1.6 研究目的 6 二、材料與方法 7 2.1 漁業資料 7 2.1.1 漁業資料處理 8 2.1.2 漁業資料轉換 9 2.1.2.1 出現-不出現資料 10 2.1.2.2 豐度指標 10 2.2 實驗組別 11 2.3 統計分析 13 2.3.1 共現性網絡分析 13 2.3.1.1 Jaccard相似度 13 2.3.1.2 機率模型 14 2.3.1.3 Pearson相關性 14 2.3.2 時間序列分析 15 三、結果 17 3.1 魚類產量趨勢 17 3.2 魚類豐度指標趨勢 18 3.3 魚類之空間關係 19 3.4 魚類之時間差關係 21 四、討論 24 4.1 產量與豐度隨時空之變化 24 4.2 魚類間潛在生態交互關係 25 4.2.1 第一期之時空相關性 25 4.2.2 第二期之時空相關性 26 4.2.3 綜合全年之時空相關性 26 4.3 生物交互關係判定之挑戰 28 4.4 漁業資料之限制 29 4.5 其他限制因素 30 4.5.1 魚類年齡結構 30 4.5.2 魚種合併之影響 30 五、結論與建議 32 參考文獻 33 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 掠食者-獵物關係 | zh_TW |
| dc.subject | 生物交互關係 | zh_TW |
| dc.subject | 時間差分析 | zh_TW |
| dc.subject | 共現性網絡分析 | zh_TW |
| dc.subject | 魩鱙 | zh_TW |
| dc.subject | Engraulid | en |
| dc.subject | Co-occurrence network | en |
| dc.subject | Time series analysis | en |
| dc.subject | Predator-prey interaction | en |
| dc.subject | Biological interaction | en |
| dc.title | 臺灣魩鱙與沿近海經濟魚類之時空相關性分析 | zh_TW |
| dc.title | Spatio-temporal relationships between engraulid and offshore commercial fishes in Taiwan | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 丘臺生;邵廣昭;許建宗;陳仲吉 | zh_TW |
| dc.contributor.oralexamcommittee | Tai-Sheng Chiu;Kwang-Tsao Shao;Chien-Chung Hsu;Chung-Chi Chen | en |
| dc.subject.keyword | 生物交互關係,掠食者-獵物關係,魩鱙,共現性網絡分析,時間差分析, | zh_TW |
| dc.subject.keyword | Biological interaction,Predator-prey interaction,Engraulid,Co-occurrence network,Time series analysis, | en |
| dc.relation.page | 193 | - |
| dc.identifier.doi | 10.6342/NTU202501959 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-07-21 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 漁業科學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| Appears in Collections: | 漁業科學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf Restricted Access | 13.12 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
