Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99528Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 蘇忠楨 | zh_TW |
| dc.contributor.advisor | Jung-Jeng Su | en |
| dc.contributor.author | 歐陽珮瑄 | zh_TW |
| dc.contributor.author | Pei-Hsuan Ou Yang | en |
| dc.date.accessioned | 2025-09-10T16:34:03Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-23 | - |
| dc.identifier.citation | Adhikari, B. B., M. Chae and D. C. Bressler. 2018. Utilization of Slaughterhouse Waste in Value-Added Applications: Recent Advances in the Development of Wood Adhesives. Polym. 10(2):176. doi:10.3390/polym10020176
Adimasu, Y., T. Geremew, A. Z. Chernet and F. B. Lema. 2021. Isolation and identification of protease‐producing bacteria from sludge and sediment soil around Adama, Ethiopia. Indones. J. Biotechnol. 26(4):159. doi:10.22146/ijbiotech.63987 Ahn, W., J. H. Lee, S. R. Kim, J. Lee and E. J. Lee. 2021. Designed protein- and peptide-based hydrogels for biomedical sciences. J. Mater. Chem. B 9(410):1919–1940. doi:10.1039/D0TB02604B Al-Blooshi, S. Y., M. A. A. Latif, N. K. Sabaneh, M. Mgaogao and A. Hossain. 2021. Development of a novel selective medium for culture of Gram-negative bacteria. BMC Res. Notes. 14(1):211. doi:10.1186/s13104-021-05628-2 Al-Mohammedawi, H. H. and H. Znad. 2020. Impact of metal ions and EDTA on photofermentative hydrogen production by Rhodobacter sphaeroides using a mixture of pre-treated brewery and restaurant effluents. Biomass Bioenergy. 134:105482. doi:10.1016/j.biombioe.2020.105482 Ali, E. A., A. A. Nada and M. Al-Moghazy. 2021. Self-stick membrane based on grafted gum Arabic as active food packaging for cheese using cinnamon extract. Int. J. Biol. Macromol. 189:114–123. doi: 10.1016/j.ijbiomac.2021.08.071 Armağan, O. G., B. Kayaoglu, H. Karakaş and S. Guner. 2014. Adhesion strength behaviour of plasma pre-treated and laminated polypropylene nonwoven fabrics using acrylic and polyurethane-based adhesives. J. Ind. Text. 43(3):396–414. doi:10.1177/1528083712458303 Arunprasert, K., C. Pornpitchanarong, T. Rojanarata, T. Ngawhirunpat, P. Opanasopit and P. Patrojanasophon. 2022. Bioinspired ketoprofen-incorporated polyvinylpyrrolidone/polyallylamine/ polydopamine hydrophilic pressure-sensitive adhesives patches with improved adhesive performance for transdermal drug delivery. Eur. J. Pharm. Biopharm. 181:207–217. doi:10.1016/j.ejpb.2022.11.007 Baindara, P. and B. Aslam. 2023. Editorial: Bacillus spp. - Transmission, pathogenesis, host-pathogen interaction, prevention and treatment. Front. Microbiol. 14:1307723. doi:10.3389/fmicb.2023.1307723 Balkrishna, A., S. Banerjee, S. Ghosh, D. Chauhan, I. Kaushik, V. Arya and S. K. Singh. 2024. Reuse of sewage sludge as organic agricultural products: an efficient technology-based initiative. Appl. Environ. Soil Sci. doi:10.1155/2024/1433973 Baweja, M., R. Tiwari, P. K. Singh, L. Nain and P. Shukla. 2016. An alkaline protease from Bacillus pumilus MP 27: functional analysis of its binding model toward its applications as detergent additive. Front. Microbiol. 7:1195. doi:10.3389/fmicb.2016.01195 Bello, I., A. Adeniyi, T. Mukaila and A. Hammed. 2023. Optimization of soybean protein extraction with ammonium hydroxide (NH4OH) using response surface methodology. Foods. 12(7):1515. doi:10.3390/foods12071515 Bezawada, J., S. Yan, R. P. John, R. D. Tyagi and R. Y. Surampalli. 2011. Recovery of Bacillus licheniformis alkaline protease from supernatant of fermented wastewater sludge using ultrafiltration and its characterization. Biotechnol. Res. Int. 2011:238549. doi:10.4061/2011/238549 Bilal, M., W. Si, F. Barbe, E. Chevaux, O. Sienkiewicz and X. Zhao. 2020. Effects of novel probiotic strains of Bacillus pumilus and Bacillus subtilis on production, gut health, and immunity of broiler chickens raised under suboptimal conditions. Poult. Sci. 100(3):100871. doi:10.1016/j.psj.2020.11.048 Bonnet, M., J. C. Lagier, D. Raoult and S. Khelaifia. 2019. Bacterial culture through selective and non-selective conditions: the evolution of culture media in clinical microbiology. New Microbes New Infect. 34:100622. doi:10.1016/j.nmni.2019.100622 Buyanov, A. L., I. V. Gofman and N. N. Saprykina. 2019. High-strength cellulose–polyacrylamide hydrogels: Mechanical behavior and structure depending on the type of cellulose. 100:103385. doi:10.1016/j.jmbbm.2019.103385 Cabral, J. and S. C. Moratti. 2011. Hydrogels for biomedical applications. Future Med. Chem. 3(15):1877–1888. doi:10.4155/fmc.11.134 Chen, H., J. Wu, X. Huang, X. Feng, H. Ji, L. Zhao and J. Wang. 2022. Overexpression of Bacillus circulans alkaline protease in Bacillus subtilis and its potential application for recovery of protein from soybean dregs. Front. Microbiol. 13:968439. doi:10.3389/fmicb.2022.968439 Chen, H., Q. Wu, X. Ren, X. Zhu and D. Fan. 2024. A fully bio-based adhesive with high bonding strength, low environmental impact, and competitive economic performance. Chem. Eng. J. 494:153198. doi:10.1016/j.cej.2024.153198 Comunian, T. A., A. Archut, L. G. Gomez-Mascaraque, A. Brodkorb and S. Drusch. 2022. The type of gum arabic affects interactions with soluble pea protein in complex coacervation. Carbohydr. Polym. 295:119851. doi:10.1016/j.carbpol.2022.119851 Contesini, F. J., R. R. Melo and H. H. Sato. 2018. An overview of Bacillus proteases: from production to application. Crit. Rev. Biotechnol. 38:321–334. doi:10.1080/07388551.2017.1354354 Dawson, P. J. and D. J. Hockley. 1992. Scanning electron microscopy of freeze-dried preparations: relationship of morphology to freeze-drying parameters. Dev. Biol. Stand. 74:185–192. Derikvand, M. and H. Pangh. 2016. A modified method for shear strength measurement of adhesive bonds in solid wood. BioResources 11(1):354–364. doi:10.15376/biores.11.1.354-364 Eslami, Z., S. Elkoun, M. Robert and K. Adjallé. 2023. A review of the effect of plasticizers on the physical and mechanical properties of alginate-based films. Mol. 28(18):6637. doi:10.3390/molecules28186637 Ferdosian, F., Z. Pan, G. Gao and B. Zhao. 2017. Bio-based adhesives and evaluation for wood composites application. Polym. 9(2):70. doi:10.3390/polym9020070 Gadhave, R. V.. 2023. Synthesis and characterization of starch-stabilized polyvinyl acetate-N-methylol acrylamide polymer-based wood adhesive. J. Indian Acad. Wood Sci. 20(1):51–61. doi:10.1007/s13196-023-00312-3 Gao, J. L., W. Weng, Y. X. Yan, Y. C. Wang and Q. K. Wang. 2020. Comparison of protein extraction methods from excess activated sludge. Chemosphere 249:8. doi:10.1016/j.chemosphere.2020.126107 Giliomee, J., L. C. du Toit, P. Kumar, B. Klumperman and Y. E. Choonara. 2021. Evaluation of composition effects on the physicochemical and biological properties of polypeptide-based hydrogels for potential application in wound healing. Polym. 13(11):1828. doi:10.3390/polym13111828 Hamdani, S., N. Asstiyani, D. Astriany, M. Singgih and S. Ibrahim. 2019. Isolation and identification of proteolytic bacteria from pig sludge and protease activity determination. Earth Environ. Sci. 230:012095. doi:10.1088/1755-1315/230/1/012095 Harmsel, J. T.. 2023. Relevant Mechanical Characterization Methods of Hybrid Composites Joints -A Review. Henze, M., M. van Loosdrecht, G. Ekama and D. Brdjanovic. 2008. Biological waste-water treatment:principles, modeling and design. Humaira, F. Deba, H. A. Shakir, M. Khan, M. Franco and M. Irfan. 2024. Optimization of protease production using Bacillus velezensis through response surface methodology and investigating its applications as stain remover. Syst. Microbiol. Biomanufacturing 4(1):1313–1322. doi:10.1007/s43393-024-00288-2 Ibrahim, A. S. S., A. A. Al-Salamah, Y. B. Elbadawi, M. A. El-Tayeb and S. S. S. Ibrahim. 2015. Production of extracellular alkaline protease by new halotolerant alkaliphilic Bacillus sp. NPST-AK15 isolated from hyper saline soda lakes. 18(3):236–243. doi:10.1016/j.ejbt.2015.04.001 Iwamoto, M.. 2003. Infrared spectroscopic study of the interactions of nylon-6 with water. J. Polym. Sci. Part B:Polym. Phys. 41(14):1722–1729. doi:10.1002/polb.10526 Jaishankar, J., P. Srivastava. 2017. Molecular basis of stationary phase survival and applications. Front. Microbiol. 8:2000. doi:10.3389/fmicb.2017.02000 Joo, H. S., C. G. Kumar, G. C. Park, K. T. Kim, S. W. Paik and C. S. Chang. 2002. Optimization of the production of an extracelluar alkaline protease from Bacillus horikoshii. Process Biochem. 38(2):155–159. doi:10.1016/S0032-9592(02)00061-4 Kabir, M. S., Y. H. Hsieh, S. Simpson, K. Kerdahi and I. M. Sulaiman. 2017. Evaluation of two standard and two chromogenic selective media for optimal growth and enumeration of isolates of 16 unique bacillus species. J. Food Prot. 80(6):952–962. doi:10.4315/0362-028X.JFP-16-441 Khan, M., L. A. Shah, T. Rehman, A. Khan, A. Iqbal, M. Ullah and Sultan Alam. 2020. Synthesis of physically cross-linked gum Arabic-based polymer hydrogels with enhanced mechanical, load bearing and shape memory behavior. Iran. Polym. J. 29(4):351–360. doi:10.1007/s13726-020-00801-z Králik, J.. 2014. Probabilistic nonlinear analysis of reinforced concrete bubbler tower structure failure. Civil Eng. Ser. 14(1):1–12. doi:10.2478/tvsb-2014-0002 Kumar, H., Y. N. Jang, K. Kim, J. Park, M. W. Jung and J.-E. Park. 2020. Compositional and functional characteristics of swine slurry microbes through 16S rRNA metagenomic sequencing approach. Animals 10(8):1372. doi:10.3390/ani10081372 Lebkowska, M., M. Zaleska-Radziwill and G. Tabernacka. 2017. Adhesives based on formaldehyde– environmental problems. J. Biotechnol. Comput. Biol. Bionanotechnol. 98(1):53–65. doi:10.5114/bta.2017.66617 Lee, S. and M. Munro. 1986. Evaluation of in-plane shear test methods for advanced composite materials by the decision analysis technique. Compos. 17(1):13–22. doi:10.1016/0010-4361(86)90729-9 Li, L., J. An, Z. Lin, L. Liu and Q. Liu. 2024. A rapid and robust organ repair polyacrylamide/alginate adhesive hydrogel mediated via interfacial adhesion-trigger molecules. Int. J. Biol. Macromol. 281(Pt 2):135681. doi:10.1016/j.ijbiomac.2024.135681 Li, L., S. Guan, L. Yang, X. Qin and W. Feng. 2018. Mechanical and adhesive properties of ploy(ethylene glycerol) diacrylate based hydrogels plasticized with PEG and glycerol. Chem. Res. Chin. Univ. 34:311–317. doi:10.1007/s40242-018-7337-5 Li, M., B. Xiao, X. Wang and J. Liu. 2014. Consequences of sludge composition on combustion performance derived from thermogravimetry analysis. Waste Manag. 35:141–147. doi:10.1016/j.wasman.2014.10.004 Li, X., Y. Fang, H. Zhang, K. Nishinari, S. Al-Assaf and G. O. Phillips. 2011. Rheological properties of gum arabic solution: From Newtonianism to thixotropy. Food Hydrocoll. 25(3):293–298. doi: 10.1016/j.foodhyd.2010.06.006 Li, Z., C. Yu, H. Kumar, X. He, Q. Lu, H. Bai, K. Kim and J. Hu. 2022. The effect of crosslinking degree of hydrogels on hydrogel adhesion. Gels 8(10):682. doi:10.3390/gels8100682 Liddell, H. P. H., L. M. Erickson, J. P. Tagert, A. Arcari, G. M. Smith and J. Martin. 2023. Mode mixity and fracture in pull-off adhesion tests. Eng. Fract. Mech. 281:109120. doi:10.1016/j.engfracmech.2023.109120 Liu, F., Y. Yan, J. Gao, L. Qin, Y. Zhang and J. Wan. 2023. Extraction and proteolysis of sludge protein using ultrasound synergistic enzymatic hydrolysis. doi:10.21203/rs.3.rs-2887824/v1 Liu, H., J. Wu, Y. Zhang, W. Wang, Y. Chen, Q. Lang, X. Gao, J. Song and X. Pei. 2021. Rheological properties of xanthan gum and polyacrylamide mixture in inorganic salt solutions. Int. J. Heat Technol. 39:1358–1364. doi:10.18280/ijht.390436 Lu, G., J. Zhao, S. Li, Y. Chen, C. Li, Y. Wang and D. Li. 2021. Incorporation of partially hydrolyzed polyacrylamide with zwitterionic units and poly(ethylene glycol) units toward enhanced tolerances to high salinity and high temperature. Front. Mater. 8:788746. doi:10.3389/fmats.2021.788746 Lu, J., B. Peng, M. Li, M. Lin and Z. Dong. 2010. Dispersion polymerization of anionic polyacrylamide in an aqueous salt medium. Pet. Sci. 7:410–415. doi:10.1007/s12182-010-0086-9 Luo, J., J. Luo, C. Yuan, W. Zhang, J. Li, Q. Gao and H. Chen. 2015. An eco-friendly wood adhesive from soy protein and lignin: performance properties. RSC Adv. 14(14):2831. doi:10.3390/polym14142831 Mahakhan, P., P. Apiso, K. Srisunthorn, K. Vichitphan, S. Vichitphan, S. Punyauppa-path and J. Sawaengkaew. 2022. Alkaline protease production from Bacillus gibsonii 6BS15-4 using dairy effluent and its characterization as a laundry detergent additive. J. Microbiol. Biotechnol. 33(2):195–202. doi:10.4014/jmb.2210.10007 Majeed, T., C. C Lee, W. J Orts, R. Tabassum, T. A. Shah, Y. A B. Jardan, T. M Dawoud and M. Bourhia. Characterization of a thermostable protease from Bacillus subtilis BSP strain. BMC Biotechnol. 24(1):49. doi:10.1186/s12896-024-00870-5 Maruthiah, T., P. Esakkiraj, G. Immanuel and A. Palavesam. 2014. Alkaline Serine Protease from Marine Bacillus flexus APCMST-RS2P: Purification and Characterization. Curr. Biotechnol. 3(3):238–243. doi:10.2174/2213529401666140528002909 Masi, C., K. R. Naveen Kumar, N. C. Gowtham Raja and R. Umesh. 2017. Immobilization of alkaline protease enzyme from Pseudomonas aeruginosa on surface-functionalized magnetic iron oxide nanoparticles. RJPBCS 8(16):153–161. Mekonnen, T. H., P. G. Mussone, P. Choi and D. C. Bressler. 2014. Adhesives from waste protein biomass for oriented strand board composites: development and performance. Macromol. Mater. Eng. 299(8):1003–1012. doi:10.1002/mame.201300402 Moore, C. M. and J. D. Helmann. 2005. Metal ion homeostasis in Bacillus subtilis. Curr. Opin. Microbiol. 8(2):188–195. doi:10.1016/j.mib.2005.02.007 Omar, H. A., N. I. Md Yusoff, M. Mubaraki and H. Ceylan. 2020. Effects of moisture damage on asphalt mixtures. J. Traffic Transp. Eng. 7(5):600–628. doi:10.1016/j.jtte.2020.07.001 Pandey, A., P. Selvakumar, C. Soccol and P. S. Nigam. 1999. Solid state fermentation for the production of industrial enzymes. Curr. Sci. 77(1):149–162. Parekh, V. J., V. K. Rathod and A. B. Pandit. 2011. Substrate Hydrolysis: Methods, Mechanism, and Industrial Applications of Substrate Hydrolysis. Sciences Comprehensive Biotechnology (Second Edition), pp. 103–118. Payne, J., D. Bellmer, R. Jadeja and P. Muriana. 2024. The potential of Bacillus species as probiotics in the food industry: a review. Foods 13(15):2444. doi:10.3390/foods13152444 Penkavova, V., A. Spalova, J. Tomas and J. Tihon. 2022. Polyacrylamide hydrogels prepared by varying water content during polymerization: Material characterization, reswelling ability, and aging resistance. Polym. Eng. Sci. 62(3):901–916. doi:10.1002/pen.25895 Pervaiz, M. and M. Sain. 2011. Protein extraction from secondary sludge of paper mill wastewater and its utilization as a wood adhesive. BioRes. 6(2):961–970. doi:10.15376/biores.6.2.961-970 Poggemann, L., R. Thelen, J. Meyer and A. Dittler. 2023. Experimental investigation on the change of pull-off force between bulk particulate material and an elastic polymeric filter fiber. J. Colloid Interface Sci. 641:903–915. doi:10.1016/j.jcis.2023.03.051 Qian, J., D. Chen, Y. Zhang, X. Gao, L. Xu, G. Guan and F. Wang. 2023. Ultrasound-assisted enzymatic protein hydrolysis in food processing: mechanism and parameters. Foods 12(21):4027. doi:10.3390/foods12214027 Qin, C., H. Wang, Y. Zhao, Y. Qi, N. Wu, S. Zhang and W. Xu. 2024. Recent advances of hydrogel in agriculture: Synthesis, mechanism, properties and applications. Eur. Polym. J. 219:113376. doi:10.1016/j.eurpolymj.2024.113376 Qin, L., Y. X. Yan, J. L. Gao and C. Y. Miao. 2018. Extraction of protein from excess sludge by enzymatic hydrolysis. Earth Environ. Sci. 191:012069. doi:10.1088/1755-1315/191/1/012069 Qudus, A. F. and L. R. Abiodun. 2023. Screening and isolation of protease-producing bacteria from wastewater samples in Obafemi Awolowo University (OAU) Campus, Ile-Ife, Nigeria. doi:10.1101/2023.07.09.548249 Qu, Y., Q. Guo, X. Huang, T. Li, M. Liang, J. Qin, Q. Gao, H. Liu and Q. Wang. 2022. Preparation and characterization of plant protein adhesives with strong bonding strength and water resistance. Foods 11(18):2839. doi:10.3390/foods11182839 Ramirez-Olea, H., B. Reyes-Ballesteros and R. A. Chavez-Santoscoy. 2022. Potential application of the probiotic Bacillus licheniformis as an adjuvant in the treatment of diseases in humans and animals: A systematic review. Front. Microbiol. 13:993451. doi:10.3389/fmicb.2022.993451 Rao, B. Q., G. Q. Wang and P. Xu. 2022. Recent advances in sludge dewatering and drying technology. Dry. Technol. 40:3049–3063. doi:10.1080/07373937.2022.2043355 Raydan, N. D. V., L. Leroyer, B. Charrier and E. Robles. 2021. Recent advances on the development of protein-based adhesives for wood composite materials-a review. Mol. 26(24):7617. doi:10.3390/molecules26247617 Raza, W., X. Yang, H. Wu, Q. Huang, Y. Xu and Q. Shen. 2010. Evaluation of metal ions (Zn2+, Fe3+ and Mg2+) effect on the production of fusaricidin-type antifungal compounds by Paenibacillus polymyxa SQR-21. Bioresour. Technol. 101(23): 9264–9271. doi:10.1016/j.biortech.2010.07.052 Rosa, A. J., E. M. da Silva and M. A. Tostes. 2015. Scanning electron microscopy analysis of microstructure of the adhesive interface between resin and dentin treated with papain gel. Indian J. Dent. Res. 26(1):77–81. doi:10.4103/0970-9290.156816 Reena, B. and M. U. Kumar. 2015. Studies on water absorbency of polyacrylamide hydrogels. J. Mater. Sci. Eng. B5(11-12):399–405. doi:10.17265/2161-6221/2015.11-12.001 Saha, R. N., E. M. Wissink, E. R. Bailey, M. Zhao, D. C. Fargo, J. Y. Hwang, K. R. Daigle, J. D. Fenn, K. Adelman and S. M. Dudek. 2011. Rapid activity-induced transcription of Arc and other IEGs relies on poised RNA polymerase II. Nat. Neurosci. 14(7):848–856. doi:10.1038/nn.2839 Said, K. A. M. and M. Afizal. 2015. Overview on the response surface methodology (RSM) in extraction processes. J. Appl. Sci. Process Eng. 2(1). doi:10.33736/jaspe.161.2015 Salazar-Montoya, J. A., H. A. Jiménez-Avalos and E. G. Ramos-Ramírez. 2012. Effects of gum arabic concentration and soy proteins on the flow and viscoelasticity of their dispersion. Int. J. Food Prop. 15(4):891–902. doi:10.1080/10942912.2010.506099 Sanchez, C., D. Renard, P. Robert, C. Schmitt and J. Lefebvre. 2002. Structure and rheological properties of acacia gum dispersions. Food Hydrocoll. 16(3):257-267. doi:10.1016/S0268-005X(01)00096-0 Shaker, K.. 2021. Mechanical characterization. Compos. Sci. Eng. 269–298. doi:10.1016/B978-0-12-821984-3.00009-7 Sheng, G.-P., H.-Q. Yu and X.-Y. Li. 2010. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnol. Adv. 28(6):882–894. doi:10.1016/j.biotechadv.2010.08.001 Shi, Y., X. Niu, H. Yang, M. Chu, N. Wang, H. Bao, F. Zhan, R. Yang and K. Lou. 2024. Optimization of the fermentation media and growth conditions of Bacillus velezensis BHZ-29 using a Plackett-Burman design experiment combined with response surface methodology. Front. Microbiol. 15:1355369. doi:10.3389/fmicb.2024.1355369 Shier, W. T. and S. K. Purwono. 1994. Extraction of single-cell protein from activated sewage-sludge - thermal solubilization of protein. Bioresour. Technol. 49:157–162. doi:10.1016/0960-8524(94)90079-5 Soares, L., I. Fraga, L. Paula, F. Arroyo, H. Ruthes, V. Aquino, J. Molina, T. Panzera, L. Branco, E. Chahud, A. Christoforo and F. Lahr. 2021. Influence of moisture content on physical and mechanical properties of Cedrelinga catenaeformis wood. BioResources 16(4):6758–6765. doi:10.15376/biores.16.4.6758-6765 Solanki, P., C. Putatunda, A. Kumar, R. Bhatia and A. Walia. 2021. Microbial proteases: ubiquitous enzymes with innumerable uses. 3 Biotech 11:428. doi:10.1007/s13205-021-02928-z Su, R. J., A. Hussain, J. Guo, J. Guan, Q. L. He, X. R. Yan, D. X. Li and Z. H. Guo. 2015. Animal feeds extracted from excess sludge by enzyme, acid and base hydrolysis processes. ACS Sustain. Chem. Eng. 3:2084–2091. doi:10.1021/acssuschemeng.5b00346 Tang, Y., X. Dai, B. Dong, Y. Guo and L. Dai. 2020. Humification in extracellular polymeric substances (EPS) dominates methane release and EPS reconstruction during the sludge stabilization of high-solid anaerobic digestion. Water Res. 175:115686. doi:10.1016/j.watres.2020.115686 Tarique, J., S. M. Sapuan and A. Khalina. 2021. Effect of glycerol plasticizer loading on the physical, mechanical, thermal, and barrier properties of arrowroot (Maranta arundinacea) starch biopolymers. Sci. Rep. 11:13900. doi:10.1038/s41598-021-93094-y Teo, L. S., C. Y. Chen and J. F. Kuo. 1997. Fourier transform infrared spectroscopy study on effects of temperature on hydrogen bonding in amine-containing polyurethanes and poly(urethane−urea)s. Macromolecules 30(6):1793–1799. doi:10.1021/ma961035f Wang, Z., Y. Chen, S. Chen, F. Chu, R. Zhang, Y. Wang and D. Fan. 2019. Preparation and characterization of a soy protein based bio-adhesive crosslinked by waterborne epoxy resin and polyacrylamide. RSC Adv. 9:35273-35279. doi:10.1039/C9RA05931H Wang, Z., Z. Li, Z. Gu, Y. Hong and L. Cheng. 2012. Preparation, characterization and properties of starch-based wood adhesive. Carbohydr. Polym. 88(2):699–706. doi:10.1016/j.carbpol.2012.01.023 Wregg, C., D. Rosenlechner, V. Zach, M. Eigenfeld, E. Stabentheiner, S. Ahyai and S. P. Schwaminger. 2024. FT-IR spectroscopy analysis of kidney stone variability in styria. Cryst. 14(10):854. doi:10.3390/cryst14100854 Xiao, Z., Q. Li, H. Liu, Q. Zhao, Y. Niu and D. Zhao. 2022. Adhesion mechanism and application progress of hydrogels. Eur. Polym. J. 173:111277. doi:10.1016/j.eurpolymj.2022.111277 Xu, Z. X., Y. Tan, X. Q. Ma, B. Li, Y. X. Chen, B. Zhang, S. M. Osman, J. Y. Luo and R. Luque. 2023. Valorization of sewage sludge for facile and green wood bio-adhesives production. Environ. Res. 239(Pt2):117421. doi:10.1016/j.envres.2023.117421 Yan, Y., S. Xu, H. Liu, X. Cui, J. Shao, P. Yao, J. Huang, X. Qiu and C. Huang. 2020. A multi-functional reversible hydrogel adhesive. Colloids Surf. A: Physicochem. Eng. Asp. 593:124622. doi:10.1016/j.colsurfa.2020.124622 Yang, C. K., H. E. Ewis, X. Zhang, C. D. Lu, H. J. Hu, Y. Pan, A. T. Abdelal and P. C. Tai. 2011. Nonclassical protein secretion by Bacillus subtilis in the stationary phase is not due to cell lysis. J. Bacteriol. 193(20):5607–5615. doi:10.1128/JB.05897-11 Yang, Q., K. Luo, X. Li, D. Wang, W. Zheng, G. Zeng and J. Liu. 2010. Enhanced efficiency of biological excess sludge hydrolysis under anaerobic digestion by additional enzymes. Bioresour. Technol. 101(9):2924–2930. doi:10.1016/j.biortech.2009.11.012 Yang, W., Y. Gong, Y. Wang, C. Wu, X. Zhang, J. Li and D. Wu. 2024. Design of gum Arabic/gelatin composite microcapsules and their cosmetic applications in encapsulating tea tree essential oil. RSC Adv. 14(7):4880–4889. doi:10.1039/d3ra08526k Yuan, Y., W. Lei and S. Ya-wei. 2021. Research advances in strategies for improving the activity of microbial-derived alkaline proteases. Biotechnol. Bull. 37(5):231–236. doi:10.13560/j.cnki.biotech.bull.1985.2020-1043 Zhang, J., Y. Hu, L. Zhang, J. Zhou and A. Lu. 2022. Transparent, ultra-stretching, tough, adhesive carboxyethyl chitin/polyacrylamide hydrogel toward high-performance soft electronics. Nano-Micro Lett. 15(1):8. doi:10.1007/s40820-022-00980-9 Zhang, R. Y., P. F. Wang, H. X. Li, Y. J. Yang and S. Q. Rao. 2023. Enhanced antibacterial efficiency and anti-hygroscopicity of gum arabic–ε-polylysine electrostatic complexes: effects of thermal induction. Polym. 15(23):4517. doi:10.3390/polym15234517 Zhang, Y., S. Hu, X. Yang, F. Jiang, C. Wu, J. Li and K. Liu. 2021. Performance and mechanism of polyacrylamide stabilizers in coal water slurry. Colloids Surf. A Physicochem. Eng. Asp. 630:127544. doi:10.1016/j.colsurfa.2021.127544 Zhao, Z., W. Zhang, W. Cai, S. Sun and Q. Yong. 2023. Preparation and investigation of a fully biobased adhesive composed of gum arabic and soy protein isolate for plywood. ACS Sustain. Chem. Eng. 11(44): 16005–16014. doi:10.1021/acssuschemeng.3c05313 Zhou, J., Y. H. Wang, J. Chu, L. Z. Luo, Y. P. Zhuang and S. L. Zhang. 2009. Optimization of cellulase mixture for efficient hydrolysis of steam-exploded corn stover by statistically designed experiments. Bioresour. Technol. 100(2):819–825. doi:10.1016/j.biortech.2009.11.012 Zhou, Z., J. Lei and Z. Liu. 2022. Effect of water content on physical adhesion of polyacrylamide hydrogels. Polym. 246:124730. doi:10.1016/j.polymer.2022.124730 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99528 | - |
| dc.description.abstract | 本研究旨在運用生物性處理技術達成養豬廢水污泥減量與資源化目標,透過篩選具蛋白酶活性的功能性菌株,以分解污泥中有機質並提取可溶性蛋白質(Soluble Sludge Protein, SSP),作為生物性接著劑之原料來源,進一步評估其膠體黏著性能與應用潛力。實驗初期自養豬廢水重力濃縮槽獲得污泥樣本,並成功篩選出具蛋白酶分泌能力之貝萊斯芽孢桿菌(Bacillus velezensis),應用於污泥水解以提高蛋白質提取效率。經條件優化後(培養溫度25 °C、使用超音波清洗機進行污泥震盪預處理及菌液與污泥液體積比為1:2),有效提升蛋白質提取率,並進一步採用中央合成設計法(Central Composite Design, CCD)優化菌株培養配方,獲得最佳條件為檸檬酸鈉2.313 g/L、氯化鎂2.884 g/L、氯化錳0.04 g/L,使蛋白質提取率自2.51%提升至2.69%。所得之SSP與阿拉伯膠(Gum Arabic, GA)及聚丙烯醯胺(Polyacrylamide, PAM)依照不同配方和比例混合製備成複合型生物性接著劑,進行拉脫力測試後發現,以35% GA組別表現最佳,其拉脫力強度達1.402 ± 0.231 MPa,顯著優於市售接著劑(1.1 ± 0.067 MPa)。儘管PAM添加可改善膠體之分散性與流動性,惟過量添加可能包覆官能基點位,抑制與基材間的有效鍵結,導致接著力下降。此外,當SSP添加比例過高,例如GA:(PAM + SSP) = 1:2~1:4時,黏著強度明顯下降至低於0.2 MPa。掃描式電子顯微鏡(SEM)觀察結果指出,高濃度GA可促進膠體內部鍵結強化,形成緻密立體結構網絡;反之,添加PAM與SSP比例過高則使結構趨於破碎和平坦,降低整體接著強度。傅立葉轉換紅外光譜(FTIR)分析顯示,在GA:(PAM + SSP) = 1:1配方中醯胺基含量最高(1.033 ± 0.037),推測此結果來自GA與PAM間之交互作用。然而,該組雖具較高官能基含量,卻未顯著提升拉脫力強度,顯示醯胺基含量與接著力間可能無明確線性關聯。另外,針對接著強度較低之配方,進一步於GA:(PAM + SSP) = 1:4 組別中分別添加10%與20%甘油,進行拉脫力與剪切力強度測試。雖拉脫力無明顯提升,但添加10%甘油者之剪切強度顯著提高至0.09 ± 0.01 MPa。應用於掛鉤背膠測試時,該配方可承重3 kg,並穩定維持至少一週,展現良好實用潛力。整體而言,本研究不僅成功開發以廢棄物資源化為基礎之環保型膠體材料,亦證實其於結構黏著領域之應用潛力,未來可持續優化其物化特性與結構穩定性,以替代傳統化學接著劑,兼顧環境永續、安全性與功能性,為發展綠色材料與循環經濟提供新方向。 | zh_TW |
| dc.description.abstract | This study aimed to achieve simultaneous sludge reduction and resource recovery from pig wastewater sludge through the application of biological treatment technologies. By isolating functional microbial strains with proteolytic activity, organic matter in the sludge was enzymatically hydrolyzed to extract sludge soluble protein (SSP), which was subsequently utilized as a bio-based raw material for adhesive development, in order to further evaluate its colloidal adhesion properties and application potential. Sludge samples were collected from a gravity thickener in a pig wastewater treatment system, from which Bacillus velezensis, a protease-secreting strain, was successfully isolated and employed for sludge hydrolysis. Optimization of hydrolysis conditions—including cultivation at 25 °C, ultrasonic pretreatment of the sludge, and a bacterial suspension-to-sludge volume ratio of 1:2—significantly enhanced protein extraction efficiency. Further refinement using central composite design (CCD) identified the optimal culture medium composition as 2.313 g/L sodium citrate, 2.884 g/L magnesium chloride, and 0.04 g/L manganese chloride, resulting in an increase in protein extraction efficiency from 2.51% to 2.69%. The extracted SSP was then combined with gum arabic (GA) and polyacrylamide (PAM) at various ratios to formulate composite bio-adhesives. Among all tested formulations, the one containing 35% GA exhibited the highest pull-off strength (1.402 ± 0.231 MPa), significantly exceeding that of a commercial adhesive (1.1 ± 0.067 MPa). Although PAM contributed to improved colloidal dispersion and flowability, its excessive addition likely led to the encapsulation of functional groups, thereby impeding effective bonding with the substrate and reducing overall adhesive performance. Similarly, increasing the proportion of SSP—particularly in GA:(PAM + SSP) ratios of 1:2 to 1:4—resulted in a notable decline in bonding strength (< 0.2 MPa). Morphological analysis via scanning electron microscopy (SEM) revealed that higher GA content promoted the formation of compact, three-dimensional network structures through enhanced internal cohesion. In contrast, excessive addition of PAM and SSP yielded flattened, fractured morphologies with weakened structural integrity. Fourier-transform infrared spectroscopy (FTIR) indicated the highest amide group intensity (1.033 ± 0.037) in the GA:(PAM + SSP) = 1:1 formulation, likely attributable to interactions between GA and PAM. However, this did not translate into a corresponding increase in adhesive strength, suggesting a non-linear or indirect relationship between amide content and mechanical performance. To enhance the properties of lower-strength formulations, glycerol was incorporated at 10% and 20% into the GA:(PAM + SSP) = 1:4 system. Although pull-off force remained largely unchanged, the addition of 10% glycerol significantly improved shear strength, reaching 0.09 ± 0.01 MPa. When applied in a hook-and-loop adhesion test, this formulation was able to sustain a 3 kg load for over one week, demonstrating strong practical applicability. In conclusion, this study successfully developed a sustainable, waste-derived bio-based adhesive with considerable potential for use in structural bonding applications. The findings highlight the viability of converting sludge-derived proteins into functional adhesive materials and underscore their promise as eco-friendly alternatives to conventional chemical adhesives, contributing meaningfully to the advancement of green materials and circular economy practices. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:34:03Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:34:03Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝誌 i
摘要 ii Abstract iv 目次 vii 圖次 xi 表次 xiii 第壹章、研究動機與目的 1 第貳章、文獻回顧 3 一、養豬廢水污泥之菌相分析與功能性菌種篩選 3 (一) 污泥 3 (二) 養豬廢水污泥中的菌種組成 4 (三) 養豬廢水污泥中產蛋白酶之菌種篩選 5 二、細菌蛋白酶於養豬廢水污泥水解條件之探討 7 (一) 水解 7 (二) 水解種類 8 (三) 酵素水解污泥之相關文獻探討 8 三、優化蛋白酶生產之細菌培養液中金屬離子添加條件之研究 19 (一) 細菌培養媒介 19 (二) 金屬離子於細菌蛋白酶生成與活性調控之作用機制 19 (三) 反應曲面法應用於細菌蛋白酶生產之培養條件優化 20 四、養豬廢水污泥提取之可溶性蛋白質於低毒性環保型生物接著劑之應用研究 25 (一) 接著劑之介紹 25 (二) 水凝膠(Hydrogel) 26 (三) 阿拉伯膠(Gum Arabic, GA) 27 (四) 聚丙烯醯胺(Polyacrylamide, PAM) 28 (五) 養豬廢水污泥提取之可溶性蛋白質應用於低毒性環保型生物接著劑之文獻探討 29 第參章、研究材料和方法 34 一、污泥 34 二、養豬廢水污泥中產蛋白酶菌株之篩選與特性分析 34 (一) 原料收集與處理 34 (二) 獨立菌落之篩選 34 (三) 純化之菌株之特性檢測 34 (四) 產蛋白酶細菌之篩選 35 (五) 細菌分泌之蛋白酶之分解能力檢測 35 (六) 菌種鑑定與目標菌之挑選 38 (七) 目標菌之生長曲線繪製 38 三、目標菌株水解養豬廢水污泥以提取可溶性蛋白之最適條件探討 39 (一) 原料收集與處理 39 (二) 蛋白質定量分析:BCA 蛋白定量法之標準曲線建立 39 (三) 蛋白質定量分析:20-mesh 養豬廢水污泥顆粒中總蛋白質含量測定 40 (四) 蛋白質定量分析:目標菌種菌液中總蛋白質含量測定 41 (五) 試驗設計 42 (六) 統計分析 43 (七) 養豬廢水污泥之可溶性蛋白質提取率計算 43 四、以中心合成設計法(Central Composite Design, CCD)探討金屬離子添加對菌液水解養豬廢水污泥中可溶性蛋白質提取率之影響 43 (一) 原料收集與處理 43 (二) 蛋白質定量- 20 mesh養豬廢水污泥顆粒 43 (三) 蛋白質定量-目標菌之種菌液 44 (四) 試驗設計 44 (五) 統計分析 45 五、以養豬廢水污泥提取之可溶性蛋白質作為環保型生物接著劑複合成分之研究 46 (一) 污泥蛋白接著劑之製作 46 (二) 膠體表面質地和結構觀察 47 (三) 官能基檢測 47 (四) 拉脫力測試 48 (五) 剪切力測試 49 (六) 統計分析 49 第肆章、結果與討論 50 一、菌種鑑定和生長曲線之繪製 50 二、Bacillus velezensis NTU-SPN4菌液水解養豬廢水污泥提取可溶性蛋白之水解操作參數優化研究 53 三、Bacillus velezensis NTU-SPN4菌液水解養豬廢水污泥提取可溶性蛋白之細菌培養條件優化研究 59 (一) 探討反應曲面法中CCD模型之因子交互作用對污泥蛋白質提取率之影響 59 (二) CCD模型優化與菌株最適培養條件之探討 67 四、養豬廢水污泥蛋白接著劑之膠體結構和官能基檢測、黏度及應用性能評估 71 (一) 膠體結構特性與流變行為之評估 71 (二) 膠體官能基檢測與流變行為之評估 75 (三) 膠體之拉脫力測定 78 (四) 不同甘油含量對組別8膠體黏附特性之影響評估 80 (五) 含10%甘油和20%甘油之組別8膠體於掛勾背膠應用之性能評估 83 (六) 研究之可行性和機能性評估 84 第伍章、結論與未來研究方向 85 第陸章、參考文獻 86 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 可溶性蛋白質 | zh_TW |
| dc.subject | 污泥減量與資源化 | zh_TW |
| dc.subject | 黏著性能 | zh_TW |
| dc.subject | 生物性接著劑 | zh_TW |
| dc.subject | 貝萊斯芽孢桿菌 | zh_TW |
| dc.subject | Bacillus velezensis | en |
| dc.subject | Bio-based adhesive | en |
| dc.subject | Adhesion properties | en |
| dc.subject | Soluble protein | en |
| dc.subject | Sludge reduction and resource recovery | en |
| dc.title | 養豬廢水污泥蛋白於低毒性接著材料應用之可行性與機能性研究 | zh_TW |
| dc.title | Evaluation of the feasibility and functional performance of pig wastewater sludge proteins in low-toxicity adhesive applications | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 劉志忠;陳志維;徐濟泰 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Chung Liu;Jr-Wei Chen;Jih-Tay Hsu | en |
| dc.subject.keyword | 污泥減量與資源化,可溶性蛋白質,貝萊斯芽孢桿菌,生物性接著劑,黏著性能, | zh_TW |
| dc.subject.keyword | Sludge reduction and resource recovery,Soluble protein,Bacillus velezensis,Bio-based adhesive,Adhesion properties, | en |
| dc.relation.page | 105 | - |
| dc.identifier.doi | 10.6342/NTU202502258 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-23 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 動物科學技術學系 | - |
| dc.date.embargo-lift | 2027-07-25 | - |
| Appears in Collections: | 動物科學技術學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf Restricted Access | 6.23 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
