Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99524Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 王弘毅 | zh_TW |
| dc.contributor.advisor | Hurng-Yi Wang | en |
| dc.contributor.author | 戴睿紘 | zh_TW |
| dc.contributor.author | Jui-Hung Tai | en |
| dc.date.accessioned | 2025-09-10T16:33:19Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-09 | - |
| dc.identifier.citation | 1. Session, A.M., Allopolyploid subgenome identification and implications for evolutionary analysis. Trends in Genetics, 2024. 40(7): p. 621-631.
2. Van de Peer, Y., S. Maere, and A. Meyer, The evolutionary significance of ancient genome duplications. Nature Reviews Genetics, 2009. 10(10): p. 725-732. 3. Crow, K.D. and G.P. Wagner, What Is the Role of Genome Duplication in the Evolution of Complexity and Diversity? Molecular Biology and Evolution, 2006. 23(5): p. 887-892. 4. Otto, S.P. and J. Whitton, Polyploid Incidence and Evolution. Annual Review of Genetics, 2000. 34(Volume 34, 2000): p. 401-437. 5. Rieseberg, L.H., Chromosomal rearrangements and speciation. Trends in Ecology & Evolution, 2001. 16(7): p. 351-358. 6. Navarro, A. and N.H. Barton, Chromosomal Speciation and Molecular Divergence--Accelerated Evolution in Rearranged Chromosomes. Science, 2003. 300(5617): p. 321-324. 7. Orr, H.A., Dobzhansky, Bateson, and the Genetics of Speciation. Genetics, 1996. 144(4): p. 1331-1335. 8. Worsham, M.L.D., et al., Geographic isolation facilitates the evolution of reproductive isolation and morphological divergence. Ecology and Evolution, 2017. 7(23): p. 10278-10288. 9. Nam, K., et al., Positive selection alone is sufficient for whole genome differentiation at the early stage of speciation process in the fall armyworm. BMC Evolutionary Biology, 2020. 20(1): p. 152. 10. Arai, R., A chromosome study on two cyprinid fishes, Acrossocheilus labiatus and Pseudorasbora pumila pumila, with notes on Eurasian cyprinids and their karyotypes. 1982. 11. Takai, A., Karyotype and Chromosomal distribution of C-band positive constitutive heterochromatin in Opsariichthys uncirostris (Cyprinidae, Pisces). 2019. 12. Wang, C.-F., et al., Systematics and phylogeography of the Taiwanese endemic minnow Candidia barbatus (Pisces: Cyprinidae) based on DNA sequence, allozymic, and morphological analyses. Zoological Journal of the Linnean Society, 2011. 161(3): p. 613-632. 13. Wang, H.-Y., et al., Influence of glaciation on divergence patterns of the endemic minnow, Zacco pachycephalus, in Taiwan. Molecular Ecology, 1999. 8(11): p. 1879-1888. 14. White., M.J.D., Speciation: Modes of Speciation (A Series of Books in Biology). Science. Vol. 200. 1978, Freeman, San Francisco: American Association for the Advancement of Science. 1375-1376. 15. Mackintosh, A., et al., Chromosome Fissions and Fusions Act as Barriers to Gene Flow between Brenthis Fritillary Butterflies. Molecular Biology and Evolution, 2023. 40(3): p. msad043. 16. Wood, T.E., et al., The frequency of polyploid speciation in vascular plants. Proceedings of the National Academy of Sciences, 2009. 106(33): p. 13875-13879. 17. Otto, S.P., The Evolutionary Consequences of Polyploidy. Cell, 2007. 131(3): p. 452-462. 18. Robertson, W.R.B., Chromosome studies. I. Taxonomic relationships shown in the chromosomes of tettigidae and acrididae: V-shaped chromosomes and their significance in acrididae, locustidae, and gryllidae: Chromosomes and variation. Journal of Morphology, 1916. 27(2): p. 179-331. 19. Balachandran, P., et al., Transposable element-mediated rearrangements are prevalent in human genomes. Nature Communications, 2022. 13(1): p. 7115. 20. Beck, C.R., et al., LINE-1 Elements in Structural Variation and Disease. Annual Review of Genomics and Human Genetics, 2011. 12(Volume 12, 2011): p. 187-215. 21. Melters, D.P., et al., Holocentric chromosomes: convergent evolution, meiotic adaptations, and genomic analysis. Chromosome Research, 2012. 20(5): p. 579-593. 22. Ruckman, S.N., et al., Chromosome number evolves at equal rates in holocentric and monocentric clades. PLOS Genetics, 2020. 16(10): p. e1009076. 23. Zhang, J., W.P. Pawlowski, and F. Han, Centromere Pairing in Early Meiotic Prophase Requires Active Centromeres and Precedes Installation of the Synaptonemal Complex in Maize. The Plant Cell, 2013. 25(10): p. 3900-3909. 24. Da Ines, O. and C.I. White, Centromere Associations in Meiotic Chromosome Pairing. Annual Review of Genetics, 2015. 49(Volume 49, 2015): p. 95-114. 25. Palladino, J., et al., Targeted De Novo Centromere Formation in Drosophila Reveals Plasticity and Maintenance Potential of CENP-A Chromatin. Developmental Cell, 2020. 52(3): p. 379-394.e7. 26. Poletto, A.B., et al., Chromosome differentiation patterns during cichlid fish evolution. BMC Genetics, 2010. 11(1): p. 50. 27. Todd, N.B., Karyotypic fissioning and Canid phylogeny. Journal of Theoretical Biology, 1970. 26(3): p. 445-480. 28. White, M.J.D., Animal Cytology and Evolution. 3rd Ed. 1973: Cambridge University Press. 29. Kolnicki, R.L., Kinetochore reproduction in animal evolution: Cell biological explanation of karyotypic fission theory. Proceedings of the National Academy of Sciences, 2000. 97(17): p. 9493-9497. 30. Godfrey, L.R. and J.C. Masters, Kinetochore reproduction theory may explain rapid chromosome evolution. Proc Natl Acad Sci U S A, 2000. 97(18): p. 9821-3. 31. Peng, X., et al., A new species of Opsariichthys (Teleostei, Cypriniformes, Xenocyprididae) from Southeast China. ZooKeys, 2024. 1214: p. 15-34. 32. Froese, R. and D. Pauly, FishBase 2000: Concepts, designs and data sources. 2000. 33. Lieberman-Aiden, E., et al., Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome. Science, 2009. 326(5950): p. 289-293. 34. Kolmogorov, M., et al., Assembly of long, error-prone reads using repeat graphs. Nature Biotechnology, 2019. 37(5): p. 540-546. 35. Laver, T., et al., Assessing the performance of the Oxford Nanopore Technologies MinION. Biomolecular Detection and Quantification, 2015. 3: p. 1-8. 36. Zimin, A.V. and S.L. Salzberg, The genome polishing tool POLCA makes fast and accurate corrections in genome assemblies. PLOS Computational Biology, 2020. 16(6): p. e1007981. 37. Durand, N.C., et al., Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. Cell Systems, 2016. 3(1): p. 95-98. 38. Dudchenko, O., et al., De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science, 2017. 356(6333): p. 92-95. 39. Durand, N.C., et al., Juicebox Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom. Cell Systems, 2016. 3(1): p. 99-101. 40. Marçais, G. and C. Kingsford, A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics, 2011. 27(6): p. 764-770. 41. Manni, M., et al., BUSCO: Assessing Genomic Data Quality and Beyond. Current Protocols, 2021. 1(12): p. e323. 42. Li, H., Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv, 2013. 1303. 43. Yu, T.-H., Chromosome-level genome assembly of Zacco platypus reveals insights into chromosomal evolution, in Institute of Ecology and Evolutionary Biology, College of Life Science. 2025, National Taiwan University. 44. Flynn, J.M., et al., RepeatModeler2 for automated genomic discovery of transposable element families. Proceedings of the National Academy of Sciences, 2020. 117(17): p. 9451-9457. 45. Xu, Z. and H. Wang, LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Research, 2007. 35(suppl_2): p. W265-W268. 46. Ou, S. and N. Jiang, LTR_FINDER_parallel: parallelization of LTR_FINDER enabling rapid identification of long terminal repeat retrotransposons. Mobile DNA, 2019. 10(1): p. 48. 47. Ou, S. and N. Jiang, LTR_retriever: A Highly Accurate and Sensitive Program for Identification of Long Terminal Repeat Retrotransposons Plant Physiology, 2018. 176(2): p. 1410-1422. 48. Shao, F., et al., FishTEDB: a collective database of transposable elements identified in the complete genomes of fish. Database, 2018. 2018: p. bax106. 49. Hubley, R., et al., The Dfam database of repetitive DNA families. Nucleic Acids Research, 2016. 44(D1): p. D81-D89. 50. Bao, W., K.K. Kojima, and O. Kohany, Repbase Update, a database of repetitive elements in eukaryotic genomes. Mobile DNA, 2015. 6(1): p. 11. 51. Tarailo-Graovac, M. and N. Chen, Using RepeatMasker to Identify Repetitive Elements in Genomic Sequences. Current Protocols in Bioinformatics, 2009. 25(1): p. 4.10.1-4.10.14. 52. Hoff, K.J., et al., Whole-Genome Annotation with BRAKER, in Gene Prediction: Methods and Protocols, M. Kollmar, Editor. 2019, Springer New York: New York, NY. p. 65-95. 53. Xu, X., et al., Chromosome-Level Assembly of the Chinese Hooksnout Carp (Opsariichthys bidens) Genome Using PacBio Sequencing and Hi-C Technology. Frontiers in Genetics, 2022. Volume 12 - 2021. 54. Gabriel, L., et al., TSEBRA: transcript selector for BRAKER. BMC Bioinformatics, 2021. 22(1): p. 566. 55. Kanehisa, M., et al., KEGG: biological systems database as a model of the real world. Nucleic Acids Research, 2025. 53(D1): p. D672-D677. 56. Jones, P., et al., InterProScan 5: genome-scale protein function classification. Bioinformatics, 2014. 30(9): p. 1236-1240. 57. Ashburner, M., et al., Gene Ontology: tool for the unification of biology. Nature Genetics, 2000. 25(1): p. 25-29. 58. Wang, Y., et al., MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research, 2012. 40(7): p. e49-e49. 59. Farrer, R.A., Synima: a Synteny imaging tool for annotated genome assemblies. BMC Bioinformatics, 2017. 18(1): p. 507. 60. Emms, D.M. and S. Kelly, OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biology, 2019. 20(1): p. 238. 61. Minh, B.Q., et al., IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Molecular Biology and Evolution, 2020. 37(5): p. 1530-1534. 62. Wang, J.-T., et al., Transcriptome analysis reveals the time of the fourth round of genome duplication in common carp (Cyprinus carpio). BMC Genomics, 2012. 13(1): p. 96. 63. Melters, D.P., et al., Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biology, 2013. 14(1): p. R10. 64. Ruby, J.G., P. Bellare, and J.L. DeRisi, PRICE: Software for the Targeted Assembly of Components of (Meta) Genomic Sequence Data. G3 Genes|Genomes|Genetics, 2013. 3(5): p. 865-880. 65. Larsson, A., AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics, 2014. 30(22): p. 3276-3278. 66. Goubert, C., et al., A beginner’s guide to manual curation of transposable elements. Mobile DNA, 2022. 13(1): p. 7. 67. Katoh, K. and D.M. Standley, MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molecular Biology and Evolution, 2013. 30(4): p. 772-780. 68. Rice, P., I. Longden, and A. Bleasby, EMBOSS: The European Molecular Biology Open Software Suite. Trends in Genetics, 2000. 16(6): p. 276-277. 69. Abramson, J., et al., Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature, 2024. 630(8016): p. 493-500. 70. Schrödinger, L. and W. DeLano, PyMOL. Retrieved from http://www.pymol.org/pymol. 2020. 71. Ma, G.-C., Systematics, population genetic structure and phylogeography of Zacco (Cypriniformes: Cyprinidae) in Taiwan, in Graduate Institute of Zoology. 2006, National Taiwan University. 72. Pritam, S. and S. Signor, Evolution of piRNA-guided defense against transposable elements. Trends in Genetics, 2024. 73. Teefy, B.B., et al., PIWI-piRNA pathway-mediated transposable element repression in Hydra somatic stem cells. Rna, 2020. 26(5): p. 550-563. 74. Miyoshi, T., et al., Structural basis for the recognition of guide RNA and target DNA heteroduplex by Argonaute. Nature Communications, 2016. 7(1): p. 11846. 75. Dang, L.-p., et al., Investigating structural impact of a valine to isoleucine substitution on anti-Müllerian hormone in silico and genetic association of the variant and AMH expression with egg production in chickens. Journal of Integrative Agriculture, 2020. 19(6): p. 1635-1643. 76. Ma, J.-B., K. Ye, and D.J. Patel, Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature, 2004. 429(6989): p. 318-322. 77. Glöckner, G. and A.J. Heidel, Centromere sequence and dynamics in Dictyostelium discoideum. Nucleic Acids Research, 2009. 37(6): p. 1809-1816. 78. Logsdon, G.A., et al., The variation and evolution of complete human centromeres. Nature, 2024. 629(8010): p. 136-145. 79. Suzuki, Y., E.W. Myers, and S. Morishita, Rapid and ongoing evolution of repetitive sequence structures in human centromeres. Science Advances, 2020. 6(50): p. eabd9230. 80. Phillips, R.B. and K.M. Reed, Localization of Repetitive DNAs to Zebrafish (Danio rerio) Chromosomes by Fluorescence in situ Hybridization (FISH). Chromosome Research, 2000. 8(1): p. 27-35. 81. Levan, A., K. Fredga, and A.A. Sandberg, Nomenclature for Centromeric Position on Chromosomes. Hereditas, 1964. 52(2): p. 201-220. 82. Laetsch, D.R., et al., Demographically explicit scans for barriers to gene flow using gIMble. PLOS Genetics, 2023. 19(10): p. e1010999. 83. Liu, D., et al. Chromosome-Level Assembly of Male Opsariichthys bidens Genome Provides Insights into the Regulation of the GnRH Signaling Pathway and Genome Evolution. Biology, 2022. 11, DOI: https://10.3390/biology11101500. 84. Kitanishi, S., et al., Phylogeography of Opsariichthys platypus in Japan based on mitochondrial DNA sequences. Ichthyological Research, 2016. 63(4): p. 506-518. 85. Jedlicka, P., et al., Nested plant LTR retrotransposons target specific regions of other elements, while all LTR retrotransposons often target palindromes and nucleosome-occupied regions: in silico study. Mobile DNA, 2019. 10(1): p. 50. 86. Houwing, S., et al., A Role for Piwi and piRNAs in Germ Cell Maintenance and Transposon Silencing in Zebrafish. Cell, 2007. 129(1): p. 69-82. 87. Tian, Y., et al., Structural basis for piRNA 2'-O-methylated 3'-end recognition by Piwi PAZ (Piwi/Argonaute/Zwille) domains. Proceedings of the National Academy of Sciences, 2011. 108(3): p. 903-910. 88. Niu, Y., et al., Karyotype and genome size of an endangered cavefish (Triplophysa rosa Chen & Yang, 2005). Journal of Applied Ichthyology, 2017. 33(1): p. 124-126. 89. Balzano, E. and S. Giunta Centromeres under Pressure: Evolutionary Innovation in Conflict with Conserved Function. Genes, 2020. 11, DOI: https://10.3390/genes11080912. 90. You, H., et al., Chromosome ends initiate homologous chromosome pairing during rice meiosis. Plant Physiology, 2024. 195(4): p. 2617-2634. 91. Tzeng, C.S., Distribution of the Freshwater Fishes of Taiwan. Journal of Taiwan Museum, 1986. 39(2): p. 127-146. 92. Chen, I.S., J.-H. Wu, and S.-P. Huang, The taxonomy and phylogeny of the cyprinid genus Opsariichthys Bleeker (Teleostei: Cyprinidae) from Taiwan, with description of a new species, in Chinese Fishes, D.L.G. Noakes, et al., Editors. 2010, Springer Netherlands: Dordrecht. p. 165-183. 93. Liao, T.-Y., et al., Phylogeography of the endangered species, Sinogastromyzon puliensis Liang (Cypriniformes: Balitoridae), in southwestern Taiwan based on mtDNA. Zoological Studies, 2008. 47: p. 383-392. 94. Jean, C.-T., et al., Population genetic structure in the endemic cyprinid fish Microphysogobio alticorpus in Taiwan: Evidence for a new phylogeographical area. Biochemical Systematics and Ecology, 2014. 57: p. 108-116. 95. Darlington, P.J., Zoogeography: The Geographic Distribution of Animals. 1957, New York: John Wiley & Sons. 96. Chen, W.-S., The evolution of foreland basins in the western Taiwan: Evidence from the Plio-Pleistocene sequences. Bulletin of the Central Geological Survey, 2000. 13: p. 137-156. 97. Boggs, S., et al., Sediment properties and water characteristics of Taiwan shelf and slop. Acta Oceanographica Taiwanica, 1979. 10: p. 10–49. 98. Avise, J.C., Molecular Population Structure and the Biogeographic History of a Regional Fauna: A Case History with Lessons for Conservation Biology. OIKOS, 1992. 63(1): p. 62-76. 99. Chen, I.S., J.-H. Wu, and C.-H. Hsu, The taxonomy and phylogeny of Candidia (Teleostei: Cyprinidae) from Taiwan, with description of a new species and comments on a new genus. Raffles Bulletin of Zoology, 2008. Suppl. 19. 100. Bolger, A.M., M. Lohse, and B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014. 30(15): p. 2114-2120. 101. Vasimuddin, M., et al. Efficient Architecture-Aware Acceleration of BWA-MEM for Multicore Systems. in 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS). 2019. 102. Li, H., A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics, 2011. 27(21): p. 2987-2993. 103. Purcell, S., et al., PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. The American Journal of Human Genetics, 2007. 81(3): p. 559-575. 104. Danecek, P., et al., Twelve years of SAMtools and BCFtools. GigaScience, 2021. 10(2): p. giab008. 105. Dierckxsens, N., P. Mardulyn, and G. Smits, NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Research, 2017. 45(4): p. e18-e18. 106. Zhu, T., et al., MitoFish, MitoAnnotator, and MiFish Pipeline: Updates in 10 Years. Molecular Biology and Evolution, 2023. 40(3): p. msad035. 107. Ayad, L.A.K. and S.P. Pissis, MARS: improving multiple circular sequence alignment using refined sequences. BMC Genomics, 2017. 18(1): p. 86. 108. Katoh, K., et al., MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 2002. 30(14): p. 3059-3066. 109. Rozas, J., et al., DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Molecular Biology and Evolution, 2017. 34(12): p. 3299-3302. 110. Leigh, J.W. and D. Bryant, popart: full-feature software for haplotype network construction. Methods in Ecology and Evolution, 2015. 6(9): p. 1110-1116. 111. Kumar, S., et al., MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution, 2018. 35(6): p. 1547-1549. 112. Alexander, D.H., J. Novembre, and K. Lange, Fast model-based estimation of ancestry in unrelated individuals. Genome Research, 2009. 19(9): p. 1655-1664. 113. He, W., et al., VCF2PCACluster: a simple, fast and memory-efficient tool for principal component analysis of tens of millions of SNPs. BMC Bioinformatics, 2024. 25(1): p. 173. 114. Korunes, K.L. and K. Samuk, pixy: Unbiased estimation of nucleotide diversity and divergence in the presence of missing data. Molecular Ecology Resources, 2021. 21(4): p. 1359-1368. 115. Quinlan, A.R. and I.M. Hall, BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics, 2010. 26(6): p. 841-842. 116. Zhao, X., et al., Whole-genome resequencing reveals genetic diversity and selection signals in warm temperate and subtropical Sillago sinica populations. BMC Genomics, 2023. 24(1): p. 547. 117. Cantalapiedra, C.P., et al., eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Molecular Biology and Evolution, 2021. 38(12): p. 5825-5829. 118. Wu, T., et al., clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation, 2021. 2(3): p. 100141. 119. Maier, R. and N. Patterson, admixtools: Inferring demographic history from genetic data. 2024. 120. Li, H. and R. Durbin, Inference of human population history from individual whole-genome sequences. Nature, 2011. 475(7357): p. 493-496. 121. Hilgers, L., et al., Avoidable false PSMC population size peaks occur across numerous studies. Current Biology, 2025. 35(4): p. 927-930.e3. 122. Bergeron, L.A., et al., Evolution of the germline mutation rate across vertebrates. Nature, 2023. 615(7951): p. 285-291. 123. Zaidi, A.A. and K.D. Makova, Investigating mitonuclear interactions in human admixed populations. Nature Ecology & Evolution, 2019. 3(2): p. 213-222. 124. Jeffroy, O., et al., Phylogenomics: the beginning of incongruence? Trends in Genetics, 2006. 22(4): p. 225-231. 125. Pörtner, H., Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften, 2001. 88(4): p. 137-146. 126. Nakagawa, H. and T. Ishiwata, Effect of short- and long-term heat exposure on brain monoamines and emotional behavior in mice and rats. Journal of Thermal Biology, 2021. 99: p. 102923. 127. Zhang, L., et al., 4.1N suppresses hypoxia-induced epithelial-mesenchymal transition in epithelial ovarian cancer cells. Mol Med Rep, 2016. 13(1): p. 837-844. 128. Johansson, E. and A. Pietras, CSIG-11. Hypoxia Signaling in ACVR1-Mutant Diffuse Intrinsic Pontine Glioma. Neuro-Oncology, 2022. 24(Supplement_7): p. vii41-vii41. 129. Tai, H., et al., FGFRL1 Promotes Ovarian Cancer Progression by Crosstalk with Hedgehog Signaling. Journal of Immunology Research, 2018. 2018(1): p. 7438608. 130. Simon, M.-P., R. Tournaire, and J. Pouyssegur, The angiopoietin-2 gene of endothelial cells is up-regulated in hypoxia by a HIF binding site located in its first intron and by the central factors GATA-2 and Ets-1. Journal of Cellular Physiology, 2008. 217(3): p. 809-818. 131. Li, Y., et al., Hypoxia exacerbates cardiomyocyte injury via upregulation of Wnt3a and inhibition of Sirt3. Cytokine, 2020. 136: p. 155237. 132. Mei, H.-F., et al., Activating adenosine A1 receptor accelerates PC12 cell injury via ADORA1/PKC/KATP pathway after intermittent hypoxia exposure. Molecular and Cellular Biochemistry, 2018. 446(1): p. 161-170. 133. Díaz-García, E., et al. Intermittent Hypoxia Mediates Paraspeckle Protein-1 Upregulation in Sleep Apnea. Cancers, 2021. 13, DOI: https://10.3390/cancers13153888. 134. Dode, L., et al., Low Temperature Molecular Adaptation of the Skeletal Muscle Sarco(endo)plasmic Reticulum Ca2+-ATPase 1 (SERCA 1) in the Wood Frog (Rana sylvatica) *. Journal of Biological Chemistry, 2001. 276(6): p. 3911-3919. 135. Little, A.G. and F. Seebacher, Thyroid hormone regulates muscle function during cold acclimation in zebrafish (Danio rerio). Journal of Experimental Biology, 2013. 216(18): p. 3514-3521. 136. Moran, B.M., et al., A lethal mitonuclear incompatibility in complex I of natural hybrids. Nature, 2024. 626(7997): p. 119-127. 137. Ellison, C.K. and R.S. Burton, Cytonuclear conflict in interpopulation hybrids: the role of RNA polymerase in mtDNA transcription and replication. Journal of Evolutionary Biology, 2010. 23(3): p. 528-538. 138. Gong, S.Y., S.W. Wang, and T.Y. Lee, Pleistocene coral reefs associated with claystones, Southwestern Taiwan. Coral Reefs, 1998. 17(3): p. 215-222. 139. Chen, C.-H., et al., Structural control on drainage pattern development of the western Taiwan orogenic wedge. Earth Surface Processes and Landforms, 2023. 48(9): p. 1830-1844. 140. Wang, G., et al., Abnormal Behavior of Zebrafish Mutant in Dopamine Transporter Is Rescued by Clozapine. iScience, 2019. 17: p. 325-333. 141. Haesemeyer, M., et al., A Brain-wide Circuit Model of Heat-Evoked Swimming Behavior in Larval Zebrafish. Neuron, 2018. 98(4): p. 817-831.e6. 142. Domingo, G., et al., The cAMP-dependent phosphorylation footprint in response to heat stress. Plant Cell Reports, 2024. 43(6): p. 137. 143. Chen, H., et al., Swertiamarin ameliorates type 2 diabetes by activating ADRB3/UCP1 thermogenic signals in adipose tissue. Phytomedicine, 2024. 135: p. 156190. 144. Zhuang, Y., et al., Mechanism of dopamine binding and allosteric modulation of the human D1 dopamine receptor. Cell Research, 2021. 31(5): p. 593-596. 145. Banh, S., et al., Mitochondrial reactive oxygen species production by fish muscle mitochondria: Potential role in acute heat-induced oxidative stress. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2016. 191: p. 99-107. 146. Bouchez, C. and A. Devin Mitochondrial Biogenesis and Mitochondrial Reactive Oxygen Species (ROS): A Complex Relationship Regulated by the cAMP/PKA Signaling Pathway. Cells, 2019. 8, DOI: https://10.3390/cells8040287. 147. Jakobsen, E., S.C. Lange, and L.K. Bak, Soluble adenylyl cyclase-mediated cAMP signaling and the putative role of PKA and EPAC in cerebral mitochondrial function. Journal of Neuroscience Research, 2019. 97(8): p. 1018-1038. 148. Chen, B., et al., Glutathione Peroxidase 1 Promotes NSCLC Resistance to Cisplatin via ROS-Induced Activation of PI3K/AKT Pathway. BioMed Research International, 2019. 2019(1): p. 7640547. 149. Pearce, M. and E. Schumann, Dissolved Oxygen Characteristics of the Gamtoos Estuary, South Africa. African Journal of Marine Science, 2003. 25: p. 99-109. 150. Muusze, B., et al., Hypoxia tolerance of Amazon fish: Respirometry and energy metabolism of the cichlid Astronotus Ocellatus. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 1998. 120(1): p. 151-156. 151. Chiu, Y.-C., The north–south genetic divergence of Opsariichthys pachycephalus across the Kaoping River, in Institute of Ecology and Evolutionary Biology, College of Life Science. 2025, National Taiwan University. 152. Zhang, H., et al., mtDNA copy number contributes to growth diversity in allopolyploid fish. Reproduction and Breeding, 2024. 4(2): p. 55-60. 153. Wang, C.-F., Phylogeography and Morphological Variation of Candidia barbatus (Cypriniforms: Cyprinidae) in Taiwan Rivers, in Graduate Institute of Zoology. 2005, National Taiwan University. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99524 | - |
| dc.description.abstract | 馬口魚族(Tribe Opsariichthyini)為一群分布於東亞溪流的小型鯉科魚類,包含異鱲屬(Parazacco)、東瀛鯉屬(Nipponocypris)、鬚鱲屬(Candidia)、鱲屬(Zacco)及馬口魚屬(Opsariichthys)。其中,馬口魚屬物種不僅多樣性極高,亦廣泛分布於整個東亞地區。值得注意的是,相較於其他類群,馬口魚屬的染色體裂變次數顯著偏高,達 14–15 次之多。
本研究組裝了五種馬口魚族物種的染色體層級基因體,並分為兩部分探討不同演化議題。第一部分聚焦於染色體大規模裂變的潛在分子機制。儘管染色體裂變在演化歷程中屢見不鮮,其形成機制與演化意義迄今仍未明朗,且過去多被認為是具破壞性的事件。本研究提出一項可能廣泛存在的機制:大規模裂變與轉座子的大量擴增有關。當轉座子大量插入並累積於著絲點區域,可能導致該區域拓寬,產生額外的著絲點 DNA,進而誘發新的著絲點(kinetochore)形成,產生具雙著絲點的染色體(dicentric chromosome)。這類染色體在裂變後仍可維持減數分裂期間的正常分離。本研究亦觀察到,染色體裂變對物種本身並未造成明顯不良後果,反而可能與加速物種形成相關。 第二部分則探討臺灣特有魚類——臺灣鬚鱲(Candidia barbatus)之族群結構與南北分化的潛在驅動因素。我們分析了 59 個體的全基因體資料,結果顯示臺灣鬚鱲可劃分為北部、中部與南部三個主要族群。與高分化的粒線體基因不同,核基因體呈現相對較低的族群分化程度。根據全基因體資料推論,我們認為傳統的南北分界應往北修正,以涵蓋高屏溪流域。此外,過去被重新命名為屏東鬚鱲之族群,與其他南部族群之間幾無遺傳分化與生殖隔離,顯示其分類地位亟待重新評估。更重要的是,我們發現南北族群的分化並非僅源於地理隔離,亦反映環境適應的結果:北部族群顯示與缺氧與低溫環境相關的適應性基因訊號,而南部族群則呈現與高溫環境相關的遺傳變異。 綜合而言,本研究不僅釐清了轉座子促成染色體大規模裂變的潛在機制,也揭示環境選擇如何塑造臺灣特有淡水魚類的族群結構與適應性演化,對瞭解物種形成與制訂保育策略均具有重要意義。 | zh_TW |
| dc.description.abstract | The tribe Opsariichthyini comprises a group of small cyprinid fishes distributed in East Asian stream habitats, including the genera Parazacco,Nipponocypris, Candidia, Zacco, and Opsariichthys. Among them, species in the genus Opsariichthys exhibit relatively high diversity and are widely distributed throughout East Asia. Notably, compared to other genera, Opsariichthys species have undergone as many as 14–15 chromosomal fission events.
In this study, we assembled and analysis chromosome-level genomes for five species of the Opsariichthyini and addressed two distinct questions. The first part focuses on the potential mechanism underlying large-scale chromosomal fission. Although chromosomal fission has repeatedly occurred in evolution, its molecular mechanism remains poorly understood, and it has long been regarded as a harmful event. Here, we identify a potentially widespread mechanism in which large-scale fission is associated with massive transposable element (TE) expansion. TE insertions lead to the expansion of centromeric regions, generating additional centric DNA and potentially inducing the formation of new kinetochores, resulting in dicentric chromosomes. These chromosomes, even after fission, can still maintain proper segregation during meiosis. Importantly, we found no evidence of deleterious effects caused by fission in these species; on the contrary, chromosomal fission may be associated with accelerated speciation. The second part investigates the population structure and potential drivers of north-south divergence in Candidia barbatus, a freshwater fish endemic to Taiwan. We analyzed whole-genome data from 59 individuals and found that C. barbatus can be divided into three major populations: North, Central, and South. In contrast to the highly divergent mitochondrial genome, the nuclear genome shows relatively low levels of differentiation. Based on genome-wide data, we propose that the traditional north-south boundary should be adjusted northward to include the Kaoping River basin. Additionally, the population previously renamed as Candidia pingtungensis shows almost no genetic differentiation or reproductive isolation from other southern populations, suggesting that its taxonomic status requires re-evaluation. More importantly, we found that the north-south divergence is not solely caused by geographic isolation but is also associated with environmental adaptation: the northern population shows selection signals related to hypoxia and cold tolerance, while the southern population exhibits selection signals associated with adaptation to high-temperature environments. This study not only clarifies the potential mechanism of large-scale chromosomal fission but also reveals how environmental selection shapes population structure and local adaptation in a freshwater species endemic to Taiwan. These findings have important implications for understanding evolutionary mechanisms and informing conservation strategies. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:33:19Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:33:19Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 ...................................................... i
誌謝 .............................................................. ii 中文摘要 .......................................................... iii ABSTRACT .......................................................... iv Table of Contents ................................................. vi List of Tables .................................................... ix List of Figures ................................................... xi General Introduction ............................................... 1 Part I. Transposons accelerate chromosomal speciation by centromere expansion and chromosome fission ..................... 4 Introduction ....................................................... 4 Methods ............................................................ 8 Sample collection ................................................ 8 DNA, RNA extraction and Hi-C preparation ......................... 9 Chromosome assembly and size estimation ......................... 11 Transposable elements annotation ................................ 12 Published Genomes Used in the Analysis .......................... 13 Gene annotation ................................................. 14 Synteny analysis and Breaking Region definition ................. 15 Phylogeny, Divergence time among species and Genetic distance ... 15 Candidate Centromere Sequences .................................. 16 Characterizing TSDs LTR/Gypsy and Protein Domains of LINE/L2 .... 18 PIWI-RNA Complex Model Prediction ............................... 18 Results ........................................................... 19 Genome assembly statistics ...................................... 19 Transposable elements in the Opsariichthyini .................... 21 Potential association between PIWI1 mutations and TE expansion .. 22 TE expansion associated with the chromosome evolution in the Opsariichthyini .......................................... 24 Chromosome fission within potential centromere region ........... 26 Asynchronous Expansion of L2 and Gypsy Driven by Distinct Insertion Preferences ........................ 28 Chromosome fission decreased gene flow and increased genetic divergence ................................ 29 Discussion ........................................................ 31 Part II. Population structure and selection driven north-south divergence in Candidia barbatus ....................... 37 Introduction ...................................................... 37 Materials and Methods ............................................. 40 Sample Collection, identification and Library preparation ....... 40 Genome sequencing and variant calling ........................... 40 Whole mitochondrial sequence assembly and annotation ............ 42 Mitochondria haplotype network .................................. 43 Phylogenetic tree reconstruction ................................ 43 Population structure analysis ................................... 44 Selective sweep detection ....................................... 44 Gene Ontology term enrichment analysis .......................... 46 Hybrid individual detection ..................................... 46 Changes in effective population size ............................ 47 Mitochondria copy number estimation ............................. 47 Results ........................................................... 48 Whole-genome resequencing data summary ........................... 48 Updated mitochondrial haplotype distribution in Candidia barbatus ............................................. 49 Mitochondrial Phylogenetic and Haplotype Network ................. 50 Discordance in Phylogeny ......................................... 52 Population structure of Candidia barbatus ........................ 53 The Central Population Represents a Distinct Lineage ............. 54 North-South Population Differentiation ........................... 56 Selection sweep detection in both Northern and Southern population .......................................... 58 Mitochondria copy number ......................................... 59 Discussion ......................................................... 61 Historical controversy and southward expansion of the southern population ....................................... 61 Divergent selective pressures between northern and southern populations ................................ 64 Taxonomic re-evaluation of Candidia pingtungensis ................ 66 Concluding Remark .................................................. 69 Reference .......................................................... 71 | - |
| dc.language.iso | en | - |
| dc.subject | 轉座子 | zh_TW |
| dc.subject | 著絲點 | zh_TW |
| dc.subject | 種化 | zh_TW |
| dc.subject | 族群遺傳 | zh_TW |
| dc.subject | 適應性天擇 | zh_TW |
| dc.subject | Speciation | en |
| dc.subject | Transposon | en |
| dc.subject | Adaptive selection | en |
| dc.subject | Population genetics | en |
| dc.subject | Kinetochore | en |
| dc.title | 馬口魚族基因體分化之機制:染色體裂變與環境適應 | zh_TW |
| dc.title | Mechanisms of Genomic Divergence in the Opsariichtyini: Chromosomal Fission and Environmental Adaptation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 廖德裕;莊樹諄;吳育瑋;蔡怡陞;李承叡;王子元 | zh_TW |
| dc.contributor.oralexamcommittee | Te-Yu Liao;Trees-Juen Chuang;Yu-Wei Wu;Isheng Jason Tsai;Cheng-Ruei Lee;Tzi-Yuan Wang | en |
| dc.subject.keyword | 轉座子,著絲點,種化,族群遺傳,適應性天擇, | zh_TW |
| dc.subject.keyword | Transposon,Kinetochore,Speciation,Population genetics,Adaptive selection, | en |
| dc.relation.page | 149 | - |
| dc.identifier.doi | 10.6342/NTU202501660 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-11 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 基因體與系統生物學學位學程 | - |
| dc.date.embargo-lift | 2026-07-08 | - |
| Appears in Collections: | 基因體與系統生物學學位學程 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf Restricted Access | 10.56 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
