Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99509
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅世強zh_TW
dc.contributor.advisorShyh-Chyang Luoen
dc.contributor.author魏嘉紋zh_TW
dc.contributor.authorCHIA-WEN WEIen
dc.date.accessioned2025-09-10T16:30:35Z-
dc.date.available2025-09-11-
dc.date.copyright2025-09-10-
dc.date.issued2025-
dc.date.submitted2025-07-28-
dc.identifier.citation(1) Tosun, E.; Keyinci, S.; Yakaryılmaz, A. C.; Yıldızhan, Ş.; Özcanlı, M. Evaluation of Lithium-ion Batteries in Electric Vehicles. Int. J. Automot. Sci. Technol. 2024, 8 (3), 332-340. DOI: https://doi.org/10.30939/ijastech..1460955 (acccessed 2024).
(2) Xu, J.; Cai, X.; Cai, S.; Shao, Y.; Hu, C.; Lu, S.; Ding, S. High-Energy Lithium-Ion Batteries: Recent Progress and a Promising Future in Applications. Energy Environ. Mater. 2023, 6 (5), e12450. DOI: https://doi.org/10.1002/eem2.12450.
(3) Hossain, M. H.; Chowdhury, M. A.; Hossain, N.; Islam, M. A.; Mobarak, M. H. Advances of lithium-ion batteries anode materials—A review. Chem. Eng. J. Adv. 2023, 16, 100569. DOI: https://doi.org/10.1016/j.ceja.2023.100569. Sankaran, G.; Venkatesan, S. An overview of Lithium-Ion batteries for electric mobility and energy storage applications. IOP Conference Series: Earth and Environmental Science 2022, 1042 (1), 012012. DOI: https://dx.doi.org/10.1088/1755-1315/1042/1/012012.
(4) Adnan, M. The Future of Energy Storage: Advancements and Roadmaps for Lithium-Ion Batteries. Int. J. Mol. Sci. 2023, 24 (8), 7457. DOI: https://www.mdpi.com/1422-0067/24/8/7457.
(5) Safa, M.; Chamaani, A.; Chawla, N.; El-Zahab, B. Polymeric Ionic Liquid Gel Electrolyte for Room Temperature Lithium Battery Applications. Electrochim. Acta 2016, 213, 587-593. DOI: https://doi.org/10.1016/j.electacta.2016.07.118. Aslam, M.; Kalyar, M. A.; Raza, Z. A. Polyvinyl alcohol: A review of research status and use of polyvinyl alcohol based nanocomposites. Polymer Engineering & Science 2018, 58 (12), 2119-2132. DOI: https://doi.org/10.1002/pen.24855.
(6) Ai, S.; Wu, X.; Wang, J.; Li, X.; Hao, X.; Meng, Y. Research Progress on Solid-State Electrolytes in Solid-State Lithium Batteries: Classification, Ionic Conductive Mechanism, Interfacial Challenges. Nanomaterials 2024, 14 (22), 1773. DOI: https://www.mdpi.com/2079-4991/14/22/1773.
(7) Kalhoff, J.; Eshetu, G. G.; Bresser, D.; Passerini, S. Safer Electrolytes for Lithium-Ion Batteries: State of the Art and Perspectives. ChemSusChem 2015, 8 (13), 2154-2175. DOI: https://doi.org/10.1002/cssc.201500284.
(8) Fan, L.; Wei, S.; Li, S.; Li, Q.; Lu, Y. Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries. Adv. Energy Mater. 2018, 8 (11), 1702657. DOI: https://doi.org/10.1002/aenm.201702657.
(9) Ma, M.; Zhang, M.; Jiang, B.; Du, Y.; Hu, B.; Sun, C. A review of all-solid-state electrolytes for lithium batteries: high-voltage cathode materials, solid-state electrolytes and electrode–electrolyte interfaces. Mater. Chem. Front. 2023, 7 (7), 1268-1297, 10.1039/D2QM01071B. DOI: http://dx.doi.org/10.1039/D2QM01071B. Manthiram, A.; Yu, X.; Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2 (4), 16103. DOI: https://doi.org/10.1038/natrevmats.2016.103.
(10) Cheng, X.-B.; Zhao, C.-Z.; Yao, Y.-X.; Liu, H.; Zhang, Q. Recent Advances in Energy Chemistry between Solid-State Electrolyte and Safe Lithium-Metal Anodes. Chem 2019, 5 (1), 74-96. DOI: https://doi.org/10.1016/j.chempr.2018.12.002 (acccessed 2025/04/13).
(11) Tang, S.; Guo, W.; Fu, Y. Advances in Composite Polymer Electrolytes for Lithium Batteries and Beyond. Adv. Energy Mater. 2021, 11 (2), 2000802. DOI: https://doi.org/10.1002/aenm.202000802.
(12) Wood, D. L.; Wood, M.; Li, J.; Du, Z.; Ruther, R. E.; Hays, K. A.; Muralidharan, N.; Geng, L.; Mao, C.; Belharouak, I. Perspectives on the relationship between materials chemistry and roll-to-roll electrode manufacturing for high-energy lithium-ion batteries. Energy Storage Mater. 2020, 29, 254-265. DOI: https://doi.org/10.1016/j.ensm.2020.04.036.
(13) Wu, J.; Yuan, L.; Zhang, W.; Li, Z.; Xie, X.; Huang, Y. Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries. Energy Environ. Sci. 2021, 14 (1), 12-36, 10.1039/D0EE02241A. DOI: http://dx.doi.org/10.1039/D0EE02241A.
(14) Famprikis, T.; Canepa, P.; Dawson, J. A.; Islam, M. S.; Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 2019, 18 (12), 1278-1291. DOI: https://doi.org/10.1038/s41563-019-0431-3.
(15) Liu, Q.; Geng, Z.; Han, C.; Fu, Y.; Li, S.; He, Y.-b.; Kang, F.; Li, B. Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries. J. Power Sources 2018, 389, 120-134. DOI: https://doi.org/10.1016/j.jpowsour.2018.04.019.
(16) Qin, Z.; Meng, X.; Xie, Y.; Qian, D.; Deng, H.; Mao, D.; Wan, L.; Huang, Y. Fast Li-ion transport pathways via 3D continuous networks in homogeneous garnet-type electrolyte for solid-state lithium batteries. Energy Storage Mater. 2021, 43, 190-201. DOI: https://doi.org/10.1016/j.ensm.2021.09.005.
(17) Chen, L.; Li, Y.; Li, S.-P.; Fan, L.-Z.; Nan, C.-W.; Goodenough, J. B. PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 2018, 46, 176-184. DOI: https://doi.org/10.1016/j.nanoen.2017.12.037.
(18) Hadad, S.; Pope, M. A.; Kamkar, M.; Tam, K. C. Solid-State Revolution: Assessing the Potential of Solid Polymer Electrolytes in Lithium-Ion Batteries. Adv. Sustain. Syst. 2025, 9 (1), 2400532. DOI: https://doi.org/10.1002/adsu.202400532.
(19) An, Y.; Han, X.; Liu, Y.; Azhar, A.; Na, J.; Nanjundan, A. K.; Wang, S.; Yu, J.; Yamauchi, Y. Progress in Solid Polymer Electrolytes for Lithium-Ion Batteries and Beyond. Small 2022, 18 (3), 2103617. DOI: https://doi.org/10.1002/smll.202103617.
(20) Reinoso, D. M.; Frechero, M. A. Strategies for rational design of polymer-based solid electrolytes for advanced lithium energy storage applications. Energy Storage Mater. 2022, 52, 430-464. DOI: https://doi.org/10.1016/j.ensm.2022.08.019.
(21) Zhang, Q.; Liu, K.; Ding, F.; Liu, X. Recent advances in solid polymer electrolytes for lithium batteries. Nano Res. 2017, 10 (12), 4139-4174. DOI: https://doi.org/10.1007/s12274-017-1763-4.
(22) Helaley, A.; Zhan, G.; Liang, X. Tailored PEO/PEG-PPG Polymer Electrolyte for Solid-State Lithium-Ion Battery. J. Electrochem. Soc. 2024, 171 (11), 110509. DOI: https://dx.doi.org/10.1149/1945-7111/ad8d80.
(23) Raman, A. S.; Johnson, B. R.; Jhulki, S.; Chandra, V.; Leisen, J.; Avis, M.; Dong, S.; Butcher, R.; Narla, A.; Lee, H.; et al. Solid-State Lithium Batteries with In Situ Polymerized Acrylate-Based Electrolytes Capable of Electrochemically Stable Operation at 100 °C. ACS Appl. Mater. Interfaces 2024, 16 (43), 58506-58519. DOI: https://doi.org/10.1021/acsami.4c09655.
(24) Wen, J.; Zhao, Q.; Jiang, X.; Ji, G.; Wang, R.; Lu, G.; Long, J.; Hu, N.; Xu, C. Graphene Oxide Enabled Flexible PEO-Based Solid Polymer Electrolyte for All-Solid-State Lithium Metal Battery. ACS Appl. Energy Mater. 2021, 4 (4), 3660-3669. DOI: https://doi.org/10.1021/acsaem.1c00090.
(25) Thong, C. C.; Teo, D. C. L.; Ng, C. K. Application of polyvinyl alcohol (PVA) in cement-based composite materials: A review of its engineering properties and microstructure behavior. Constr. Build. Mater. 2016, 107, 172-180. DOI: https://doi.org/10.1016/j.conbuildmat.2015.12.188.
(26) Dennis, J. O.; Shukur, M. F.; Aldaghri, O. A.; Ibnaouf, K. H.; Adam, A. A.; Usman, F.; Hassan, Y. M.; Alsadig, A.; Danbature, W. L.; Abdulkadir, B. A. A Review of Current Trends on Polyvinyl Alcohol (PVA)-Based Solid Polymer Electrolytes. Molecules 2023, 28 (4), 1781. DOI: https://www.mdpi.com/1420-3049/28/4/1781.
(27) Purwanti, E.; Wahyuningrum, D.; Rochliadi, A.; Ndruru, S. T. C. L.; Arcana, I. M. Incorporating Ionic Liquid 1-Ethyl-3-Methylimidazolium Bromide Into PVA-LiAc–Based Solid Polymer Electrolytes to Achieve Advanced Solid-State Lithium-Ion Batteries. J. Appl. Polym. Sci. 2025, 142 (15), e56718. DOI: https://doi.org/10.1002/app.56718.
(28) Hegde, S.; Vasachar, R.; Sagar, R. N.; Ismayil; Sanjeev, G. Studies on structural, dielectric and charge transport properties of PVA:LiBr solid polymer electrolyte films. J. Appl. Polym. Sci. 2024, 141 (19), e55349. DOI: https://doi.org/10.1002/app.55349.
(29) Armand, M.; Grugeon, S.; Gomez Castresana, K.; Lopez del Amo, J. M.; Bonilla, F.; Cid, R.; Laruelle, S.; Devaraj, S. Poly(vinyl butyrate) Esters as Stable Polymer Matrix for Solid-State Li-Metal Batteries. ACS Energy Lett. 2025, 10 (1), 579-587. DOI: https://doi.org/10.1021/acsenergylett.4c02527.
(30) Yang, J.; Xu, Z.; Wang, J.; Gai, L.; Ji, X.; Jiang, H.; Liu, L. Antifreezing Zwitterionic Hydrogel Electrolyte with High Conductivity of 12.6 mS cm−1 at −40°C through Hydrated Lithium Ion Hopping Migration. Adv. Funct. Mater. 2021, 31 (18), 2009438. DOI: https://doi.org/10.1002/adfm.202009438.
(31) Jones, S. D.; Nguyen, H.; Richardson, P. M.; Chen, Y.-Q.; Wyckoff, K. E.; Hawker, C. J.; Clément, R. J.; Fredrickson, G. H.; Segalman, R. A. Design of Polymeric Zwitterionic Solid Electrolytes with Superionic Lithium Transport. ACS Cent. Sci. 2022, 8 (2), 169-175. DOI: https://doi.org/10.1021/acscentsci.1c01260.
(32) Zhan, Y.-X.; Liu, Z.-Y.; Geng, Y.-Y.; Shi, P.; Yao, N.; Jin, C.-B.; Li, B.-Q.; Ye, G.; Zhang, X.-Q.; Huang, J.-Q. Fluorinating solid electrolyte interphase by regulating polymer–solvent interaction in lithium metal batteries. Energy Storage Mater. 2023, 60, 102799. DOI: https://doi.org/10.1016/j.ensm.2023.102799.
(33) Azhar, B.; Pham, Q.-T.; Wu, Y.-S.; Yang, C. C.; Wu, H.-T.; Huang, S.-H.; Chern, C.-S. Copolymers comprising poly(ethylene glycol) acrylate soft unit and sulfobetaine methacrylate zwitterionic unit and its application in solid-state lithium metal battery at ambient temperature. Electrochim. Acta 2024, 480, 143920. DOI: https://doi.org/10.1016/j.electacta.2024.143920.
(34) Zhu, X.; Guo, F.; Ji, C.; Mi, H.; Liu, C.; Qiu, J. Nitrogen-doped hollow carbon nanoboxes in zwitterionic polymer hydrogel electrolyte for superior quasi-solid-state zinc-ion hybrid supercapacitors. J. Mater. Chem. A 2022, 10 (24), 12856-12868, 10.1039/D2TA02449G. DOI: http://dx.doi.org/10.1039/D2TA02449G.
(35) Sun, K.; Zhang, S.; Li, P.; Xia, Y.; Zhang, X.; Du, D.; Isikgor, F. H.; Ouyang, J. Review on application of PEDOTs and PEDOT:PSS in energy conversion and storage devices. Journal of Materials Science: Materials in Electronics 2015, 26 (7), 4438-4462. DOI: https://doi.org/10.1007/s10854-015-2895-5. Wen, Y.; Xu, J. Scientific Importance of Water-Processable PEDOT–PSS and Preparation, Challenge and New Application in Sensors of Its Film Electrode: A Review. J. Polym. Sci., Part A: Polym. Chem. 2017, 55 (7), 1121-1150. DOI: https://doi.org/10.1002/pola.28482.
(36) Hina, M.; Bashir, S.; Kamran, K.; Iqbal, J.; Ramesh, S.; Ramesh, K. Fabrication of aqueous solid-state symmetric supercapacitors based on self-healable poly (acrylamide)/PEDOT:PSS composite hydrogel electrolytes. Mater. Chem. Phys. 2021, 273, 125125. DOI: https://doi.org/10.1016/j.matchemphys.2021.125125.
(37) Liu, X.; Iqbal, A.; Ali, N.; Qi, R.; Qian, X. Ion-Cross-Linking-Promoted High-Performance Si/PEDOT:PSS Electrodes: The Importance of Cations’ Ionic Potential and Softness Parameters. ACS Appl. Mater. Interfaces 2020, 12 (17), 19431-19438. DOI: https://doi.org/10.1021/acsami.0c00755.
(38) Higa, M.; Fujino, Y.; Koumoto, T.; Kitani, R.; Egashira, S. All solid-state polymer electrolytes prepared from a hyper-branched graft polymer using atom transfer radical polymerization. Electrochim. Acta 2005, 50 (19), 3832-3837.
(39) Liu, H.; Mulderrig, L.; Hallinan Jr., D.; Chung, H. Lignin-Based Solid Polymer Electrolytes: Lignin-Graft-Poly(ethylene glycol). Macromol. Rapid Commun. 2021, 42 (3), 2000428. DOI: https://doi.org/10.1002/marc.202000428.
(40) Zeng, G.; Dai, S.; Chen, X.; Qiu, L.; Kong, X.; Huang, M.; Wen, T. Solid-State Graft Polymer Electrolytes with Conductive Backbones and Side Chains for Lithium Batteries. Macromolecules 2024, 57 (3), 1258-1265. DOI: https://doi.org/10.1021/acs.macromol.3c02150.
(41) Dodda, J. M.; Bělský, P.; Chmelař, J.; Remiš, T.; Smolná, K.; Tomáš, M.; Kullová, L.; Kadlec, J. Comparative study of PVA/SiO2 and PVA/SiO2/glutaraldehyde (GA) nanocomposite membranes prepared by single-step solution casting method. J. Mater. Sci. 2015, 50 (19), 6477-6490. DOI: https://doi.org/10.1007/s10853-015-9206-7.
(42) Yu, H.; Wu, J.; Fan, L.; Lin, Y.; Xu, K.; Tang, Z.; Cheng, C.; Tang, S.; Lin, J.; Huang, M.; et al. A novel redox-mediated gel polymer electrolyte for high-performance supercapacitor. J. Power Sources 2012, 198, 402-407. DOI: https://doi.org/10.1016/j.jpowsour.2011.09.110.
(43) Miao, Y.-E.; Yan, J.; Huang, Y.; Fan, W.; Liu, T. Electrospun polymer nanofiber membrane electrodes and an electrolyte for highly flexible and foldable all-solid-state supercapacitors. RSC Adv. 2015, 5 (33), 26189-26196, 10.1039/C5RA00138B. DOI: http://dx.doi.org/10.1039/C5RA00138B.
(44) He, T.; Jia, R.; Lang, X.; Wu, X.; Wang, Y. Preparation and Electrochemical Performance of PVdF Ultrafine Porous Fiber Separator-Cum-Electrolyte for Supercapacitor. J. Electrochem. Soc. 2017, 164 (13), E379. DOI: https://dx.doi.org/10.1149/2.0631713jes.
(45) Zhu, Y.; Yang, Y.; Fu, L.; Wu, Y. A porous gel-type composite membrane reinforced by nonwoven: promising polymer electrolyte with high performance for sodium ion batteries. Electrochim. Acta 2017, 224, 405-411. DOI: https://doi.org/10.1016/j.electacta.2016.12.030.
(46) Rynkowska, E.; Fatyeyeva, K.; Marais, S.; Kujawa, J.; Kujawski, W. Chemically and Thermally Crosslinked PVA-Based Membranes: Effect on Swelling and Transport Behavior. Polymers 2019, 11 (11), 1799. DOI: https://www.mdpi.com/2073-4360/11/11/1799.
(47) Yu, C.-C.; Ho, B.-C.; Juang, R.-S.; Hsiao, Y.-S.; Naidu, R. V. R.; Kuo, C.-W.; You, Y.-W.; Shyue, J.-J.; Fang, J.-T.; Chen, P. Poly(3,4-ethylenedioxythiophene)-Based Nanofiber Mats as an Organic Bioelectronic Platform for Programming Multiple Capture/Release Cycles of Circulating Tumor Cells. ACS Appl. Mater. Interfaces 2017, 9 (36), 30329-30342. DOI: https://doi.org/10.1021/acsami.7b07042.
(48) Zhang, Y.; Lu, W.; Cong, L.; Liu, J.; Sun, L.; Mauger, A.; Julien, C. M.; Xie, H.; Liu, J. Cross-linking network based on Poly(ethylene oxide): Solid polymer electrolyte for room temperature lithium battery. J. Power Sources 2019, 420, 63-72. DOI: https://doi.org/10.1016/j.jpowsour.2019.02.090.
(49) Wu, J.; Chen, J.; Wang, X.; Zhou, A.; Yang, Z. Applying multi-scale silica-like three-dimensional networks in a PEO matrix via in situ crosslinking for high-performance solid composite electrolytes. Mater. Chem. Front. 2021, 5 (21), 7767-7777, 10.1039/D1QM00518A. DOI: http://dx.doi.org/10.1039/D1QM00518A.
(50) Wu, J.; Xia, G.; Li, S.; Wang, L.; Ma, J. A Flexible and Self-Healable Gelled Polymer Electrolyte Based on a Dynamically Cross-Linked PVA Ionogel for High-Performance Supercapacitors. Ind. Eng. Chem. Res. 2020, 59 (52), 22509-22519. DOI: https://doi.org/10.1021/acs.iecr.0c04741.
(51) Liu, Z.; Zhang, J.; Liu, J.; Long, Y.; Fang, L.; Wang, Q.; Liu, T. Highly compressible and superior low temperature tolerant supercapacitors based on dual chemically crosslinked PVA hydrogel electrolytes. J. Mater. Chem. A 2020, 8 (13), 6219-6228, 10.1039/C9TA12424A. DOI: http://dx.doi.org/10.1039/C9TA12424A.
(52) Merle, G.; Hosseiny, S. S.; Wessling, M.; Nijmeijer, K. New cross-linked PVA based polymer electrolyte membranes for alkaline fuel cells. J. Membr. Sci. 2012, 409-410, 191-199. DOI: https://doi.org/10.1016/j.memsci.2012.03.056.
(53) Kim, J. H.; Wieland, M.; Omiecienski, B.; Kim, Y.; Park, J.; Kim, G.; Ludwigs, S.; Yoon, M.-H. Delicate modulation of mixed conducting properties of PEDOT:PSS via crosslinking with polyvinyl alcohol. Flex. Print. Electron. 2022, 7 (4), 044005. DOI: https://dx.doi.org/10.1088/2058-8585/ac98d3.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99509-
dc.description.abstract鋰電池在現今的儲能裝置中因為優秀的能量密度和循環壽命,佔有重要的地位,故受到廣泛的討論。但傳統鋰離子電池存在洩漏與穩定性不足等問題,因此有研究指出,使用固態電解質的全固態鋰電池能有效解決這樣的缺點。其中,固態聚合物電解質 (SPEs) 具備優異的安全性與柔韌性,為極具發展的一個議題,但由於以聚合物為基底的電解質會面臨導電度相對不足的狀況,因此本研究旨在開發並合成一種接枝共聚物 PVA-g-SBMA,透過將兩性離子甲基丙烯酸磺機甜菜鹼 (sulfobetaine methacrylate, SBMA) 接枝至聚乙烯醇 (poly(vinyl alcohol), PVA) 上,成功合成 PVA-g-SBMA。聚乙烯醇具有良好的成膜性與機械強度,能提升固態器件的柔性與穩定性,而 SBMA 的雙離子結構促進高效離子傳輸,進而提高離子導電率與固態電解質在能量儲存應用中的性能。我們透過 ¹H NMR 光譜分析,我們探討了 PVA-g-SBMA 雙離子接枝共聚物的質子化學位移。水相 GPC 測試結果顯示,該接枝共聚物的Mn為 15,755,PDI為 1.17,而 SBMA 的接枝率為 25%。然而,該材料的機械性能不足,導致薄膜脆裂。為解決此問題,本研究透過交聯方式提升其機械性能,使用導電高分子 PEDOT:PSS 並以3-環氧丙氧丙基三甲氧基矽烷 (3-glycidoxypropyltrimethoxysilane, GOPS) 作為交聯劑,二甲基亞碸 (DMSO) 作為溶劑,完成交聯反應。交聯機制涉及 PVA 及 PSS 上的羥基反應,GOPS 與 PSS 鍵結,形成穩固的交聯網絡。交聯反應經過 120 ℃ 加熱完成。本研究亦比較不同交聯比例對薄膜性能的影響。此外,我們摻入鋰鹽,以探討不同鋰鹽濃度對材料的影響。根據EIS測試結果,最佳導電系統為摻雜 0.1 wt.% PEDOT:PSS 及 0.015 wt.% LiTFSI 之交聯 PVA-g-SBMA,其在室溫下的離子導電率達 4.9 × 10⁻⁴ S/cm。此外,本研究亦探討了薄膜的熱學性質、形態結構與分子鏈間作用力。zh_TW
dc.description.abstractConventional lithium-ion batteries face issues like leakage and instability. Solid-state lithium batteries with solid electrolytes address these, while solid-state polymer electrolytes (SPEs) offer safety and flexibility. This study primarily aimed to develop and synthesize a graft copolymer, PVA-g-SBMA, which was successfully synthesized by grafting [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA) onto poly(vinyl alcohol) (PVA). PVA provided excellent film-forming ability and mechanical strength, enhancing flexibility and stability in solid-state devices. Meanwhile, SBMA’s zwitterionic structure promoted efficient ion transport, improving ionic conductivity and solid electrolyte performance in energy storage applications. From the results, the proton assignment of the PVA-g-PSBMA zwitterionic graft copolymers was investigated via 1H NMR spectra. The molecular weight of the graft copolymer was determined through aqueous GPC; the number average molecular weight (Mn) was 15,755, and the PDI was 1.17. The grafting efficiency of SBMA was calculated as 25 %. However, the material lacked sufficient mechanical properties, leading to brittle membranes. To solve this problem, we crosslinked the film to enhance its mechanical performance. The grafted copolymer was crosslinked with the conductive polymer PEDOT:PSS using (3-glycidyloxypropyl)trimethoxysilane (GOPS) as the crosslinker and dimethyl sulfoxide (DMSO) as solvent to complete the crosslinking reaction. The crosslinking mechanism involved the reaction between hydroxyl groups on PVA and PSS, while the GOPS bonded with PSS, forming a robust crosslinked network. The crosslinking process was completed by heating the mixture to 120 °C. We also compared different crosslinking ratios to discuss film performances. Lithium salts were incorporated to investigate the effect of varying lithium salt concentrations. According to EIS measurements, the best-performing system was crosslinked PVA-g-SBMA with PEDOT:PSS 0.1 wt. % and LiTFSI 0.015 wt. %, which reached conductivities of 4.9 × 10-4 S/cm at room temperature. We also explored the film's thermal properties, morphologies, and chain interactions in this research.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:30:35Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-10T16:30:35Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目次
誌謝 ii
中文摘要 iii
ABSTRACT iv
目次 v
圖次 viii
表次 xi
第一章、前言與文獻回顧 1
1.1 固態電解質應用於鋰電池的介紹 1
1.2 PVA於固態電解質的介紹 4
1.3 SBMA於固態電解質介紹 5
1.4 PEDOT:PSS介紹 6
1.5 接枝聚合介紹 7
1.6 交聯反應介紹 8
1.7 研究目標 10
第二章、實驗材料與方法 11
2.1 實驗藥品 11
2.2 實驗儀器 12
2.3 實驗設計 13
2.4實驗方法 13
2.4.1合成PVA-g-SBMA: 13
2.4.2交聯反應 14
2.4.3薄膜製備 16
2.5 PVA-g-SBMA高分子性質分析 17
2.5.1 核磁共振光譜法 17
2.5.2 膠體滲透層析儀 17
2.5.3 傅里葉變換紅外光譜 17
2.6 薄膜表面分析 18
2.6.1 場發射掃描電子顯微鏡 18
2.6.2 接觸角測量儀 18
2.6.3 偏光光學顯微鏡 18
2.6.4 X光繞射儀 19
2.7 薄膜熱性質分析 19
2.7.1 動態機械分析儀 19
2.7.2 微示差掃描熱卡分析儀 19
2.7.3 熱重分析 20
2.8 薄膜電性分析 20
第三章、結果與討論 21
3.1 高分子示性分析 21
3.1.1 FT-IR 紅外線光譜 21
3.1.2 NMR核磁共振光譜 23
3.1.3 GPC膠體滲透層析儀 27
3.2 PVA-g-SBMA交聯薄膜製備 29
3.2.1 薄膜溶劑選擇 29
3.2.2 薄膜濃度選擇 31
3.2.3 不同鋰鹽濃度的討論 32
3.3 薄膜示性分析 35
3.3.1 FT-IR 紅外線光譜 35
3.4 表面性質分析 39
3.4.1 SEM 表面形貌分析 39
3.4.2 接觸角分析 41
3.5 薄膜熱性質分析 43
3.5.1 DSC熱性質分析 43
3.5.2 TGA熱重分析 49
3.5.3 DMA動態機械分析 55
3.6 薄膜之結晶行為分析 59
3.6.1 POM顯微鏡影像 59
3.6.2 XRD結晶結構分析 66
3.7 薄膜之電性分析 72
3.7.1 EIS導電度分析 72
第四章 結論 76
第五章 未來工作建議 77
參考文獻 78
-
dc.language.isozh_TW-
dc.subject固態聚合物電解質zh_TW
dc.subject兩性離子zh_TW
dc.subject交聯反應zh_TW
dc.subject離子導電度zh_TW
dc.subject接枝聚合物zh_TW
dc.subjectcrosslinkingen
dc.subjectsolid polymer electrolyteen
dc.subjectionic conductivityen
dc.subjectgraft copolymeren
dc.subjectzwitterionic polymeren
dc.title交聯式PVA-g-SBMA/PEDOT:PSS作為於固態電解質的應用zh_TW
dc.titleCrosslinked PVA-g-SBMA/PEDOT:PSS for Solid-State Electrolyte Applicationsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee康敦彥;林興安zh_TW
dc.contributor.oralexamcommitteeDun-Yen Kang;Shin-An Linen
dc.subject.keyword兩性離子,固態聚合物電解質,接枝聚合物,離子導電度,交聯反應,zh_TW
dc.subject.keywordzwitterionic polymer,graft copolymer,crosslinking,solid polymer electrolyte,ionic conductivity,en
dc.relation.page84-
dc.identifier.doi10.6342/NTU202501995-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-29-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
dc.date.embargo-lift2030-07-30-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
4.64 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved