Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99504
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林招松zh_TW
dc.contributor.advisorChao-Sung Linen
dc.contributor.author陳孟哲zh_TW
dc.contributor.authorMong-Jer Tanen
dc.date.accessioned2025-09-10T16:29:41Z-
dc.date.available2025-09-11-
dc.date.copyright2025-09-10-
dc.date.issued2025-
dc.date.submitted2025-07-27-
dc.identifier.citation[1].放流水標準, 中華民國環境部, 2024. [Online]. Available: https://oaout.moenv.gov.tw/Law/LawContent.aspx?id=FL015489
[2].G. Roventi, T. Bellezze, and R. Fratesi, "Electrodeposition of Zn–SiC nanocomposite coatings," Journal of Applied Electrochemistry, vol. 43, pp. 839-846, 2013.
[3].P. Drasnar, J. Kudlacek, T. Pepelnjak, Z. Car, and M. Pazderova, "Zinc-polytetrafluoroethylene (Zn-PTFE) composite coating with exploitable tribological properties," Journal of engineering technology, vol. 30, no. 1, p. 30, 2013.
[4].P. C. Tulio and I. A. Carlos, "Effect of SiC and Al2O3 particles on the electrodeposition of Zn, Co and ZnCo: II. Electrodeposition in the presence of SiC and Al2O3 and production of ZnCo–SiC and ZnCo–Al 2O3 coatings," Journal of Applied Electrochemistry, vol. 39, pp. 1305-1311, 2009.
[5].J. Fustes, A. Gomes, and M. da Silva Pereira, "Electrodeposition of Zn–TiO2 nanocomposite films—effect of bath composition," Journal of Solid State Electrochemistry, vol. 12, pp. 1435-1443, 2008.
[6].G. Parida, D. Chaira, M. Chopkar, and A. Basu, "Synthesis and characterization of Ni-TiO2 composite coatings by electro-co-deposition," Surface and Coatings Technology, vol. 205, no. 21-22, pp. 4871-4879, 2011.
[7].Z.-j. Huang and D.-s. Xiong, "MoS2 coated with Al2O3 for Ni–MoS2/Al2O3 composite coatings by pulse electrodeposition," Surface and Coatings Technology, vol. 202, no. 14, pp. 3208-3214, 2008.
[8].L. Shi, C. Sun, and W. Liu, "Electrodeposited nickel–cobalt composite coating containing MoS2," Applied Surface Science, vol. 254, no. 21, pp. 6880-6885, 2008.
[9].A. Ren, M. Kang, and X. Fu, "Corrosion behaviour of Ni/WC-MoS2 composite coatings prepared by jet electrodeposition with different MoS2 doping concentrations," Applied Surface Science, vol. 613, p. 155905, 2023.
[10].C. P. Kumar, T. Venkatesha, and R. Shabadi, "Preparation and corrosion behavior of Ni and Ni–graphene composite coatings," Materials Research Bulletin, vol. 48, no. 4, pp. 1477-1483, 2013.
[11].L. Shi, C. Sun, F. Zhou, and W. Liu, "Electrodeposited nickel–cobalt composite coating containing nano-sized Si3N4," Materials Science and Engineering: A, vol. 397, no. 1-2, pp. 190-194, 2005.
[12].A. Ren, M. Kang, and X. Fu, "Tribological behaviour of Ni/WC–MoS2 composite coatings prepared by jet electrodeposition with different nano-MoS2 doping concentrations," Engineering Failure Analysis, vol. 143, p. 106934, 2023.
[13].S. Sangeetha, G. P. Kalaignan, and J. T. Anthuvan, "Pulse electrodeposition of self-lubricating Ni–W/PTFE nanocomposite coatings on mild steel surface," Applied Surface Science, vol. 359, pp. 412-419, 2015.
[14].P. C. Tulio and I. A. Carlos, "Effect of SiC and Al2O3 particles on the electrodeposition of Zn, Co and ZnCo: II. Electrodeposition in the presence of SiC and Al2O3 and production of ZnCo–SiC and ZnCo–Al2O3 coatings," Journal of Applied Electrochemistry, vol. 39, pp. 1305-1311, 2009.
[15].郭鶴桐 and 張三元, 复合镀层, 第1版 ed. 天津大学出版社, 1991.
[16].V. Kanagalasara and T. V. Venkatesha, "Studies on electrodeposition of Zn–MoS2 nanocomposite coatings on mild steel and its properties," Journal of Solid State Electrochemistry, vol. 16, pp. 993-1001, 2012.
[17].K. Szmigielska and M. Trzaska, "Structure and properties of Zn/MoS2 composite coatings produced by electrochemical reduction," Archives of Metallurgy and Materials, pp. 1653-1659, 2019.
[18].M. Geerdes, R. Chaigneau, and O. Lingiardi, Modern blast furnace ironmaking: an introduction. Ios Press, 2020.
[19].黃振賢, 金屬熱處理, 第18版 ed. 台北縣中和市: 新文京開發, 2000.
[20].D. B. Miracle et al., ASM handbook. ASM international Materials Park, OH, 2001.
[21].M. Wolpers and J. Angeli, "Activation of galvanized steel surfaces before zinc phosphating—XPS and GDOES investigations," Applied Surface Science, vol. 179, no. 1-4, pp. 281-291, 2001.
[22].C.-Y. Tsai, J.-S. Liu, P.-L. Chen, and C.-S. Lin, "A two-step roll coating phosphate/molybdate passivation treatment for hot-dip galvanized steel sheet," Corrosion Science, vol. 52, no. 10, pp. 3385-3393, 2010.
[23].A. Kumar, S. Bhola, and J. D. Majumdar, "Microstructural characterization and surface properties of zinc phosphated medium carbon low alloy steel," Surface and Coatings Technology, vol. 206, no. 17, pp. 3693-3699, 2012.
[24].A. Akhtar, K. Wong, P. Wong, and K. Mitchell, "Effect of Mn2+ additive on the zinc phosphating of 2024-Al alloy," Thin Solid Films, vol. 515, no. 20-21, pp. 7899-7905, 2007.
[25].A. Akhtar, D. Susac, P. Glaze, K. Wong, P. Wong, and K. Mitchell, "The effect of Ni2+ on zinc phosphating of 2024-T3 Al alloy," Surface and Coatings Technology, vol. 187, no. 2-3, pp. 208-215, 2004.
[26].K. Ishizuka, H. Shindo, and K. Hayashi, "Phosphate-treated galvanized steel sheet excellent in corrosion resistance and paintability," ed: Google Patents, 2003.
[27].D. Weng, P. Jokiel, A. Uebleis, and H. Boehni, "Corrosion and protection characteristics of zinc and manganese phosphate coatings," Surface and Coatings Technology, vol. 88, no. 1-3, pp. 147-156, 1997.
[28].L. Lazzarotto, C. Marechal, L. Dubar, A. Dubois, and J. Oudin, "The effects of processing bath parameters on the quality and performance of zinc phosphate stearate coatings," Surface and Coatings Technology, vol. 122, no. 2-3, pp. 94-100, 1999.
[29].鄒仁江 and 陳唐徵, "鋼材磷酸鹽處理之電化學監測," 防蝕工程, vol. 6, no. 3, pp. 20-24, 1992.
[30].G. Whillock, S. Worthington, and A. A. Abdullahi, "Corrosion in nitric acid," Elsevier, 2017.
[31].D. Zimmermann, A. Munoz, and J. Schultze, "Formation of Zn–Ni alloys in the phosphating of Zn layers," Surface and Coatings Technology, vol. 197, no. 2-3, pp. 260-269, 2005.
[32].M. Pourbaix, "Atlas of electrochemical equilibria in aqueous solutions," NACE, 1966.
[33].楊聰仁, "腐蝕概論," 防蝕工程, vol. 6, no. 2, pp. 57-65, 1992.
[34].E. McCafferty, Introduction to corrosion science. Springer Science & Business Media, 2010.
[35].H. Tamura, "The role of rusts in corrosion and corrosion protection of iron and steel," Corrosion Science, vol. 50, no. 7, pp. 1872-1883, 2008.
[36].蔡文達, "陰極防蝕電化學應用基本原理," 防蝕工程, vol. 2, no. 1, pp. 1-11, 1988.
[37].Y. Hamlaoui, L. Tifouti, and F. Pedraza, "On the corrosion resistance of porous electroplated zinc coatings in different corrosive media," Corrosion science, vol. 52, no. 6, pp. 1883-1888, 2010.
[38].A. Yadav, H. Katayama, K. Noda, H. Masuda, A. Nishikata, and T. Tsuru, "Effect of Fe–Zn alloy layer on the corrosion resistance of galvanized steel in chloride containing environments," Corrosion Science, vol. 49, no. 9, pp. 3716-3731, 2007.
[39].Y. Miyoshi, J. OKA, and S. MAEDA, "Fundamental research on corrosion resistance of precoated steel sheets for automobiles," Transactions of the Iron and Steel Institute of Japan, vol. 23, no. 11, pp. 974-983, 1983.
[40].C. Cachet et al., "EIS investigation of zinc dissolution in aerated sulphate medium. Part II: zinc coatings," Electrochimica Acta, vol. 47, no. 21, pp. 3409-3422, 2002.
[41].N. Boshkov, K. Petrov, S. Vitkova, S. Nemska, and G. Raichevsky, "Composition of the corrosion products of galvanic alloys Zn–Co and their influence on the protective ability," Surface and Coatings Technology, vol. 157, no. 2-3, pp. 171-178, 2002.
[42].T. Falk, J. E. Svensson, and L. G. Johansson, "The influence of CO2 and NaCl on the atmospheric corrosion of zinc: a laboratory study," Journal of the Electrochemical Society, vol. 145, no. 9, p. 2993, 1998.
[43].R. Lindström, J. E. Svensson, and L. G. Johansson, "The atmospheric corrosion of zinc in the presence of NaCl the influence of carbon dioxide and temperature," Journal of the Electrochemical society, vol. 147, no. 5, p. 1751, 2000.
[44].M. Mouanga and P. Berçot, "Comparison of corrosion behaviour of zinc in NaCl and in NaOH solutions; Part II: Electrochemical analyses," Corrosion Science, vol. 52, no. 12, pp. 3993-4000, 2010.
[45].M. Mouanga, P. Berçot, and J. Rauch, "Comparison of corrosion behaviour of zinc in NaCl and in NaOH solutions. Part I: Corrosion layer characterization," Corrosion Science, vol. 52, no. 12, pp. 3984-3992, 2010.
[46].W. Feitknecht, "Studies of the influence of chemical factors on the corrosion of metals," Chem. Ind., vol. 36, pp. 1102-1109, 1959.
[47].Z. Y. Chen, D. Persson, and C. Leygraf, "Initial NaCl-particle induced atmospheric corrosion of zinc—Effect of CO2 and SO2," Corrosion Science, vol. 50, no. 1, pp. 111-123, 2008.
[48].H. Sun, S. Liu, and L. Sun, "A comparative study on the corrosion of galvanized steel under simulated rust layer solution with and without 3.5 wt% NaCl," International Journal of Electrochemical Science, vol. 8, no. 3, pp. 3494-3509, 2013.
[49].蕭勝彥, "熱浸鍍鋅防蝕概要," 防蝕工程, vol. 2, no. 4, pp. 45-52, 1989.
[50].Z. Yu, J. Hu, and H. Meng, "A review of recent developments in coating systems for hot-dip galvanized steel," Frontiers in Materials, vol. 7, p. 74, 2020.
[51].S. Shibli, B. Meena, and R. Remya, "A review on recent approaches in the field of hot dip zinc galvanizing process," Surface and Coatings Technology, vol. 262, pp. 210-215, 2015.
[52].J.-C. Hsieh, C.-C. Hu, and T.-C. Lee, "The synergistic effects of additives on improving the electroplating of zinc under high current densities," Journal of the Electrochemical Society, vol. 155, no. 10, p. D675, 2008.
[53].R. Winand, "Electrodeposition of zinc and zinc alloys," Modern electroplating, pp. 285-307, 2011.
[54].C. G. Munger, "Corrosion prevention by protective coatings," 1985.
[55].楊聰仁, "電鍍鋅與熱浸鍍鋅之比較," 防蝕工程, vol. 2, no. 4, pp. 53-61, 1989.
[56].B. Burton and P. Perrot, "Phase diagram of binary iron alloys," American Society for Metals, Metal Park. OH, pp. 459-466, 1993.
[57].N. Pilling, "The oxidation of metals at high temperature," J. Inst. Met., vol. 29, pp. 529-582, 1923.
[58].C. Xu and W. Gao, "Pilling-Bedworth ratio for oxidation of alloys," Material Research Innovations, vol. 3, pp. 231-235, 2000.
[59].Q. Wang, X. Cheng, Z. Liu, Z. Lv, and Q. Cheng, "Effect of Ga on the Oxide Film Structure and Oxidation Resistance of Sn–Bi–Zn Alloys as Heat Transfer Fluids," Materials, vol. 13, no. 23, p. 5461, 2020.
[60].K. S. Novoselov et al., "Electric field effect in atomically thin carbon films," science, vol. 306, no. 5696, pp. 666-669, 2004.
[61].R. Frindt, "Single crystals of MoS2 several molecular layers thick," Journal of Applied Physics, vol. 37, no. 4, pp. 1928-1929, 1966.
[62].J. M. Martin, C. Donnet, T. Le Mogne, and T. Epicier, "Superlubricity of molybdenum disulphide," Physical Review B, vol. 48, no. 14, pp. 10583-10586, 10/01/ 1993, doi: 10.1103/PhysRevB.48.10583.
[63].K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, "Atomically thin MoS2: a new direct-gap semiconductor," Physical review letters, vol. 105, no. 13, p. 136805, 2010.
[64].M. Acerce, D. Voiry, and M. Chhowalla, "Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials," Nature nanotechnology, vol. 10, no. 4, pp. 313-318, 2015.
[65].M. Py and R. Haering, "Structural destabilization induced by lithium intercalation in MoS2 and related compounds," Canadian Journal of Physics, vol. 61, no. 1, pp. 76-84, 1983.
[66].B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-layer MoS2 transistors," Nature nanotechnology, vol. 6, no. 3, pp. 147-150, 2011.
[67].J. A. Wilson and A. Yoffe, "The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties," Advances in Physics, vol. 18, no. 73, pp. 193-335, 1969.
[68].D. Voiry, J. Yang, and M. Chhowalla, "Recent strategies for improving the catalytic activity of 2D TMD nanosheets toward the hydrogen evolution reaction," Advanced materials, vol. 28, no. 29, pp. 6197-6206, 2016.
[69].Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides," Nature nanotechnology, vol. 7, no. 11, pp. 699-712, 2012.
[70].M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, "The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets," Nature chemistry, vol. 5, no. 4, pp. 263-275, 2013.
[71].X. Li and H. Zhu, "Two-dimensional MoS2: Properties, preparation, and applications," Journal of Materiomics, vol. 1, no. 1, pp. 33-44, 2015.
[72].T. Wu, M. Jing, Y. Liu, and X. Ji, "Binding low crystalline MoS2 nanoflakes on nitrogen-doped carbon nanotube: towards high-rate lithium and sodium storage," Journal of Materials Chemistry A, vol. 7, no. 11, pp. 6439-6449, 2019.
[73].A. J. Bard and L. R. Faulkner, Electrochemical methods : fundamentals and applications, 2nd ed. New York: Wiley, 2001.
[74].張允誠, 胡如南, and 向榮, 電鍍手冊 (上冊). 1997.
[75].A. Brenner, Electrodeposition of alloys: principles and practice. Elsevier, 2013.
[76].嚴欽元, 现代电镀与表面精饰添加剂, 第1版 ed. 北京: 科学技术文献出版社, 1994.
[77].K. Boto, "Organic additives in zinc electroplating," Electrodeposition and Surface Treatment, vol. 3, no. 2, pp. 77-95, 1975.
[78].蔣良慧, 許宏華, 程偉堃, 白清源, and 葛明德, "脈衝電鍍三價鉻製備鉻-碳合金鍍層之研究," 防蝕工程, vol. 27, no. 3, pp. 109-115, 2013.
[79].林景崎, 蘇照發, 陳泰宏, 楊奉儒, and 喬泰智, "定電流及脈衝法之鋅-鎳合金電鍍," 防蝕工程, vol. 9, no. 4, pp. 238-244, 1995.
[80].M. Peev, "Study of System Power Supply Source–the Galvanic Bath with Pulse Plating Deposition of Nickel Coating," 2011.
[81].N. P. Wasekar, A. Jyothirmayi, N. Hebalkar, and G. Sundararajan, "Influence of pulsed current on the aqueous corrosion resistance of electrodeposited zinc," Surface and Coatings Technology, vol. 272, pp. 373-379, 2015.
[82].N. Guglielmi, "Kinetics of the deposition of inert particles from electrolytic baths," Journal of the Electrochemical Society, vol. 119, no. 8, p. 1009, 1972.
[83].J.-P. Celis, J. Roos, and C. Buelens, "A mathematical model for the electrolytic codeposition of particles with a metallic matrix," Journal of the Electrochemical Society, vol. 134, no. 6, p. 1402, 1987.
[84].Q. J. Wang and Y.-W. Chung, Encyclopedia of tribology. Springer US, 2013.
[85].H. Swenson and N. P. Stadie, "Langmuir’s theory of adsorption: A centennial review," Langmuir, vol. 35, no. 16, pp. 5409-5426, 2019.
[86].J. H. d. Boer, "The dynamical character of adsorption," Soil Science, 1968.
[87].蘇香宇, "鍍鋅鋼板之磷酸鹽鈍化處理及溶膠凝膠法鈍化處理," 材料科學與工程學研究所, 國立臺灣大學, 2014.
[88].C. Cachet, F. Ganne, G. Maurin, J. Petitjean, V. Vivier, and R. Wiart, "EIS investigation of zinc dissolution in aerated sulfate medium. Part I: bulk zinc," Electrochimica acta, vol. 47, no. 3, pp. 509-518, 2001.
[89].Y. He, S. Wang, F. Walsh, Y.-L. Chiu, and P. Reed, "Self-lubricating Ni-P-MoS2 composite coatings," Surface and Coatings Technology, vol. 307, pp. 926-934, 2016.
[90].C. Wang et al., "Effects of parallel magnetic field on electrocodeposition behavior of Ni/nanoparticle composite electroplating," Applied Surface Science, vol. 254, no. 18, pp. 5649-5654, 2008.
[91].鄧伊浚, "電鍍鎳鈷與鎳鐵合金組織與機械性質之研究," 大葉大學機械工程研究所, 2003.
[92].X. Hu, P. Jiang, J. Wan, Y. Xu, and X. Sun, "Study of corrosion and friction reduction of electroless Ni–P coating with molybdenum disulfide nanoparticles," Journal of coatings technology and research, vol. 6, pp. 275-281, 2009.
[93].M. Schlesinger and M. Paunovic, Modern electroplating. John Wiley & Sons, 2011.
[94].王翰韜, 許宏華, 林建宏, 侯光煦, and 葛明德, "電沉積鎳-鎢/鑽石複合鍍層之磨潤與耐蝕性之研究," 防蝕工程, vol. 28, no. 1, pp. 1-9, 2014.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99504-
dc.description.abstract皂化磷酸鹽鈍化皮膜雖然可兼具抗蝕性及潤滑性,但皮膜上殘留的孔隙易降低抗蝕性、高碳排製程、任意排放導致水質優養化等缺點,而複合電鍍為目前可用來取代皂化磷酸鹽鈍化處理的方法之一,以優化整體製程品質與降低對環境衝擊。
本研究藉由在純鋅電鍍液中添加MoS2顆粒,並以脈衝電鍍製作Zn-MoS2複合鍍層於S45C中碳鋼板上,希望結合鋅的犧牲保護機制與MoS2的層狀結構能提供潤滑性,使複合鍍層有更完善的性能。經實驗所製備的純鋅鍍層與Zn-MoS2複合鍍層,透過光學(OM)和電子顯微鏡(SEM)觀察試樣之表面、橫截面形貌,並藉由電子顯微鏡所搭配的背向散射電子影像(BSE)和能量散佈X射線譜儀(EDS),分析MoS2顆粒在鋅鍍層中的組成分布、X光繞射分析儀(XRD)了解鋅沉積的結晶行為,並使用動電位極化和電化學交流阻抗圖譜(EIS),解析鍍層在長時間浸泡(1、6、12、24小時)於3.5 wt.%氯化鈉水溶液的腐蝕行為,了解添加MoS2顆粒於純鋅鍍層後,對整體形貌與抗蝕性的影響。
實驗結果顯示,Zn-MoS2複合鍍層以樹枝狀的方式生長,提高表面粗糙度,同時當MoS2顆粒鑲嵌於鍍鋅層中有觀察到顆粒的團聚現象,造成鍍層均勻性會下降且因局部應力變大而有缺陷產生。XRD分析結果顯示MoS2顆粒的添加會影響鋅鍍層的結晶行為,呈現無優選結晶方位。對比兩者在長時間浸泡後之微結構,可發現皆有相似的腐蝕產物形貌,但在腐蝕速度的進程上,複合鍍層較純鋅鍍層快,且在浸泡24小時之複合鍍層橫截面有觀察到底材外露的情況。經電化學結果發現,兩種鍍層皆有隨時間增加而抗蝕性增加,但複合鍍層於浸泡24小時即發生底材外露,失去保護力,以上結果皆顯示MoS2顆粒的添加不利於增加抗腐蝕性。
最後挑選二篇使用相似複合鍍層系統的文獻進行比較,並探討本實驗和文獻結果之間的差異,從對比鍍液系統、電鍍參數、MoS2顆粒的選用,兩篇皆發現顆粒添加有助增加抗蝕性,推測主因是MoS2顆粒的選用,另一個為鍍層所製備的厚度能減少缺陷。
zh_TW
dc.description.abstractSaponified phosphate conversion coatings offer both corrosion resistance and lubrication. However, they present several disadvantages, including residual porosity that compromises corrosion resistance, high carbon emissions during processing, and eutrophication risks from wastewater discharge. Composite electroplating has emerged as a viable alternative, aiming to enhance process quality while reducing environmental impact.
This study investigates Zn-MoS₂ composite coatings produced using pulse electroplating from a zinc bath with dispersed MoS₂ particles, applied to S45C medium-carbon steel. By combining zinc’s sacrificial protection with MoS₂’s layered lubricating structure, the goal is to improve overall coating performance. Coating morphology was analyzed using Optical Microscope(OM) and Scanning Electron Microscope(SEM), along with Backscattered electron (BSE) imaging and Energy Dispersive X-ray Spectroscopy(EDS) to assess particle distribution. Crystallographic properties were evaluated by X-ray Diffractometer (XRD), and corrosion behavior was analyzed via Potentiodynamic Polarization and Electrochemical Impedance Spectroscopy (EIS) after immersion in 3.5 wt.% NaCl solution for 1, 6, 12, and 24 hours.
Results showed dendritic growth in the Zn-MoS₂ coatings, increasing surface roughness. Agglomeration of MoS₂ particles was observed, which reduced coating uniformity and introduced defects due to localized stress. XRD analysis results show that the addition of MoS₂ particles affects the crystallization behavior of the zinc coating, exhibiting no preferred crystallographic orientation. While both coatings displayed similar corrosion products, but the composite layer corroded more quickly, with cross-section evidence indicated substrate exposure after 24 hours of immersion. Electrochemical tests showed improved resistance over time for both, but the composite coating ultimately lost its protective function. These results indicate that MoS₂ incorporation did not enhance corrosion resistance.
Finally, two similar studies were compared. Differences in plating bath composition, deposition parameters, and MoS2 particle types were compared. Both studies reported performance improvements with particle addition, likely due to better particle selection and increasing coating thickness could help minimize defects.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:29:41Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-10T16:29:41Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract v
目次 vii
圖次 x
表次 xiv
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 文獻回顧 3
2.1 鐵礦與冶煉技術 3
2.2 皂化磷酸鹽皮膜 4
2.3 材料的腐蝕行為 7
2.3.1 腐蝕分類 7
2.3.2 鐵基材料的腐蝕行為 9
2.4 鍍鋅處理 10
2.4.1 犧牲陽極保護 10
2.4.2 鍍鋅種類介紹 14
2.4.3 Pilling-Bedworth比值 16
2.5 二硫化鉬性質介紹 18
2.6 電鍍製程 21
2.6.1 電鍍基本原理 21
2.6.2 電鍍添加劑之影響 22
2.6.3 脈衝電鍍 23
2.7 複合電鍍 25
2.7.1 複合電鍍機制 25
2.7.2 朗繆爾吸附模型 28
第三章 實驗方法與步驟 30
3.1 實驗流程 30
3.2 前處理 30
3.3 電鍍製程 31
3.3.1 純鋅電鍍溶液配置 31
3.3.2 Zn-MoS2複合電鍍溶液配置 32
3.3.3 電鍍參數 34
3.4 微結構分析 35
3.4.1 光學顯微鏡 35
3.4.2 掃描式電子顯微鏡 35
3.4.3 能量散佈X射線譜儀 36
3.4.4 X射線繞射分析儀 36
3.5 電化學分析 37
3.5.1 開路電位 37
3.5.2 動電位極化曲線 38
3.5.3 電化學交流阻抗圖譜 38
第四章 結果與討論 41
4.1 純鋅鍍層 41
4.1.1 外觀形貌觀察 41
4.1.2 微結構觀察 42
4.1.3 長時間浸泡之微結構與成分分析 44
4.1.4 極化曲線分析 49
4.1.5 EIS分析 51
4.2 Zn-MoS2複合鍍層 56
4.2.1 外觀形貌觀察 56
4.2.2 微結構觀察 57
4.2.3 XRD繞射分析 60
4.2.4 長時間浸泡之微結構與成分分析 61
4.2.5 極化曲線分析 67
4.2.6 EIS分析 70
4.3 腐蝕機制 75
4.4 相似電鍍系統比對 77
第五章 結論 86
第六章 未來展望 87
參考文獻 88
-
dc.language.isozh_TW-
dc.subject複合電鍍zh_TW
dc.subject抗腐蝕性zh_TW
dc.subject皂化磷酸鹽皮膜zh_TW
dc.subject二硫化鉬顆粒zh_TW
dc.subject電鍍鋅zh_TW
dc.subject電化學分析zh_TW
dc.subjectElectrochemical Analysisen
dc.subjectComposite Electroplatingen
dc.subjectSaponified Phosphate Coatingen
dc.subjectCorrosion Resistanceen
dc.subjectMolybdenum Disulfideen
dc.subjectZincen
dc.title鋅/二硫化鉬複合電鍍層之抗腐蝕性質研究zh_TW
dc.titleCorrosion Resistance of Zinc-Molybdenum Disulfide Composite Electrodepositen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李岳聯;鄭憶中;顏銘翬zh_TW
dc.contributor.oralexamcommitteeYueh-Lien Lee;I-Chung Cheng;Ming-Huei Yenen
dc.subject.keyword皂化磷酸鹽皮膜,複合電鍍,電鍍鋅,二硫化鉬顆粒,電化學分析,抗腐蝕性,zh_TW
dc.subject.keywordSaponified Phosphate Coating,Composite Electroplating,Zinc,Molybdenum Disulfide,Electrochemical Analysis,Corrosion Resistance,en
dc.relation.page94-
dc.identifier.doi10.6342/NTU202502358-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-29-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
dc.date.embargo-lift2030-05-30-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
9.29 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved