Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99501
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧南佑zh_TW
dc.contributor.advisorNan-You Luen
dc.contributor.author陳暐叡zh_TW
dc.contributor.authorWei-Ruei Chenen
dc.date.accessioned2025-09-10T16:29:03Z-
dc.date.available2025-09-11-
dc.date.copyright2025-09-10-
dc.date.issued2025-
dc.date.submitted2025-07-21-
dc.identifier.citation4C Offshore. Global offshore wind speeds rankings. https://www.4coffshore.com/.2025.
Hai Long Offshore Wind. Hai long offshore wind project. https:// hailongoffshorewind.com/. lastly retrieved on June 9, (2025).
中央氣象局. 颱風資料庫. https://rdc28.cwa.gov.tw/. Accessed: 2025-06-12.
L. Wang et al. Numerical Simulation of the Aeroelastic Response of Wind Turbines in Typhoons Based on the Mesoscale WRF Model. Sustainability, 12(1):34, 2019.
K. Horvath et al. Sub-kilometer dynamical downscaling of near-surface winds in complex terrain using WRF and MM5 mesoscale models. Journal of Geophysical Research: Atmospheres, 117(D11), 2012.
T. Islam et al. Tracking a tropical cyclone through WRF–ARW simulation and sensitivity of model physics. Natural Hazards, 76:1473–1495, 2015.
P. Kumar et al. Impact of ECMWF, NCEP, and NCMRWF global model analysis on the WRF model forecast over Indian Region. Theoretical and Applied Climatology, 127:143–151, 2017.
Y.-A. Liou. Consecutive dual-vortex interactions between quadruple typhoons Noru, Kulap, Nesat and Haitang during the 2017 North Pacific typhoon season. Remote Sensing, 11(16):1843, 2019.
C.-Y. Huang. A numerical study for Tropical Cyclone Atsani (2020) past offshore of southern Taiwan under topographic influences. Atmosphere, 13(4):618, 2022.
L.-F. Hsiao. Improvement of the numerical tropical cyclone prediction system at the Central Weather Bureau of Taiwan: TWRF (Typhoon WRF). Atmosphere, 11(6):657, 2020.
L.-H. Li et al. Impacts of Physical Parameterization Schemes on Typhoon Doksuri (2023) Forecasting from the Perspective of Wind–Wave Coupling. Journal of Marine Science and Engineering, 13(2):195, 2025.
Laprise and René. The Euler equations of motion with hydrostatic pressure as an independent variable. Monthly weather review, 120(1):197–207, 1992.
S.-H. Park et al. Evaluation of global atmospheric solvers using extensions of the Jablonowski and Williamson baroclinic wave test case. Monthly Weather Review, 141(9):3116–3129, 2013.
W. Skamarock et al. A description of the advanced research WRF model version 4. National Center for Atmospheric Research: Boulder, CO, USA, 145(145):550, 2019.
Arakawa and Aiko. Computational design of the basic dynamical processes of the ucla general circulation model. methods in computational physics. Advances in Research and Application, Vol. 17: General circulation models of the atmosphere, 337, 1977.
NCEP and NOAA. NCEP FNL operational model global tropospheric analyses, continuing from July 1999. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, 2000.
H. Hersbach et al. The ERA5 global reanalysis. Quarterly journal of the royal meteorological society, 146(730):1999–2049, 2020.
X.-M. Shi and Y.-Y. Wang. Impacts of cumulus convection and turbulence parameterizations on the convection-permitting simulation of typhoon precipitation. Monthly Weather Review, 150(11):2977–2997, 2022.
X. Wang and Z.-M. Tan. On the combination of physical parameterization schemes for tropical cyclone track and intensity forecasts in the context of uncertainty. Journal of Advances in Modeling Earth Systems, 15(4):e2022MS003381, 2023.
S.-Y. Bae et al. Development of a single-moment cloud microphysics scheme with prognostic hail for the Weather Research and Forecasting (WRF) model. Asia-Pacific Journal of Atmospheric Sciences, 55:233–245, 2019.
G. Thompson et al. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Monthly weather review, 136(12):5095–5115, 2008.
J. Kain. The Kain–Fritsch convective parameterization: an update. Journal of applied meteorology, 43(1):170–181, 2004.
G. Grell and D. Dévényi. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophysical Research Letters, 29(14):38–1, 2002.
柯 旻 佑. 應 用 WRF 與 LES 耦 合 模 型 分 析 真 實 颱 風 邊 界 層 中 之 風 場 特 性. 國立臺灣大學機械工程學系學位論文, pages 1–77, 2023.
E. Mlawer et al. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research: Atmospheres, 102(D14):16663–16682, 1997.
T. Matsui et al. Impact of radiation frequency, precipitation radiative forcing, and radiation column aggregation on convection-permitting West African monsoon simulations. Climate Dynamics, 55(1):193–213, 2020.
C He et al. The community Noah-MP land surface modeling system technical description version 5.0. NCAR Technical Note NCAR/TN-575+ STR, page 5, 2023.
S.-Y. Hong et al. A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly weather review, 134(9):2318–2341, 2006.
P. Jiménez et al. A revised scheme for the WRF surface layer formulation. Monthly weather review, 140(3):898–918, 2012.
N.-C. Leung et al. WRF-ROMS-SWAN Coupled Model Simulation Study: Effect of Atmosphere–Ocean Coupling on Sea Level Predictions Under Tropical Cyclone and Northeast Monsoon Conditions in Hong Kong. Atmosphere, 15(10):1242, 2024.
U. Khaira and M. Astitha. Exploring the real-time WRF forecast skill for four tropical storms, Isaias, Henri, Elsa and Irene, as they impacted the northeast United States. Remote Sensing, 15(13):3219, 2023.
Z.-Y. Wu et al. Numerical investigation of Typhoon Kai-tak (1213) using a mesoscale coupled WRF-ROMS model. Ocean Engineering, 175:1–15, 2019.
S.-T. Ke et al. Aerodynamic performance and wind-induced responses of large wind turbine systems with meso-scale typhoon effects. Energies, 12(19):3696, 2019.
H. Baki et al. A sensitivity study of WRF model microphysics and cumulus parameterization schemes for the simulation of tropical cyclones using GPM radar data. Journal of Earth System Science, 130:1–30, 2021.
Q. Fan et al. Sensitivity study of WRF cumulus schemes based on ERA5 remote sensing datas. In International Conference on Remote Sensing, Mapping, and Geographic Information Systems (RSMG 2024), volume 13402, pages 34–41. SPIE, 2024.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99501-
dc.description.abstract本研究針對臺灣離岸風電在颱風情境下所面臨之風場模擬挑戰,採用 WRF(Weather Research and Forecasting)模式,評估不同海氣象初始場來源、起始模擬時間與物理參數化方案對模擬結果之敏感性與準確度。研究選取 2017 年尼莎及 2023 年杜蘇芮與海葵三個颱風為個案,並將模擬結果與竹南、彰化觀測塔及龍鳳氣象站資料比對,從颱風路徑與風場特性進行分析與驗證。結果顯示,WRF(ERA5) 資料因具較高解析度,能較準確重現颱風結構與風場強度,惟常高估風速,且峰值時間多偏提前; WRF(FNL) 模擬風速趨勢較保守,更容易出現較高的RMSE與MAE,如海葵颱風案例中風速 RMSE 高達 12.27 m/s, KGE 值為 -0.1,顯示其在特定情境下仍存有顯著誤差。起始時間敏感性分析指出,模擬啟動時間接近颱風登陸前 6 至 12 小時,有助於精準掌握風場結構與演變;若啟動時間過短,可能因邊界場資訊尚未完整建立,導致模擬穩定性與準確性下降。參數組合方面,分成PC1以及PC2,其中PC1選擇WSM5(WRF Single-Moment 5-Class)微物理方案搭配GD(Grell–Dévényi)積雲參數方案;PC2使用Thompson微物理方案與KF(Kain–Fritsch)積雲參數方案。PC1 組合整體較保守;PC2 在颱風結構較為準確,惟易出現風速高估,杜蘇芮案例峰值高估15 %。此外,本研究也使用龍鳳氣象站所觀測之風速資料進行模擬結果比對。由於WRF較無法還原都市複雜地形,導致再使用陸上型觀測站時,風速有高估的現象。此類型測站具輔助驗證價值,但其準確度不如海上型觀測塔。整體而言,WRF 模式具備合理再現颱風風場之能力,但模擬精度高度依賴海氣象資料、參數設定與起始時間選擇。本研究成果可作為後續進行離岸風場極端載重評估與風險管理之參考依據。zh_TW
dc.description.abstractThis study uses the Weather Research and Forecasting (WRF) model to address the challenges of simulating typhoon wind fields for offshore wind power development in Taiwan. The study evaluates the sensitivity and accuracy of the simulated wind fields under various meteorological input datasets, simulation start times, and physical parameterization schemes. The study selects three typhoons—Nesat (2017), Doksuri (2023), and Haikui (2023)—as case studies. The simulated results were compared against observational data from the Zhunan and Changhua offshore meteorological towers, as well as the Longfeng weather station, focusing on typhoon tracks and wind field characteristics for analysis and validation.
The results indicate that WRF initialized with ERA5 data provides a more accurate representation of typhoon structures and wind field intensity due to its higher spatial resolution. However, it tends to overestimate wind speeds and predict peak wind events earlier than observed. Conversely, simulations using FNL data show more conservative wind speed trends but frequently yield higher RMSE and MAE values. For instance, the wind speed RMSE for Typhoon Haikui reached 12.27 m/s with a KGE value of -0.1, thereby demonstrating significant errors under specific scenarios.
Sensitivity tests of the simulation's initialization time demonstrated that initiating runs 6–12 hours prior to landfall enhanced accuracy, while overly brief lead times resulted in incomplete boundary conditions and diminished model stability. Two parameterization combinations were assessed: PC1 utilized the WRF Single-Moment 5-Class (WSM5) microphysics scheme with the Grell–Dévényi (GD) cumulus parameterization, while PC2 employed the Thompson microphysics scheme and Kain–Fritsch (KF) cumulus scheme. The PC1 ensemble demonstrates a more conservative overall tendency, while the PC2 ensemble provides a more accurate representation of the typhoon's structure but tends to overestimate wind speeds. In the case of Typhoon Doksuri, the peak was estimated to be 15% higher than the actual measurement.
Additionally, wind speed data from the Longfeng weather station were used for further validation. Due to WRF's limitations in resolving complex urban terrain, simulations tend to overestimate wind speeds when validated against land-based stations. While such stations offer supplementary verification, their accuracy is generally inferior to that of offshore towers.
Overall, the WRF model demonstrates the capability to reasonably reproduce typhoon wind field characteristics; however, its accuracy is highly dependent on initial conditions, parameter settings, and simulation timing. The findings of this research can serve as a reference for future offshore wind load estimation and risk assessments under extreme weather conditions.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:29:03Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-10T16:29:03Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
摘要 iii
Abstract iv
目次 vi
圖次 viii
表次 xi
縮寫表 xii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 2
1.3 論文架構 4
第二章 模擬方法與流程 7
2.1 觀測塔與氣象站簡介 7
2.2 颱風選擇 8
2.3 WRF 模式 9
2.4 WRF 參數設定 13
2.5 統計分析方法 14
2.6 研究流程 16
第三章 海氣象初始與邊界條件資料之影響 27
3.1 颱風風場 27
3.2 颱風路徑 31
3.3 模擬精準度分析 35
第四章 WRF 起始時間之影響 55
4.1 颱風風場 55
4.2 颱風路徑 57
4.3 模擬精準度分析 59
第五章 WRF 參數組合之影響 74
5.1 颱風風場 74
5.2 颱風路徑 77
5.3 模擬精準度分析 80
第六章 結論與建議 99
6.1 結果與討論 99
6.2 未來展望 100
參考文獻 102
-
dc.language.isozh_TW-
dc.subject物理參數化方案zh_TW
dc.subject颱風zh_TW
dc.subjectWRFzh_TW
dc.subject離岸風場zh_TW
dc.subject海氣象資料zh_TW
dc.subjectoffshore wind farmen
dc.subjectphysical parameterization schemeen
dc.subjectmet-ocean reanalysis dataen
dc.subjecttyphoonen
dc.subjectWRFen
dc.title應用WRF模式於颱風期間離岸風場風速模擬與參數敏感性分析zh_TW
dc.titleWRF Simulation and Parameter Study of Offshore On-site Wind Speeds under Typhoon Conditionsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林宗岳;吳亦莊;連國淵zh_TW
dc.contributor.oralexamcommitteeTSUNG-YUEH LIN;YI-CHUANG Wu;Guo-Yuan Lienen
dc.subject.keywordWRF,颱風,海氣象資料,物理參數化方案,離岸風場,zh_TW
dc.subject.keywordWRF,typhoon,met-ocean reanalysis data,physical parameterization scheme,offshore wind farm,en
dc.relation.page106-
dc.identifier.doi10.6342/NTU202502008-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-22-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2030-07-18-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
64.59 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved