請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99498完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳嘉文 | zh_TW |
| dc.contributor.advisor | Chia-Wen Wu | en |
| dc.contributor.author | 翁仲正 | zh_TW |
| dc.contributor.author | Jung-Jeng Weng | en |
| dc.date.accessioned | 2025-09-10T16:28:27Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-21 | - |
| dc.identifier.citation | [1] A. Dybbs, R.V. Edwards, A new look at porous media fluid mechanics–Darcy to turbulent, in: J. Bear, M.Y. Corapcioglu (Eds.), Fundamentals of Transport Phenomena in Porous Media, Vol. 82, Springer, Dordrecht, (1984), pp. 199–256.
[2] B. Kruczek, Carman–Kozeny Equation, In: E. Drioli, L. Giorno (Eds.), Encyclopedia of Membranes, Springer, (2015), pp. 1–3. [3] P. Soltani, M.S. Johari, M. Zarrebini, Effect of 3D fiber orientation on permeability of realistic fibrous porous networks, Powder Technol. 254 (2014) 44–56. [4] A. Podgórski, A. Bałazy, L. Gradoń, Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters, Chem. Eng. Sci. 61 (2006) 6804–6815. [5] X. Chen, T.D. Papathanasiou, Micro-scale modeling of axial flow through unidirectional disordered fiber arrays, Compos. Sci. Technol. 67 (2007) 1286–1293. [6] T. Schmidt, D. May, M. Duhovic, A. Widera, M. Hümbert, P. Mitschang, A combined experimental–numerical approach for permeability characterization of engineering textiles, Polymer Composites, 42(7), pp.3363–3379 (2021). [7] Z. Pan, Q. Ou, F.J. Romay, W. Chen, T. You, Y. Liang, J. Wang, D.Y.H. Pui, Study of structural factors of structure-resolved filter media on the particle loading performance with microscale simulation, Sep. Purif. Technol. 304 (2023) 122317. [8] H. Bai, X. Qian, J. Fan, Y. Qian, Y. Duo, Y. Liu, X. Wang, Computing pore size distribution in non-woven fibrous filter media, Fibers Polym. 21 (2020) 196–203. [9] J.-M. Tucny, D. Vidal, F. Drolet, F. Bertrand, Impact of multilayering on the filtration performance of clean air filter media, Can. J. Chem. Eng. 98 (2020) 2632–2647. [10] R. Gahan, G.C. Zguris, A review of the melt blown process, in: Fifteenth Annual Battery Conference on Applications and Advances, Long Beach, CA, USA, (2000), pp. 145–149. [11] M.A. Tahir, H.V. Tafreshi, Influence of fiber orientation on the transverse permeability of fibrous media, Phys. Fluids. 21 (2009) 083604. [12] R. Mead-Hunter, A.J.C. King, G. Kasper, B.J. Mullins, Computational fluid dynamics (CFD) simulation of liquid aerosol coalescing filters, J. Aerosol Sci. 61 (2013) 36–49. [13] T. Stylianopoulos, A. Yeckel, J.J. Derby, X.-J. Luo, M.S. Shephard, E.A. Sander, V.H. Barocas, Permeability calculations in three-dimensional isotropic and oriented fiber networks, Phys. Fluids. 20 (2008) 123601. [14] A. Tamayol, M. Bahrami, Transverse permeability of fibrous porous media, Phys. Rev. E83 (2011) 046314. [15] S. Rief, B. Planas, Technical documentation: Filterdict-Media&Filterdict-Element User Guide, GeoDict release 2019 SP3 (2019). [16] J. Happel, Viscous flow relative to arrays of cylinders, AIChE J. 5 (1959) 174–177. [17] J.E. Drummond, M.I. Tahir, Laminar viscous flow through regular arrays of parallel solid cylinders, Int. J. Multiphase Flow. 10 (1984) 515–540. [18] B.T. Astrom, R.B. Pipes, S.G. Advani, On flow through aligned fiber beds and its application to composite processing, J. Compos. Mater. 26 (1992) 1351–1373. [19]A.S. Sangani, A. Acrivos, Slow flow past periodic arrays of cylinders with application to heat transfer, Int. J. Multiphase Flow. 8 (1982) 193–206. [20] C.N. Davies, The separation of airborne dust and particles, Proc. Inst. Mech. Eng. 167 (1953) 185–213. [21] G.W. Jackson, D.F. James, The permeability of fibrous porous media, Can. J. Chem. Eng. 64 (1986) 364–374. [22] S. Kuwabara, The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small reynolds numbers, J. Phys. Soc. Jpn. 14 (1959) 527–532. [23] J. Van der Westhuizen, J. Prieur Du Plessis, An attempt to quantify fibre bed permeability utilizing the phase average Navier-Stokes equation, Compos. PartA-Appl. Sci. Manuf., 27 (1996) 263–269. [24] H. Hasimoto, On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres, J. Fluid Mech. 5 (1959) 317–328 . [25] B.R. Gebart, Permeability of unidirectional reinforcements for RTM, J. Compos. Mater. 26 (1992) 1100–1133. [26] Z. Zhu, Q. Wang, Q. Wu, On the examination of the Darcy permeability of soft fibrous porous media; new correlations, Chem. Eng. Sci. 173 (2017) 525–536. [27] L. Spielman, S.L. Goren, Model for predicting pressure drop and filtration efficiency in fibrous media, Environ. Sci. Technol. 2 (1968) 279–287. [28] M.M. Tomadakis, J.T. Robertson, Viscous permeability of random fiber structures: comparison of electrical and diffusional estimates with experimental and analytical results, J. Compos. Mater. 39 (2005) 163–188. [29] F.S. Henry, T. Ariman, An evaluation of the Kuwabara model, Part. Sci. Technol. 1 (1983) 1–20. [30] M.A. Hassan, B.Y. Yeom, A. Wilkie, B. Pourdeyhimi, S.A. Khan, Fabrication of nanofiber meltblown membranes and their filtration properties, J. Membrane Sci. 427 (2013) 336–344. [31] C.J. Ellison, A. Phatak, D.W. Giles, C.W. Macosko, F.S. Bates, Melt blown nanofibers: Fiber diameter distributions and onset of fiber breakup, Polymer. 48 (2007) 3306–3316 . [32] I. Soltani, C.W. Macosko, Influence of rheology and surface properties on morphology of nanofibers derived from islands-in-the-sea meltblown nonwovens, Polymer. 145 (2018) 21–30. [33] R.Uppal, G. Bhat, C. Eash, K. Akato, Meltblown nanofiber media for enhanced quality factor, Fibers Polym. 14 (2013) 660–668. [34] R. Zhang, H. Wang, Z. Zhu, R. Chen, X. Chen, J. Zeng, G. Xu, C. Wei, Q. Zhang, J. Bai, L. Huang, Fabrication of nanofiber filters for electret air conditioning filter via a multi-needle electrospinning, AIP Adv. 10 (2020) 105217. [35] D. Thomas, N. Bardin-Monnier, A. Charvet, Effect of the fibre diameter polydispersity on the permeability of nonwoven filter media, Can. J. Chem. Eng. 101 (2023) 4138–4150. [36] H.T. Luu, R. Panneton, Effective fiber diameter for modeling the acoustic properties of polydisperse fiber networks, J. Acoust. Soc. Am. 141 (2017) EL96–EL101. [37] A. Podgorski, A. Maißer, W.W. Szymanski, A. Jackiewicz, L. Gradon, Penetration of monodisperse, Singly charged nanoparticles through polydisperse fibrous filters, Aerosol Sci. Technol. 45 (2011) 215–233. [38] J.-M. Tucny, L. Spreutels, F. Drolet, S. Leclaire, F. Bertrand, D. Vidal, Impact of fiber diameter polydispersity on the permeability of fibrous media, Chemical Engineering Science, 262 (2022) 117984. [39] T.S. Lundström, B.R. Gebart, Effect of perturbation of fiber architecture on permeability inside fiber tows, J. Compos. Mater. 29 (1995) 424–443. [40] S. Jaganathan, H.V. Tafreshi, B. Pourdeyhimi, On the pressure drop prediction of filter media composed of fibers with bimodal diameter distributions, Powder Technol. 181 (2008) 89–95. [41] R.C. Brown, A. Thorpe, Glass-fibre filters with bimodal fibre size distributions, Powder Technol. 118 (2001) 3–9. [42] P.-C. Gervais, N. Bardin-Monnier, D. Thomas, Permeability modeling of fibrous media with bimodal fiber size distribution, Chem. Eng. Sci. 73 (2012) 239–248. [43] H.V. Tafreshi, M.S. A Rahman, S. Jaganathan, Q. Wang, B. Pourdeyhimi, Analytical expressions for predicting permeability of bimodal fibrous porous media, Chem. Eng. Sci., 64 (2009) 1154–1159. [44] J. Payen, P. Vroman, M. Lewandowski, A. Perwuelz, S. Callé-Chazelet, D. Thomas, Influence of fiber diameter, fiber combinations and solid volume fraction on air filtration properties in nonwovens, Text. Res. J. 82 (2012) 1948–1959. [45] D.S. Clague, R.J. Phillips, A numerical calculation of the hydraulic permeability of three-dimensional disordered fibrous media, Phys. Fluids. 9 (1997) 1562–1572. [46] K.J. Mattern, W.M. Deen, Mixing Rules for Estimating the Hydraulic Permeability of Fiber Mixtures, AIChE J. 54 (2008) 32–41. [47] S. Kang, H. Lee, S.C. Kim, D.-R. Chen, D.Y.H. Pui, Modeling of fibrous filter media for ultrafine particle filtration, Sep. Purif. Technol. 209 (2019) 461–469. [48] S.A. Hosseini, H.V. Tafreshi, On the importance of fibers' cross-sectional shape for air filters operating in the slip flow regime, Powder Technol. 212 (2011) 425–431. [49] B. Zhou, Y. Xu, J.-Q. Fan, L.-P. Chen, F. Li, K. Xue, Numerical Simulation and Experimental Validation for the Filtration Performance of Fibrous Air Filter Media with LB Method, Aerosol Air Qual. Res., 17 (2017) 2645–2658. [50] C. YANG, Aerosol filtration application using fibrous media–An industrial perspective, Chin. J. Chem. Eng. 20 (2012) 1–9. [51] K.W. Lee, Filtration of submicron aerosols by fibrous filters, Ph.D. Thesis, University of Minnesota (1977). [52] E.A. Ramskill, W.L. Anderson, The inertial mechanism in the mechanical filtration of aerosols, J. Colloid Sci. 6 (1951) 416–428. [53] S.A. Hosseini, H.V. Tafreshi, Modeling particle filtration in disordered 2-D domains: A comparison with cell models, Sep. Purif. Technol. 74 (2010) 160–169. [54] W. Li, S. Shen, H. Li, Study and optimization of the filtration performance of multifiber filter, Adv. Powder Technol. 27 (2016) 638–645. [55] Z. Pan, Y. Liang, M. Tang, Z. Sun, J. Hu, J. Wang, Simulation of performance of fibrous filter media composed of cellulose and synthetic fibers, Cellulose. 26 (2019) 7051–7065. [56] A. Karadimos, R. Ocone, The effect of the flow field recalculation on fibrous filter loading:a numerical simulation, Powder Technol. 137 (2003) 109–119. [57] D. Shou, J. Fan, H. Zhang, X. Qian, L. Ye, Filtration Efficiency of Non-Uniform Fibrous Filters, Aerosol Sci. Technol. 49 (2015) 912–919. [58] S.A. Hosseini, H.V. Tafreshi, 3-D simulation of particle filtration in electrospun nanofibrous filters, Powder Technol. 201 (2010) 153–160. [59] K.W. Lee, B.Y.H. Liu, Experimental study of aerosol filtration by fibrous filters, Aerosol Sci. Technol. 1 (1982) 35–46. [60] R. Schulz, N. Ray, S. Zech, A. Rupp, P. Knabner, Beyond Kozeny–Carman: predicting the permeability in porous media, Transp. Porous Media. 130 (2019) 487–512. [61] J. Steffens, J.R. Coury, Collection efficiency of fiber filters operating on the removal of nano-sized aerosol particles, Sep. Purif. Technol. 58 (2007) 99–105. [62] K.W. Lee, B.Y.H. Liu, Theoretical study of aerosol filtration by fibrous filters, Aerosol Sci. Technol. 1 (1982) 147–161. [63] I.B. Stechkina, A.A. Kirsch, N.A. Fuchs, Studies on fibrous aerosol filters-IV Calculation of aerosol deposition in model filters in the range of maximum penetration, Ann. Occup. Hyg. 12 (1969) 1–8. [64] H.C. Yeh, Fundamental Study of Aerosol Filtration by Fibrous Filters. Ph.D. Thesis, University of Minnesota (1972). [65] C.-S. Wang, Y. Otani, Removal of nanoparticles from gas streams by fibrous filters: A Review, Ind. Eng. Chem. Res. 52 (2013) 5–17. [66] N. Rao, M. Faghri, Computer Modeling of Aerosol Filtration by Fibrous Filters, Aerosol Sci. Technol. 8 (1988) 133–156. [67] E. Cunningham, On the velocity of steady fall of spherical particles through fluid medium, Proc. R. Soc. Lond. 83 (1910) 357–365. [68] A. Moshfegh, M. Shams, G. Ahmadi, R. Ebrahimi, A new expression for spherical aerosol drag in slip flow regime, J. Aerosol Sci. 41 (2010) 384–400. [69] J.H. Kim, G.W. Mulholland, S.R. Kukuck, D.Y.H. Pui, Slip Correction Measurements of Certified PSL Nanoparticles Using a Nanometer Differential Mobility Analyzer (Nano-DMA) for Knudsen Number From 0.5 to 83, J. Res. Natl. Inst. Stand. Technol. 110 (2005) 31–54. [70] B.Y.H Liu, K.L. Rubow, Efficiency pressure drop and figure of merit of high efficiency fibrous and membrane filter media, Proceedings of the fifth world filtration congress, (1990). [71] S. Payet, D. Boulaud, G. Madelaine, A. Renoux, Penetration and pressure drop of a HEPA filter during loading with submicron liquid particles, J. Aerosol Sci. 23 (1992) 723–735. [72] A.A. Kirsch, N.A. Fuchs, Studies on fibrous aerosol filters-II. pressure drops in systems of parallel cylinders, Ann. Occup, Hyg., 10(1), pp.23–30 (1967). [73] B.Y.H. Liu, K.W. Lee, Efficiency of membrane and nuclepore filters for submicrometer aerosols, Environ. Sci. Technol. 10 (1976) 345–350. [74] K.W. Lee, B.Y. H. Liu, On the Minimum Efficiency and the Most Penetrating Particle Size for Fibrous Filters, J. Air Pollut. Control Assoc. 30 (1980) 377–381. [75] H. Bai, X. Qian, J. Fan, Y. Shi, Y. Duo, C. Guo, X. Wang, Theoretical model of single fiber efficiency and the effect of microstructure on fibrous filtration performance: A Review, Ind. Eng. Chem. Res. 60 (2021) 3–36. [76] W.C. Hinds, Aerosol Technology Properties, Behevior, and Measurment of Airborne Particles, Wiley-Interscience (1999). [77] R. Gougeon, D. Boulaud, A. Renoux, Comparison of data from model fiber filters with diffusion, interception and inertial deposition models, Chem. eng. commun. 151 (1996) 19-39. [78] H. Bai, X. Qian, J. Fan, Y. Shi, Y. Duo, C. Guo, Probing the effective diffusion coefficient and filtration performance of micro/nanofibrous composite layered filters, Ind. Eng. Chem. Res. 60 (2021) 7301−7310. [79] J. VD Westhuizen, J.P. Du Plessis, Quantification of Unidirectional Fiber Bed Permeability, J. Compos. Mater., 28 (1994) 619−637. [80] A. A. Kirsch, N. A. Fuchs, Studies on fibrous aerosol filters-III diffusional deposition of aerosols in fibrous filters, Ann. Occup. Hyg. 11 (1968) 299−304 . [81] J. Wang, D.R. Chen, D.Y.H. Pui, Modeling of filtration efficiency of nanoparticles in standard filter media, J. Nanopart. Res. 9 (2007) 109−115. [82] X.-H. Qin, S.-Y. Wang, Filtration properties of electrospinning nanofibers, J. Appl. Polym. Sci. 102 (2006) 1285−1290. [83] R. Givehchi, Z. Tan, An overview of airborne nanoparticle filtration and thermal rebound theory, Aerosol Air Qual. Res. 14 (2014) 45−63. [84] R.S. Barhate, S. Ramakrishn, Nanofibrous filtering media: Filtration problems and solutions from tiny materials, J. Membrane Sci. 296 (2007) 1−8. [85] A. S. Sangani, A. Acrivos, Slow flow through a periodic array of spheres, Int. J. Multiphase Flow. 8 (1982) 343–360. [86] J. Lelieveld, J. Evans, M. Fnais, D. Giannadaki, A. Pozzer, The contribution of outdoor air pollution sources to premature mortality on a global scale, Nature. 525 (2015), 367–371. [87] M. Kampa, E. Castanas, Human health effects of air pollution, Environ. Pollut. 151 (2008) 362–367. [88] W.G. Tucker, An overview of PM2.5 sources and control strategies, Fuel Process. Technol. 65-66 (2000) 379–392. [89] J.-H. Park, K.-Y. Yoon, Y.-S. Kim, J.H. Byeon, J. Hwang, Removal of submicron aerosol particles and bioaerosols using carbon fiber ionizer assisted fibrous medium filter media, J. Mech. Sci. Technol. 23 (2009) 1846–1851. [90] R. Sarbatly, C.-K. Chiam, An overview of recent progress in nanofiber membranes for oily wastewater treatment, Nanomaterials. 12 (2022) 2919. [91] G. Ward, Nanofibres: media at the nanoscale, Filtr. Separat. 42 (2005) 22–24. [92] P.H. Hermans, H.L. Bredee, Principles of the mathematical treatment of constant-pressure filtration, J. Soc. Chem. Ind. 55 (1936) 1–4. [93] I.B. Stechkina, N.A. Fuchs, Studies on fibrous aerosol filters-I. Calculation of diffusional deposition of aerosols in fibrous filters, Ann. Occup. Hyg. 9 (1966) 59–64. [94] Y.K. Velu, T.K. Ghosh, A.M. Seyam, Meltblown structures formed by a robotic and meltblowing integrated system: Impact of process parameters on pore size, Text. Res. J. 73 (2003) 971–979. [95] G. Keir, V. Jegatheesan, A review of computational fluid dynamics applications in pressure-driven membrane filtration, Rev. Environ. Sci. Biotechnol. 13 (2014) 183–201. [96] C. Yue, Q. Zhang, Z. Zhai, Numerical simulation of the filtration process in fibrous filters using CFD-DEM method, J. Aerosol Sci. 101 (2016) 174–187. [97] F. Qian, N. Huang, J. Lu, Y. Han, CFD–DEM simulation of the filtration performance for fibrous media based on the mimic structure, Comput. Chem. Eng. 71 (2014) 478–488. [98] Z. Pan, Q. Ou, F.J. Romay, W. Chen, Y. Liang, D.Y.H. Pui, Experimental and numerical investigation of slip effect on nanofiber filter performance at low pressures, Small. 20 (2024) 2406619. [99] Y. Song, E. Shim, High-fidelity 3D simulation of dust-loading behavior and clogging process, Sep. Purif. Technol. 344 (2024) 127046. [100] Y. Liu, X. Qian, H. Zhang, L. Wang, C. Zou, Y. Cui, Preparing micro/nano-fibrous filters for effective PM 2.5 under low filtration resistance, Chem. Eng. Sci. 217 (2020) 115523. [101] M.J. Lehmann, S. Hiel, E. Nibler, M. Durst, Filtration performance simulations based on 3D structural data of real filter media, J. KONES. 15 (2008) 277–284. [102] P.J. Withers, C. Bouman, S. Carmignato, V. Cnudde, D. Grimaldi, et al., X-ray computed tomography, Nat. Rev. Methods Prime. 1 (2021) 18. [103] S. Linden, B. Planas, Technical documentation: FLOWDICT User Guide, GeoDict release 2019 SP3 Revision (2019). [104] M. Krotkiewski, I.S. Ligaarden, K.-A. Lie, D.W. Schmid, On the importance of the Stokes-Brinkman equations for computing effective permeability in carbonate karst reservoirs, Commun. Comput. Phys. 10 (2011) 1315–1332. [105] A. Wiegmann, O. Iliev, A. Schindelin, Computer aided engineering of filter materials and pleated filters, Global Guide of the Filtration and Separation Industry (2010) 191–198. [106] S. Linden, A. Wiegmann, H. Hagen, The LIR space partitioning system applied to the Stokes equations, Graph. Models. 82 (2015) 58–66. [107] A. Nabovati, E.W. Llewellin, A.C.M. Sousa, A general model for the permeability of fibrous porous media based on fluid f low simulations using the lattice Boltzmann method, Compos. Part A: Appl. Sci. Manuf. 40 (2009) 860–869. [108] S. Rief, B. Planas, Technical documentation: FiberGeo User Guide Release 2018. [109] F. Wang, U.D. Schiller, Computational characterization of nonwoven fibrous media: I. Pore-network extraction and morphological analysis, Phys. Rev. Mater. 4 (2020) 083803. [110] A. Bandekar, H. Nemmara, Predictive analysis of solids filtration with multi-layered filtered media, Int. J. Adv. Res. 8 (2020) 407–419. [111] A.K. Maddineni, D. Das, R.M. Damodaran, Air-borne particle capture by fibrous filter media under collision effect: A CFD-based approach, Sep. Purif. Technol. 193 (2018) 1–10. [112] V. Rutka, A. Wiegmann, Explicit jump immersed interface method for virtual material design of the effective elastic moduli of composite materials, Numer. Algorithms. 43 (2006) 309–330. [113] L. Cheng, S. Rief, A. Wiegmann, SIMPLE-FFT for flow computations in low porosity μCT images, in: 5th International Conference on Porous Medium & Annul Meeting (2013). [114] J. A. Hubbard, J. E. Brockmann, J. Dellinger, D.A. Lucero, A.L. Sanchez, B.L. Servantes, Fibrous filter efficiency and pressure drop in the viscous-inertial transition flow regime, Aerosol Sci. Technol. 46 (2011) 138–147. [115] Y. Otani, K. Eryu, M. Furuuchi, N. Tajima, P. Tekasakul, Inertial classification of nanoparticles with fibrous filters, Aerosol Air Qual. Res. 7 (2007) 343–352. [116] I. Rios de Anda, J.W. Wilkins, J.F. Robinson, C.P. Royall, R.P. Sear, Modeling the filtration efficiency of a woven fabric: The role of multiple lengthscales, Phys. Fluids. 34 (2022) 033301. [117] H.D. Landahl, R.G. Herrmann, Sampling of liquid aerosols by wires, cylinders and slides, and the efficiency of impactions of droplets, J. Colloid. Sci. 4 (1949) 103–136. [118] J. Wang, P. Tronville, Toward standardized test methods to determine the effectiveness of filtration media against airborne nanoparticles, J. Nanopart. Res. 16 (2014) 2417. [119] G. Berry, I. Beckman, H. Cho, A comprehensive review of particle loading models of fibrous air filters, J. Aerosol Sci. 167 (2023) 106078. [120] S. Ma, Y. Zhou, Z. Sun, H. Gu, H. Yuan, S. Cao, Numerical simulation study on depth filtration performance of metal fiber pre-filters with different pleat structures, Nucl. Eng. Des. 425 (2024) 113337. [121] S.-H. Huang, Y.-M. Kuo, K.-N. Chang, Y.-K. Chen, W.-Y. Lin, W.-Y. Lin, C.-C. Chen, Experimental study on the effect of fiber orientation on filter quality, Aerosol Sci. Technol. 44 (2010) 964–971. [122] L. Li, Y. Zhou, X. Li, X. Hou, Y. Xu, Z. Sun, H. Gu, R. Ding, Three-dimensional numerical simulation and structural optimization of filtration performance of pleated cylindrical metal fiber filter, Sep. Purif. Technol. 311 (2023) 123224. [123] A. Barrio-Zhang, S. Anandan, A. Deolia, R. Wagner, D.M. Warsinger, A.M. Ardekani, Acoustically enhanced porous media enables dramatic improvements in filtration performance, Sep. Purif. Technol. 342 (2024) 126972. [124] H.P. Grace, Structure and performance of filter media. II. Performance of filter media in liquid service, AIChE J. 2 (1956) 316–336. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99498 | - |
| dc.description.abstract | 熔噴不織布是由超細纖維堆疊構成,具有多孔性及孔徑分布範圍廣泛的特性,且其流動孔道相互連通,可減緩因孔洞阻塞造成壓差增加的情形。由大量纖維組成的結構,可供捕集顆粒的表面積廣大,具備有效捕捉汙染物的能力。對於濾材的效能通常考量兩個重要參數,分別是滲透度及過濾效率,過去已有許多研究預測纖維濾材在這兩方面的過濾效能,考量不同纖維排列型態推導理論模型,其中許多理論模型會再經由實驗數據進行優化。
數值模擬則是另一種可用於預測纖維濾材滲透度及過濾效率的方式,但其準確性受模型的結構特性影響。根據規格所列熔噴不織布的結構參數,發現選定建立模型的參數具有難度。本研究藉由不同結構參數之熔噴不織布,提出使用GeoDict®軟體建立對應模型的流程,並透過軟體提供的模組與建立的濾材模型進行數值模擬,預測熔噴不織布的滲透度、最易穿透粒徑(MPPS)及過濾效率。有關滲透度的預測,本研究比較多個無量綱滲透度的理論預測與數值模擬計算之結果。由於使用的熔噴不織布具有多分散纖維直徑,本研究進一步探討適用於濾材模型的等效直徑,數值模擬搭配3種等效直徑計算的無量綱滲透度與部分理論預測結果相近。針對過濾效率及最易穿透粒徑的預測,藉由單根纖維過濾效率和等效直徑計算纖維濾材的過濾效率,與數值模擬所得的數據點進行比較。除纖維體積占比較高的模型外,其餘模型的最易穿透粒徑之數值模擬結果與理論預測接近;數值模擬所得的過濾效率變化趨勢與理論預測曲線相符。由理論預測與數值模擬進行比較分析的結果,說明本研究方法建立的模型具準確性,使數值模擬可有效預測過濾效能,達成降低實驗成本的目標。最後,藉由這些濾材模型進行相關應用分析與討論。 | zh_TW |
| dc.description.abstract | Melt-blown nonwoven fabric consists of stacked ultrafine fibers. It exhibits porosity with a broad pore size distribution, and its interconnected flow channels can help mitigate the increase in pressure drop caused by pore blockage. The structure composed of a large number of fibers provides an extensive surface area for particle collection, making it effective in capturing contaminants. Two critical parameters commonly considered in evaluating the performance of filter media are permeability and filtration efficiency. In the past, numerous studies have predicted the filtration performance of fibrous filter media in these two aspects by deriving theoretical models that consider various fiber arrangement structures. Many of these models were further refined using experimental data.
Numerical simulation is an alternative method for predicting the permeability and filtration efficiency of fibrous filter media. However, its accuracy is influenced by the structural characteristics of models. Given the structural parameters of the melt-blown nonwoven fabrics outlined in the specifications, it was found that selecting appropriate parameters for the model construction presented difficulties. Based on the melt-blown nonwoven fabrics with varying structural parameters, this study proposes a procedure for constructing corresponding models via GeoDict® software. Numerical simulations are then performed using the software’s modules and these constructed filter media models to predict the permeability, most penetrating particle size (MPPS), and filtration efficiency of the melt-blown nonwoven fabrics. In terms of permeability prediction, this study compares various theoretical predictions of dimensionless permeability with results obtained from the numerical simulations. Because the melt-blown nonwoven fabrics employed exhibit polydisperse fiber diameters, this study further investigates the equivalent diameters applicable to the filter media models. The dimensionless permeability calculated through the numerical simulations in conjunction with three of these equivalent diameters shows good agreement with certain theoretical predictions. To predict the filtration efficiency and the most penetrating particle size, the filtration efficiency of the fibrous filter media is calculated based on the single fiber filtration efficiency and the equivalent diameters. It is then compared with data points obtained from the numerical simulations. Except for the models with the high fiber volume fraction, the numerical simulation results of the most penetrating particle sizes for the other models are close to the theoretical predictions. The trends in the filtration efficiency obtained from the numerical simulations agree with the theoretical prediction curves. The results of the comparative analysis between the theoretical predictions and the numerical simulations demonstrate the accuracy of the models constructed using the procedure proposed in this study, thereby enabling numerical simulations to predict filtration performance effectively and achieving the objective of reducing experimental costs. Finally, these filter media models are utilized to analyze and discuss related applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:28:27Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:28:27Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II ABSTRACT III 目次 V 圖次 VII 表次 XII 第1章 緒論 1 1.1研究背景與動機 1 1.2熔噴製程簡介 3 1.3研究目的、方法與架構 5 第2章 文獻回顧 7 2.1纖維濾材的滲透度 7 2.2纖維濾材的微觀結構分類 10 2.3預測纖維濾材滲透度的理論模型 13 2.4多分散纖維之等效直徑 22 2.5纖維濾材之顆粒捕集機制 31 2.6單根纖維過濾效率的理論模型 34 第3章 纖維濾材建模與數值模擬之研究方法 45 3.1經典無量綱滲透度理論模型之比較 45 3.2纖維濾材之數值模擬研究方法與流程 52 3.3探討單一纖維直徑濾材之滲透度 54 3.4單一纖維直徑濾材滲透度之理論預測與數值模擬 61 3.5 3D纖維濾材模型之建立流程 67 3.6分析多分散纖維直徑濾材之等效直徑與滲透度 96 第4章 探討纖維濾材過濾效率之數值模擬與理論模型 113 4.1探討單根纖維過濾效率之理論模型 113 4.2分析單一纖維直徑濾材之最易穿透粒徑與過濾效率 120 4.3各種求解器之介紹 127 4.4分析多分散纖維直徑濾材之最易穿透粒徑與過濾效率 129 4.5濾材模型之應用探討 151 4.5.1過濾效率曲線分析 151 4.5.2過濾分離效能之評估 156 4.5.3探討多層濾材結構之設計 158 第5章 結論與未來研究方向 169 5.1結論 169 5.2未來研究方向 171 參考文獻 172 附錄 181 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 空氣過濾 | zh_TW |
| dc.subject | 熔噴不織布 | zh_TW |
| dc.subject | 過濾效率 | zh_TW |
| dc.subject | 滲透度 | zh_TW |
| dc.subject | 數值模擬 | zh_TW |
| dc.subject | numerical simulation | en |
| dc.subject | permeability | en |
| dc.subject | filtration efficiency | en |
| dc.subject | air filtration | en |
| dc.subject | melt-blown nonwoven fabric | en |
| dc.title | 纖維濾材3D模擬於空氣過濾效能之研究 | zh_TW |
| dc.title | A Study on Air Filtration Performance via 3D Simulation of Fibrous Filter Media | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 康敦彥;闕居振;葉禮賢;何兆全 | zh_TW |
| dc.contributor.oralexamcommittee | Dun-Yen Kang;Chu-Chen Chueh;Li-Hsien Yeh;Chao-Chuan Ho | en |
| dc.subject.keyword | 熔噴不織布,空氣過濾,數值模擬,滲透度,過濾效率, | zh_TW |
| dc.subject.keyword | melt-blown nonwoven fabric,air filtration,numerical simulation,permeability,filtration efficiency, | en |
| dc.relation.page | 204 | - |
| dc.identifier.doi | 10.6342/NTU202501980 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-07-22 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 綠色永續材料與精密元件博士學位學程 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 綠色永續材料與精密元件博士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 13.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
