請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99497完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 單秋成 | zh_TW |
| dc.contributor.advisor | Chow-Shing Shin | en |
| dc.contributor.author | 曾子瀚 | zh_TW |
| dc.contributor.author | Tzu-Han Tseng | en |
| dc.date.accessioned | 2025-09-10T16:28:14Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-24 | - |
| dc.identifier.citation | [1] Liu Y, and Kumar S. Recent Progress in Fabrication, Structure, and Properties of Carbon Fibers. Polymer Reviews. 2012;52(3):234-58.
[2] Wang L, Zheng C, Luo H, Wei S, Wei Z. Continuum damage modeling and progressive failure analysis of carbon fiber/epoxy composite pressure vessel. Composite Structures. 2015;134:475-82. [3] Alias MN, Brown R. Corrosion behavior of carbon fiber composites in the marine environment. Corrosion Science. 1993;35(1):395-402. [4] Breede F, Hofmann S, Jain N, Jemmali R. Design, Manufacture, and Characterization of a Carbon Fiber-Reinforced Silicon Carbide Nozzle Extension. International Journal of Applied Ceramic Technology. 2016;13(1):3-16. [5] Soutis C. Fibre reinforced composites in aircraft construction. Progress in Aerospace Sciences. 2005;41(2):143-51. [6] Ennis BL, Kelley CL, Naughton BT, Norris RE, Das S, Lee D, et al. Optimized Carbon Fiber Composites in Wind Turbine Blade Design. United States: Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); 2019. p. Medium: ED; Size: 70 p. [7] Badawi M, Soudki K. Control of Corrosion-Induced Damage in Reinforced Concrete Beams Using Carbon Fiber-Reinforced Polymer Laminates. Journal of Composites for Construction. 2005;9(2):195-201. [8] Liu Y, Zwingmann B, Schlaich M. Carbon Fiber Reinforced Polymer for Cable Structures—A Review. Polymers. 2015;7(10):2078-99. [9] Tsai YI, Bosze EJ, Barjasteh E, Nutt SR. Influence of hygrothermal environment on thermal and mechanical properties of carbon fiber/fiberglass hybrid composites. Composites Science and Technology. 2009;69(3):432-7. [10] Cysne Barbosa AP, P. Fulco AP, S.S. Guerra E, K. Arakaki F, Tosatto M, B. Costa MC, et al. Accelerated aging effects on carbon fiber/epoxy composites. Composites Part B: Engineering. 2017;110:298-306. [11] Chen L, Lin X, Bai R, Zhao Z, Guo Z. Anti-bird-strike behavior of M40J carbon fiber reinforced plastic laminates. Composite Structures. 2024;339:118094. [12] Tehrani M, Boroujeni AY, Hartman TB, Haugh TP, Case SW, Al-Haik MS. Mechanical characterization and impact damage assessment of a woven carbon fiber reinforced carbon nanotube–epoxy composite. Composites Science and Technology. 2013;75:42-8. [13] Hosur M, Murthy C, Ramurthy T. Compression After Impact Testing of Carbon Fiber Reinforced Plastic Laminates. Journal of Composites Technology and Research. 1999;21(2):51-64. [14] Siegfried M, Tola C, Claes M, Lomov SV, Verpoest I, Gorbatikh L. Impact and residual after impact properties of carbon fiber/epoxy composites modified with carbon nanotubes. Composite Structures. 2014;111:488-96. [15] Tserpes KI, Karachalios V, Giannopoulos I, Prentzias V, Ruzek R. Strain and damage monitoring in CFRP fuselage panels using fiber Bragg grating sensors. Part I: Design, manufacturing and impact testing. Composite Structures. 2014;107:726-36. [16] Shigang A, Daining F, Rujie H, Yongmao P. Effect of manufacturing defects on mechanical properties and failure features of 3D orthogonal woven C/C composites. Composites Part B: Engineering. 2015;71:113-21. [17] De Angelis G, Meo M, Almond DP, Pickering SG, Angioni SL. A new technique to detect defect size and depth in composite structures using digital shearography and unconstrained optimization. NDT & E International. 2012;45(1):91-6. [18] Dong C, Zhou J, Ji X, Yin Y, Shen X. Study of the curing process of carbon fiber reinforced resin matrix composites in autoclave processing. Procedia Manufacturing. 2019;37:450-8. [19] Papargyris DA, Day RJ, Nesbitt A, Bakavos D. Comparison of the mechanical and physical properties of a carbon fibre epoxy composite manufactured by resin transfer moulding using conventional and microwave heating. Composites Science and Technology. 2008;68(7):1854-61. [20] Centea T, Hubert P. Measuring the impregnation of an out-of-autoclave prepreg by micro-CT. Composites Science and Technology. 2011;71(5):593-9. [21] Park SY, Choi CH, Choi WJ, Hwang SS. A Comparison of the Properties of Carbon Fiber Epoxy Composites Produced by Non-autoclave with Vacuum Bag Only Prepreg and Autoclave Process. Applied Composite Materials. 2019;26(1):187-204. [22] Chang Y-Y, Young W-B. Study on the Characteristics of Vacuum-Bag-Only Processed Composites by Prepreg/Fiber Interleaved Layup. Fibers and Polymers. 2023;24(2):653-70. [23] Wu K-J, Young W-B. Complex angle part fabricated by vacuum bag only process with interleaved dry fiber and prepreg. Journal of Composite Materials. 2023;57(2):199-211. [24] Che D, Saxena I, Han P, Guo P, Ehmann KF. Machining of Carbon Fiber Reinforced Plastics/Polymers: A Literature Review. Journal of Manufacturing Science and Engineering. 2014;136(3). [25] Park KY, Choi JH, Lee DG. Delamination-Free and High Efficiency Drilling of Carbon Fiber Reinforced Plastics. Journal of Composite Materials. 1995;29(15):1988-2002. [26] Abdallah R, Soo SL, Hood R. A feasibility study on wire electrical discharge machining of carbon fibre reinforced plastic composites. Procedia CIRP. 2018;77:195-8. [27] Li J, Ding Y, Ge C, Sun X, Yang L, Wang Y, et al. Investigations on 355 nm picosecond laser machining of carbon fiber reinforced polymer composites. Journal of Manufacturing Processes. 2023;101:854-66. [28] Abusrea MR, Arakawa K. Improvement of an adhesive joint constructed from carbon fiber-reinforced plastic and dry carbon fiber laminates. Composites Part B: Engineering. 2016;97:368-73. [29] Yang G, Yang T, Yuan W, Du Y. The influence of surface treatment on the tensile properties of carbon fiber-reinforced epoxy composites-bonded joints. Composites Part B: Engineering. 2019;160:446-56. [30] Khashaba UA, Aljinaidi AA, Hamed MA. Fatigue and reliability analysis of nano-modified scarf adhesive joints in carbon fiber composites. Composites Part B: Engineering. 2017;120:103-17. [31] Gupta M, Ahmad KM, Ravi B, and Singari RM. Advances in applications of Non-Destructive Testing (NDT): A review. Advances in Materials and Processing Technologies. 2022;8(2):2286-307. [32] Kouche AE, Hassanein HS. Ultrasonic Non-Destructive Testing (NDT) Using Wireless Sensor Networks. Procedia Computer Science. 2012;10:136-43. [33] Derusova DA, Vavilov VP, Druzhinin NV, Kolomeets NP, Chulkov AO, Rubtsov VE, et al. Investigating vibration characteristics of magnetostrictive transducers for air-coupled ultrasonic NDT of composites. NDT & E International. 2019;107:102151. [34] Kot P, Muradov M, Gkantou M, Kamaris GS, Hashim K, Yeboah D. Recent Advancements in Non-Destructive Testing Techniques for Structural Health Monitoring. Applied Sciences. 2021;11(6):2750. [35] Ramalho GMF, Lopes AM, da Silva LFM. Structural health monitoring of adhesive joints using Lamb waves: A review. Structural Control and Health Monitoring. 2022;29(1):e2849. [36] Yang X, Lingyu S, Bincheng H, Bowen Z, Cheng Z, Yantao C, et al. Tuning the properties of functional adhesives with hybrid nanofillers for structural health monitoring. The Journal of Adhesion. 2021;97(2):101-16. [37] Sam-Daliri O, Farahani M, Faller L-M, Zangl H. Structural health monitoring of defective single lap adhesive joints using graphene nanoplatelets. Journal of Manufacturing Processes. 2020;55:119-30. [38] Sánchez-Romate XF, García C, Rams J, Sánchez M, Ureña A. Structural health monitoring of a CFRP structural bonded repair by using a carbon nanotube modified adhesive film. Composite Structures. 2021;270:114091. [39] Thostenson ET, Chou T-W. Carbon nanotube-based health monitoring of mechanically fastened composite joints. Composites Science and Technology. 2008;68(12):2557-61. [40] Martin CA, Sandler JKW, Windle AH, Schwarz MK, Bauhofer W, Schulte K, et al. Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites. Polymer. 2005;46(3):877-86. [41] Breton Y, Désarmot G, Salvetat JP, Delpeux S, Sinturel C, Béguin F, et al. Mechanical properties of multiwall carbon nanotubes/epoxy composites: influence of network morphology. Carbon. 2004;42(5):1027-30. [42] Li EY, Marzari N. Improving the Electrical Conductivity of Carbon Nanotube Networks: A First-Principles Study. ACS Nano. 2011;5(12):9726-36. [43] Shin C-S, Huang S-H. Evaluation of Fatigue Damage Monitoring of Single-Lap Composite Adhesive Joint Using Conductivity. Polymers. 2024;16(16):2374. [44] Nofar M, Hoa SV, Pugh MD. Failure detection and monitoring in polymer matrix composites subjected to static and dynamic loads using carbon nanotube networks. Composites Science and Technology. 2009;69(10):1599-606. [45] 王俊凱. 利用導電性監測複材膠合接口濕熱老化: 臺灣大學機械工程學系研究所碩士論文; 2023. [46] 黃順亘. 以導電性監測複材膠合接口濕熱老化破壞之探討: 臺灣大學機械工程學系研究所碩士論文; 2024. [47] Li W, Krehl J, Gillespie JW, Heider D, Endrulat M, Hochrein K, et al. Process and Performance Evaluation of the Vacuum-Assisted Process. Journal of Composite Materials. 2004;38(20):1803-14. [48] Garschke C, Weimer C, Parlevliet PP, Fox BL. Out-of-autoclave cure cycle study of a resin film infusion process using in situ process monitoring. Composites Part A: Applied Science and Manufacturing. 2012;43(6):935-44. [49] Centea T, Nutt SR. Manufacturing cost relationships for vacuum bag-only prepreg processing. Journal of Composite Materials. 2015;50(17):2305-21. [50] Yang Y-H, Young W-B. Carbon/Epoxy Composites Fabricated by Vacuum Consolidation of the Interleaved Layup of Prepregs and Dry Fibers. Fibers and Polymers. 2021;22(2):460-8. [51] Gunnion AJ, Herszberg I. Parametric study of scarf joints in composite structures. Composite Structures. 2006;75(1):364-76. [52] Chen D, Cheng S. An Analysis of Adhesive-Bonded Single-Lap Joints. Journal of Applied Mechanics. 1983;50(1):109-15. [53] Oplinger DW. Effects of adherend deflections in single lap joints. International Journal of Solids and Structures. 1994;31(18):2565-87. [54] Kahraman R, Sunar M, Yilbas B. Influence of adhesive thickness and filler content on the mechanical performance of aluminum single-lap joints bonded with aluminum powder filled epoxy adhesive. Journal of Materials Processing Technology. 2008;205(1):183-9. [55] Lang TP, Mallick PK. Effect of spew geometry on stresses in single lap adhesive joints. International Journal of Adhesion and Adhesives. 1998;18(3):167-77. [56] Jasiūnienė E, Mažeika L, Samaitis V, Cicėnas V, Mattsson D. Ultrasonic non-destructive testing of complex titanium/carbon fibre composite joints. Ultrasonics. 2019;95:13-21. [57] Casavola C, Palano F, De Cillis F, Tati A, Terzi R, Luprano V. Analysis of CFRP Joints by Means of T-Pull Mechanical Test and Ultrasonic Defects Detection. Materials. 2018;11(4):620. [58] Yu X, Fan Z, Puliyakote S, Castaings M. Remote monitoring of bond line defects between a composite panel and a stiffener using distributed piezoelectric sensors. Smart Materials and Structures. 2018;27(3):035014. [59] Grammatikos SA, Kordatos EZ, Matikas TE, Paipetis AS. Real-Time Debonding Monitoring of Composite Repaired Materials via Electrical, Acoustic, and Thermographic Methods. Journal of Materials Engineering and Performance. 2014;23(1):169-80. [60] Sadeghi MZ, Weiland J, Preisler A, Zimmermann J, Schiebahn A, Reisgen U, et al. Damage detection in adhesively bonded single lap joints by using backface strain: Proposing a new position for backface strain gauges. International Journal of Adhesion and Adhesives. 2020;97:102494. [61] Jaiswal PR, Kumar RI, Saeedifar M, Saleh M, Luyckx G, De Waele W. Deformation and damage evolution of a full-scale adhesive joint between a steel bracket and a sandwich panel for naval application. Proceedings of the Institution of Mechanical Engineers, Part C. 2021;235(3):571-84. [62] Hao B, Ma Q, Yang S, Mäder E, Ma P-C. Comparative study on monitoring structural damage in fiber-reinforced polymers using glass fibers with carbon nanotubes and graphene coating. Composites Science and Technology. 2016;129:38-45. [63] Carraro PA, Pontefisso A, Panozzo F, Quaresimin M, Zappalorto M. Health monitoring of bonded joints through electrical measurements. Structural Health Monitoring.0(0):14759217241264928. [64] Takeda T, Shindo Y, Kuronuma Y, Narita F. Modeling and characterization of the electrical conductivity of carbon nanotube-based polymer composites. Polymer. 2011;52(17):3852-6. [65] Poornima, Rashmi, Sundara Rajan J. Effective use of nano-carbons in controlling the electrical conductivity of epoxy composites. Composites Science and Technology. 2021;202:108554. [66] Razavi R, Zare Y, Rhee KY. The roles of interphase and filler dimensions in the properties of tunneling spaces between CNT in polymer nanocomposites. Polymer Composites. 2019;40(2):801-10. [67] Li C, Thostenson ET, Chou T-W. Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube–based composites. Applied Physics Letters. 2007;91(22). [68] Xia ZH, Curtin WA. Modeling of mechanical damage detection in CFRPs via electrical resistance. Composites Science and Technology. 2007;67(7):1518-29. [69] Lee BM, Loh KJ. A 2D percolation-based model for characterizing the piezoresistivity of carbon nanotube-based films. Journal of Materials Science. 2015;50(7):2973-83. [70] Hu N, Karube Y, Yan C, Masuda Z, Fukunaga H. Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Materialia. 2008;56(13):2929-36. [71] Li C, Chou T-W. Modeling of damage sensing in fiber composites using carbon nanotube networks. Composites Science and Technology. 2008;68(15):3373-9. [72] Yang L, Anantram MP, Han J, Lu JP. Band-gap change of carbon nanotubes: Effect of small uniaxial and torsional strain. Physical Review B. 1999;60(19):13874-8. [73] Stampfer C, Helbling T, Jungen A, Hierold C. Piezoresistance of Single-Walled Carbon Nanotubes. TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference2007. p. 1565-8. [74] Hu C, Huang G, Li C. Experimental and Numerical Study of Low-Velocity Impact and Tensile after Impact for CFRP Laminates Single-Lap Joints Adhesively Bonded Structure. Materials. 2021;14(4):1016. [75] Mendoza I, Lamberson L. Damage tolerancing in carbon fiber-reinforced polymer (CFRP) laminates under combined impact fatigue and environmental conditioning. Composites Part A: Applied Science and Manufacturing. 2024;180:108062. [76] Huang W, Sun L, Liu Y, Chu Y, Wang J. Effects of low-energy impact at different temperatures on residual properties of adhesively bonded single-lap joints with composites substrates. Composite Structures. 2021;267:113860. [77] ASTM. D5868-01 Standard Test Method for Lap Shear Adhesion for Fiber Reinforced Plastic (FRP) Bonding. ASTM International; 2014. [78] ASTM. Standard Test Method for Impact Resistance of Flat, Rigid Plastic Specimens by Means of a Falling Dart (Tup or Falling Mass). ASTM International; 2018. [79] Prolongo SG, Gude MR, Ureña A. Water uptake of epoxy composites reinforced with carbon nanofillers. Composites Part A: Applied Science and Manufacturing. 2012;43(12):2169-75. [80] Guadagno L, Vertuccio L, Sorrentino A, Raimondo M, Naddeo C, Vittoria V, et al. Mechanical and barrier properties of epoxy resin filled with multi-walled carbon nanotubes. Carbon. 2009;47(10):2419-30. [81] Guadagno L, Vertuccio L. Resistive Response of Carbon Nanotube-Based Composites Subjected to Water Aging. Nanomaterials. 2021;11(9):2183. [82] Morris DRP, Liu SP, Villegas Gonzalez D, Gostick JT. Effect of Water Sorption on the Electronic Conductivity of Porous Polymer Electrolyte Membrane Fuel Cell Catalyst Layers. ACS Applied Materials & Interfaces. 2014;6(21):18609-18. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99497 | - |
| dc.description.abstract | 本研究探討碳纖維複材單搭接膠合接口受衝擊破壞之濕熱老化監控,分別以兩種製程製作碳纖維複合材料,比較傳統熱壓成型製程與真空袋製程之單搭接試片差異,並解釋預衝擊試片濕熱老化後之機械性質破壞特徵。
為監控膠合接口之破壞情形,本研究使用非破壞檢測(Non-destructive Technique, NDT)中之結構健康監測(Structural Health Monitoring, SHM),該方法可實時監控試片之變化,藉由電性評估試片之破壞程度,操作簡單且成本較低。由於需透過電性監控,因此在搭接劑中加入多壁奈米碳管,透過碳管間接觸導電與無接觸碳管間隧穿效應導電,並提供一定的機械強度,受到破壞時碳管網絡改變使電性改變,能即時顯現出其中破壞。 兩製程製作之試片存在強度差異,真空袋製程試片較熱壓製程試片拉伸強度低13%,由於製程之環境不同,真空袋製程之複材含較多孔洞缺陷,因此導致單搭接試片之強度差異,然而由於此缺陷,受到衝擊時能吸收較多之衝擊能量,傳遞給接口之衝擊能量較少,受相同能量衝擊後之殘餘拉伸強度與疲勞強度下降較少。 電性監控方面,衝擊時電壓瞬間下降,由於大部分能量由表層基材吸收,接口主要受到壓縮,使碳管網絡更緻密導致導電度變佳,透過電性之變化可以觀測到接口受到衝擊傷害,但電性之變化無法量化成受到衝擊之程度。預衝擊拉伸試驗之電性監控多呈現雜訊,與力量變化無一定之趨勢,顯示出電性監控之失效;反之疲勞試驗可見電性大幅變化,其中可見電壓陡升,破斷面可見兩種破壞機制,其電性表現為兩種破壞之綜合表現。高溫高濕環境之電壓監控皆上升,大致可分成兩種趨勢,其中一種趨勢之試片在後續機械性質測試後存在兩種表現,為試片受到之衝擊破壞差異,在破壞後之顯微觀測可見受到衝擊破壞之程度差異。 綜合上述,本研究提供碳纖維複材單搭接膠合接口受衝擊之電性表現與預衝擊濕熱老化後機械試驗破壞特徵,可見衝擊破壞對接口之影響,後續可透過其他檢驗方式探討電性變化之破壞表徵。 | zh_TW |
| dc.description.abstract | This study investigates the monitoring of hygrothermal aging in pre-impacted single-lap joints in carbon fiber reinforced plastic. Two fabrication methods were employed to produce the composite specimens: autoclave molding and vacuum bag only (VBO) process. The study compares the differences between single-lap joint specimens fabricated by these two processes and explains the mechanical failure characteristics of pre-impacted specimens after hygrothermal aging.
To monitor the damage in the joint, a non-destructive testing (NDT) method known as structural health monitoring (SHM) was utilized. SHM allows for real-time monitoring of changes in the specimens by evaluating electrical signals to assess damage progression. This method is characterized by its simplicity and low cost. For electrical sensing, multi-walled carbon nanotubes (MWCNTs) were incorporated into the adhesive layer. These nanotubes provide electrical conductivity through contact and tunneling resistance between nanotubes, while also contributing to mechanical strength. When damage occurs, changes in the CNT network lead to variations in electrical conductivity, which reflect the extent of damage in real time. Single-lap joint Specimens fabricated by the two processes exhibited differences in mechanical strength. The VBO specimens had 13% lower tensile strength compared to those made using the autoclave process. This difference is attributed to higher porosity in composites made by the VBO process. However, due to these voids, VBO specimens were able to absorb more impact energy, resulting in less energy being transmitted to the joint. Consequently, after being subjected to the same impact energy, VBO specimens showed smaller reductions in residual tensile and fatigue strength. In terms of electrical monitoring, a sharp voltage drop was observed at the moment of impact. Since most of the energy was absorbed by the surface matrix, the joint mainly experienced compression, densifying the CNT network and improving conductivity. Although this electrical change indicates that the interface suffered impact damage, it does not quantitatively reflect the severity of the impact. During pre-impacted tensile tests, electrical monitoring signals often appeared as noise with no clear correlation to load changes, indicating a failure of the electrical monitoring method in that context. In contrast, significant electrical changes were observed during fatigue testing, including sharp voltage increases. Fractographic analysis revealed two distinct failure mechanisms, and the electrical response was a combined representation of both. Under hygrothermal environment, the monitored voltage values increased and could be categorized into two distinct trends. Post-mechanical testing showed that specimens following one trend exhibited two different performance profiles, corresponding to varying degrees of impact damage. Microscopic observations confirmed differences in the extent of damage between specimens. In summary, this study provides insights into the electrical behavior of carbon fiber single-lap joints subjected to impact and the failure characteristics of mechanically tested specimens after pre-impact hygrothermal aging. The findings highlight the influence of impact damage on bonded interfaces and suggest that further investigations using alternative inspection methods are warranted to better interpret electrical signal variations as indicators of specific damage modes. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:28:14Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:28:14Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
致謝 II 摘要 III Abstract IV 目 次 VI 圖 次 IX 表 次 XIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 1.3 論文架構 4 第二章 文獻回顧 5 2.1 碳纖維複合材料無壓力釜製程 5 2.2 單搭接膠合接口(Single Lap Joint, SLJ) 7 2.3 結構健康監測(Structural health monitoring, SHM) 10 2.4 奈米碳管網絡導電機制與破壞機制 12 2.5 複合材料衝擊試驗 13 2.6 總結 15 第三章 實驗的材料與設備 16 3.1 製備碳纖維複材單搭接試片之材料 16 3.2 製備碳纖維複材單搭接試片之設備 21 3.3 濕熱環境控制設備 26 3.4 電性量測與機械性質測試設備 27 第四章 實驗方法與流程 30 4.1 實驗流程 30 4.2 碳纖維複材單搭接試片製作 31 4.2.1碳纖維複材板製作 31 4.2.2 碳纖維試片後處理 32 4.2.3 搭接劑調配 33 4.2.4 單搭接試片製作 34 4.3 機械性質試驗與監控 35 4.3.1試片前處理 35 4.3.2試片之電性量測 35 4.3.3品質管理試片 35 4.3.4拉伸試驗 35 4.3.5衝擊試驗 36 4.3.6疲勞試驗 36 4.3.7濕熱環境監控 37 4.4 螢光液滲 37 4.5 破斷面拍攝 37 4.6 試片命名系統規則 38 第五章 實驗結果與討論 39 5.1 試片品質管理 39 5.1.1熱壓成型製程之單搭接試片強度 39 5.1.2VBO製程之單搭接試片強度 40 5.2 衝擊試驗之破壞與電性變化 41 5.2.1奈米碳管對接口抗衝擊性之影響 41 5.2.2衝擊試驗對碳纖維基材之影響 42 5.2.3不同衝擊能量之衝擊試驗 45 5.3 衝擊後之機械性質試驗與電性監控 47 5.3.1不同製程衝擊後殘餘拉伸強度差異 47 5.3.2衝擊後之拉伸試驗電性監控 47 5.3.3衝擊後之疲勞試驗與電性監控 48 5.4 衝擊後之濕熱環境監控 52 5.4.1衝擊後之高溫高濕環境監控 52 5.4.2衝擊後之高溫低濕環境監控 58 5.5 衝擊後濕熱老化試片之機械性質試驗 59 5.5.1衝擊後濕熱老化試片之拉伸試驗 59 5.5.2衝擊後高濕環境監控之疲勞試驗 61 5.6 破斷面觀測與破壞機制 63 5.6.1衝擊後之破壞特徵 63 5.6.2衝擊後疲勞之破壞特徵 64 5.6.3衝擊後泡水之影響 65 第六章 結論與未來展望 66 6.1 結論 66 6.2 未來展望 67 參考文獻 68 附錄 75 附錄A 品管試片之實驗數據 75 附錄B 衝擊後試片之實驗數據 92 附錄C 預衝擊濕熱老化實驗數據 111 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 衝擊試驗 | zh_TW |
| dc.subject | 真空袋製程 | zh_TW |
| dc.subject | 碳纖維複材單搭接膠合接口 | zh_TW |
| dc.subject | 濕熱老化 | zh_TW |
| dc.subject | 結構健康監測 | zh_TW |
| dc.subject | 機械性質 | zh_TW |
| dc.subject | mechanical characteristics | en |
| dc.subject | carbon fiber reinforced plastic | en |
| dc.subject | single-lap adhesive joint | en |
| dc.subject | vacuum bag only (VBO) process | en |
| dc.subject | impact test | en |
| dc.subject | structural health monitoring | en |
| dc.subject | hygrothermal aging | en |
| dc.title | 不同製程之複材膠合接口預衝擊濕熱老化破壞監控 | zh_TW |
| dc.title | Monitoring of pre-impact hygrothermal aging in composite adhesive joints fabricated by different processes | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 任貽明;林志郎 | zh_TW |
| dc.contributor.oralexamcommittee | Yi-Ming Jen;Chih-Lang Lin | en |
| dc.subject.keyword | 碳纖維複材單搭接膠合接口,真空袋製程,衝擊試驗,結構健康監測,濕熱老化,機械性質, | zh_TW |
| dc.subject.keyword | carbon fiber reinforced plastic,single-lap adhesive joint,vacuum bag only (VBO) process,impact test,structural health monitoring,hygrothermal aging,mechanical characteristics, | en |
| dc.relation.page | 130 | - |
| dc.identifier.doi | 10.6342/NTU202502327 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-25 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2030-07-23 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 48.13 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
