Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99495
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖英志zh_TW
dc.contributor.advisorYing-Chih Liaoen
dc.contributor.author黃善勃zh_TW
dc.contributor.authorSupakorn Suwanphiphaten
dc.date.accessioned2025-09-10T16:27:50Z-
dc.date.available2025-09-11-
dc.date.copyright2025-09-10-
dc.date.issued2025-
dc.date.submitted2025-07-28-
dc.identifier.citation1. Nair, N.R., et al., 32 - Biodegradation of Biopolymers, in Current Developments in Biotechnology and Bioengineering, A. Pandey, S. Negi, and C.R. Soccol, Editors. 2017, Elsevier. p. 739-755.
2. Samir, A., et al., Recent advances in biodegradable polymers for sustainable applications. npj Materials Degradation, 2022. 6(1), 68.
3. Brigham, C., Chapter 3.22 - Biopolymers: Biodegradable Alternatives to Traditional Plastics, in Green Chemistry, B. Török and T. Dransfield, Editors. 2018, Elsevier. p. 753-770.
4. Baranwal, J., et al., Biopolymer: A Sustainable Material for Food and Medical Applications. Polymers (Basel), 2022. 14(5), 983.
5. Vaysse, L., et al., 10.17 - Natural Rubber, in Polymer Science: A Comprehensive Reference, K. Matyjaszewski and M. Möller, Editors. 2012, Elsevier: Amsterdam. p. 281-293.
6. Yan, Y., et al., Effect of vulcanisation on the properties of natural rubber-modified asphalt. Industrial Crops and Products, 2024. 214, 118588.
7. Sungkaew, P., Factors affecting natural rubber prices in Thailand. International Journal of Economics and Business Research, 2024. 27(3), 489-510.
8. Kaewsakul, W., et al., 9 - Natural rubber and epoxidized natural rubber in combination with silica fillers for low rolling resistance tires, in Chemistry, Manufacture, and Applications of Natural Rubber (Second Edition), S. Kohjiya and Y. Ikeda, Editors. 2021, Woodhead Publishing. p. 247-316.
9. Noguchi, T., et al., Natural rubber composites with high strength, modulus, water-resistance, and thermal stability, prepared with cellulose nanofibrils and sodium methacrylate. Composites Part A: Applied Science and Manufacturing, 2023. 173, 107665.
10. Boratto, M.H., et al., Flexible conductive blend of natural rubber latex with PEDOT:PSS. APL Materials, 2020. 8(12), 121107.
11. Nasruddin, et al., Study of selection of synthetic rubber as composite material with natural rubber for the outer coating of solid foam tires, in THE 2ND NATIONAL CONFERENCE ON MATHEMATICS EDUCATION (NACOME) 2021: Mathematical Proof as a Tool for Learning Mathematics. 2023, 140001.
12. Saleem, A., et al., Recent advances and perspectives in carbon-based fillers reinforced Si3N4 composite for high power electronic devices. Ceramics International, 2022. 48(10): p. 13401-13419.
13. Seidel, R., et al., Influence of Carbon-Based Fillers on the Electromagnetic Shielding Properties of a Silicone-Potting Compound. Materials (Basel), 2024. 17(2), 280.
14. Al-Ahmed, A., et al., Effects of carbon-based fillers on thermal properties of fatty acids and their eutectics as phase change materials used for thermal energy storage: A Review. Journal of Energy Storage, 2021. 35, 102329.
15. Goyal, N., et al., Chitosan as a potential stabilizing agent for titania nanoparticle dispersions for preparation of multifunctional cotton fabric. Carbohydr Polym, 2016. 154: p. 167-75.
16. Shang, S., L. Gan, and M.C.-w. Yuen, Improvement of carbon nanotubes dispersion by chitosan salt and its application in silicone rubber. Composites Science and Technology, 2013. 86: p. 129-134.
17. Ibrahim, A.G., et al., Fabrication and characterization of a new eco-friendly sulfonamide-chitosan derivative with enhanced antimicrobial and selective cytotoxicity properties. Sci Rep, 2024. 14(1): p. 10228.
18. El-Naggar, N.E., et al., A sustainable green-approach for biofabrication of chitosan nanoparticles, optimization, characterization, its antifungal activity against phytopathogenic Fusarium culmorum and antitumor activity. Sci Rep, 2024. 14(1): p. 11336.
19. Kusumarn, N., et al., Phytochemical, Antioxidant and Antimicrobial Activities of Hevea brasiliensis Leaves Extract. HAYATI Journal of Biosciences, 2023. 31(2): p. 241-247.
20. Low, D.Y.S., et al., Self-healing synthetic rubber composites: review of recent progress and future directions towards sustainability. Materials Today Sustainability, 2023. 24, 100545.
21. Cruz-Morales, J.A., et al., Synthetic Polyisoprene Rubber as a Mimic of Natural Rubber: Recent Advances on Synthesis, Nanocomposites, and Applications. Polymers (Basel), 2023. 15(20), 4074.
22. Kruželák, J., R. Sýkora, and I. Hudec, Sulphur and peroxide vulcanisation of rubber compounds — overview. Chemical Papers, 2016. 70(12): p. 1533-1555.
23. Kerdtongmee, P., C. Pumdaung, and S. Danworaphong, Quantifying Dry Rubber Content in Latex Solution Using an Ultrasonic Pulse. Measurement Science Review, 2014. 14: p. 252 - 256.
24. Lehman, N., et al., Influence of Non-Rubber Components on the Properties of Unvulcanized Natural Rubber from Different Clones. Polymers (Basel), 2022. 14(9), 1759.
25. Jacek Rafał, K., et al., Natural Rubber Latex - Origin, Specification and Application, in Application and Characterization of Rubber Materials, E. Gülşen Akın and P. Önder, Editors. 2022, IntechOpen: Rijeka. p. Ch. 5. DOI: 10.5772/intechopen.107985
26. Lim, H.M. and M. Misni, Colloidal And Rheological Properties Of Natural Rubber Latex Concentrate. Applied Rheology, 2016. 26(1): p. 25-34.
27. Wongkhat, J. and C. Pattamaprom, Enzymatic approach in accelerating colloidal stability of concentrated natural rubber latex and its effect on rubber products. Industrial Crops and Products, 2022. 182, 114892.
28. Payungwong, N., et al., The Interplay of Protein Hydrolysis and Ammonia in the Stability of Hevea Rubber Latex during Storage. Polymers (Basel), 2023. 15(24), 4636.
29. Román, A.J., et al., Evaluation of an ammonia‐free natural rubber latex adhesive. SPE Polymers, 2023. 5(1): p. 11-19.
30. Mohamad, S.F., et al., Insight on the properties of thermoplastic elastomer-based natural rubber and recycled rubber post-treated with electron beam irradiation. Materials Research Express, 2021. 8(2): p. 025302.
31. Yan, Y., et al., Property improvement of thermosetting natural rubber asphalt binder by mineral oil. Journal of Materials Research and Technology, 2023. 24: p. 8807-8825.
32. Dieu, T.V., et al., Review: Natural rubber – Improvement of properties. Vietnam Journal of Chemistry, 2023. 61(3): p. 269-283.
33. Wattanasarn, H., et al., Innovative design: Flexible conductive natural rubber electrode sheets with triboelectric generator activated by wheel rotation. Applied Materials Today, 2023. 35, 101955.
34. Cheng, S., et al., Preparation of a natural rubber with high thermal conductivity, low heat generation and strong interfacial interaction by using NS-modified graphene oxide. Journal of Materials Science, 2020. 56(5): p. 4034-4050.
35. Guerra, N.B., et al., Biomedical applications of natural rubber latex from the rubber tree Hevea brasiliensis. Mater Sci Eng C Mater Biol Appl, 2021. 126: p. 112126.
36. Klongklaew, P., et al., Characterization and Application in Natural Rubber of Leucaena Leaf and Its Extracted Products. Polymers (Basel), 2023. 15(18), 3698.
37. Urade, A.R., I. Lahiri, and K.S. Suresh, Graphene Properties, Synthesis and Applications: A Review. JOM, 2023. 75(3): p. 614-630.
38. Sharma, N., et al., Graphene: An overview of its characteristics and applications. Materials Today: Proceedings, 2021. 47: p. 2752-2755.
39. Galimberti, M., S. Agnelli, and V. Cipolletti, 11 - Hybrid filler systems in rubber nanocomposites, in Progress in Rubber Nanocomposites, S. Thomas and H.J. Maria, Editors. 2017, Woodhead Publishing. p. 349-414.
40. Moosa, A.A. and M.S. Abed, Graphene preparation and graphite exfoliation. Turk J Chem, 2021. 45(3): p. 493-519.
41. Gomari, S., P. Namin, and I. Ghasemi, Polymer-Graphene Nanoplatelets Nanocomposites: Properties and Applications. Iranian journal of polymer science & technology, 2019. 32: p. 101-121.
42. Sharma, N., et al., Study of Optical and Electrical Properties of Graphene Oxide. Materials Today: Proceedings, 2021. 36: p. 730-735.
43. Schäffel, F., Chapter 2 - The Atomic Structure of Graphene and Its Few-layer Counterparts, in Graphene, J.H. Warner, et al., Editors. 2013, Elsevier. p. 5-59.
44. Zhen, Z. and H. Zhu, 1 - Structure and Properties of Graphene, in Graphene, H. Zhu, et al., Editors. 2018, Academic Press. p. 1-12.
45. Yang, G., et al., Structure of graphene and its disorders: a review. Science and Technology of Advanced Materials, 2018. 19(1): p. 613-648.
46. Goh, M.S. and M. Pumera, Multilayer graphene nanoribbons exhibit larger capacitance than their few-layer and single-layer graphene counterparts. Electrochemistry Communications, 2010. 12(10): p. 1375-1377.
47. Kamel, S., et al., Graphene: Structure, Synthesis, and Characterization; a brief review. Egyptian Journal of Chemistry, 2019. 0(0): p. 0-0.
48. Bisht, N., et al., Bio-inspired polynorepinephrine based nanocoatings for reduced graphene oxide/gold nanoparticles composite for high-performance biosensing of Mycobacterium tuberculosis. Environ Res, 2023. 227: p. 115684.
49. Gozali Balkanloo, P., K. Mohammad Sharifi, and A. Poursattar Marjani, Graphene quantum dots: synthesis, characterization, and application in wastewater treatment: a review. Materials Advances, 2023. 4(19): p. 4272-4293.
50. Fernandez Sanchez-Romate, X.X., et al., Electrical Transport Mechanisms in Graphene Nanoplatelet Doped Polydimethylsiloxane and Application to Ultrasensitive Temperature Sensors. ACS Appl Mater Interfaces, 2023. 15(18): p. 22377-22394.
51. Kumar R, R., et al., Investigation of thermal performance and chemical stability of graphene enhanced phase change material for thermal energy storage. Physics and Chemistry of the Earth, Parts A/B/C, 2022. 128, 103250.
52. Akinyi, C. and J.O. Iroh, Thermal Decomposition and Stability of Hybrid Graphene-Clay/Polyimide Nanocomposites. Polymers (Basel), 2023. 15(2), 299.
53. Lin, Y.C., et al., Alkali metal bilayer intercalation in graphene. Nat Commun, 2024. 15(1): p. 425.
54. Shebeeb, C.M., et al., Vat photopolymerisation 3D printing of graphene-based materials. Virtual and Physical Prototyping, 2023. 18(1), e2276250.
55. Pershin, V.F., et al., Production of few-layer and multilayer graphene by shearing exfoliation of graphite in liquids. IOP Conference Series: Materials Science and Engineering, 2019. 693(1): p. 012023.
56. Yoo, M.S., et al., Growth of Multilayer Graphene with a Built-in Vertical Electric Field. Chemistry of Materials, 2020. 32(12): p. 5142-5152.
57. Lam, W.S., W.H. Lam, and P.F. Lee, The Studies on Chitosan for Sustainable Development: A Bibliometric Analysis. Materials (Basel), 2023. 16(7), 2857.
58. Ilijin, L., et al., Sourcing chitin from exoskeleton of Tenebrio molitor fed with polystyrene or plastic kitchen wrap. Int J Biol Macromol, 2024. 268(Pt 2): p. 131731.
59. Salavati, M., Mechanical Properties of α-Chitin and Chitosan Biocomposite: A Molecular Dynamic Study. Journal of Composites Science, 2023. 7(11), 464.
60. Podgorbunskikh, E., et al., Recrystallization of Cellulose, Chitin and Starch in Their Individual and Native Forms. Polymers (Basel), 2024. 16(7), 980.
61. Jin, T., et al., Chitin and chitosan on the nanoscale. Nanoscale Horiz, 2021. 6(7): p. 505-542.
62. Marques, C., et al., How the Lack of Chitosan Characterization Precludes Implementation of the Safe-by-Design Concept. Front Bioeng Biotechnol, 2020. 8: p. 165.
63. Novikov, V.Y., et al., Mechanism of Heterogeneous Alkaline Deacetylation of Chitin: A Review. Polymers (Basel), 2023. 15(7), 1729.
64. Ahmed, A., A. Hassan, and M. Nour, Utilization of chitosan extracted from shrimp shell waste in wastewater treatment as low cost biosorbent. Egyptian Journal of Chemistry, 2020. 0(0): p. 0-0.
65. Takahashi, T., et al., Dispersion Behavior and Spectroscopic Properties of Single-walled Carbon Nanotubes in Chitosan Acidic Aqueous Solutions. Chemistry Letters, 2005. 34(11): p. 1516-1517.
66. Pérez-Álvarez, L., L. Ruiz-Rubio, and J.L. Vilas-Vilela, Determining the Deacetylation Degree of Chitosan: Opportunities To Learn Instrumental Techniques. Journal of Chemical Education, 2018. 95(6): p. 1022-1028.
67. Potivas, T. and T. Laokuldilok, Deacetylation of Chitin and the Properties of Chitosan Films with Various Deacetylation Degrees. Chiang Mai University Journal of Natural Sciences, 2014. 13(1): p. 559-567.
68. Qin, C., et al., Water-solubility of chitosan and its antimicrobial activity. Carbohydrate Polymers, 2006. 63(3): p. 367-374.
69. Weisspflog, J., et al., Characterization of chitosan with different degree of deacetylation and equal viscosity in dissolved and solid state - Insights by various complimentary methods. Int J Biol Macromol, 2021. 171: p. 242-261.
70. Jiang, A., et al., Chitosan Based Biodegradable Composite for Antibacterial Food Packaging Application. Polymers (Basel), 2023. 15(10), 2235.
71. Ke, C.L., et al., Antimicrobial Actions and Applications of Chitosan. Polymers (Basel), 2021. 13(6), 904.
72. Bounegru, A.V. and I. Bounegru, Chitosan-Based Electrochemical Sensors for Pharmaceuticals and Clinical Applications. Polymers (Basel), 2023. 15(17), 3539.
73. Zhang, B., et al., A highly sensitive and stretchable strain sensor based on a wrinkled chitosan-multiwall carbon nanotube nanocomposite. Journal of Materials Chemistry C, 2021. 9(41): p. 14848-14857.
74. Wang, L., et al., Recent development of conductive polymer composite‐based strain sensors. Journal of Polymer Science, 2023. 61(24): p. 3167-3185.
75. Chen, Y., et al., Highly Conductive Ag/pCF/MVQ Composite Rubber for Efficient Electromagnetic Interference Shielding. Chinese Journal of Polymer Science, 2024. 42(6): p. 864-873.
76. Ryu, W.M., et al., Thermally Drawn Multi-material Fibers Based on Polymer Nanocomposite for Continuous Temperature Sensing. Advanced Fiber Materials, 2023. 5(5): p. 1712-1724.
77. Moyseowicz, A., D. Minta, and G. Gryglewicz, Conductive Polymer/Graphene‐based Composites for Next Generation Energy Storage and Sensing Applications. ChemElectroChem, 2023. 10(9), e202201145.
78. Smolen, P., et al., Mechanical and Electrical Properties of Epoxy Composites Modified by Functionalized Multiwalled Carbon Nanotubes. Materials (Basel), 2021. 14(12), 3325.
79. Badrul, F., et al., Current advancement in electrically conductive polymer composites for electronic interconnect applications: A short review. IOP Conference Series: Materials Science and Engineering, 2019. 701(1): p. 012039.
80. Zhou, X., L. Wu, and J. Wang, Recent developments in conductive polymer composites for fused deposition modeling. Composites Part A: Applied Science and Manufacturing, 2023. 174, 107739.
81. Peidayesh, H., Z. Spitalsky, and I. Chodak, Electrical Conductivity of Rubber Composites with Varying Crosslink Density under Cyclic Deformation. Polymers (Basel), 2022. 14(17), 3640.
82. Lalire, T., C. Longuet, and A. Taguet, Electrical properties of graphene/multiphase polymer nanocomposites: A review. Carbon, 2024. 225, 119055.
83. Zare, Y., K.Y. Rhee, and S.J. Park, Advancement of the Power-Law Model and Its Percolation Exponent for the Electrical Conductivity of a Graphene-Containing System as a Component in the Biosensing of Breast Cancer. Polymers (Basel), 2022. 14(15), 3057.
84. Fiorillo, A.S., C.D. Critello, and S.A. Pullano, Theory, technology and applications of piezoresistive sensors: A review. Sensors and Actuators A: Physical, 2018. 281: p. 156-175.
85. Fajingbesi, F.E., et al. Low Cost Piezoresistive Pressure Sensor Matrix for Pressure Ulcer Prevention and Management. in 2019 7th International Conference on Mechatronics Engineering (ICOM). 2019.
86. Mazumder, M.R.H., et al., Digitalization of composite manufacturing using nanomaterials based piezoresistive sensors. Composites Part A: Applied Science and Manufacturing, 2025. 188, 108578.
87. Shin, Y.K., et al., Micro-/Nano-Structured Biodegradable Pressure Sensors for Biomedical Applications. Biosensors (Basel), 2022. 12(11), 952.
88. Zhao, W., et al., Textile-based Interdigitated Electrode Piezoresistive Sensor: Materials, Fabrication and Applications - A Review. Journal of Alloys and Compounds, 2025. 1014, 178764.
89. Che, W.M., et al., Effect of dispersibility of graphene nanoplatelets on the properties of natural rubber latex composites using sodium dodecyl sulfate. e-Polymers, 2022. 22(1): p. 752-762.


90. Zailan, F.D., et al., Synergistic improvement of mechanical, electrical and thermal properties by graphene nanoplatelets in polyaniline incorporated rubbery thermoplastic composites. Journal of Materials Research and Technology, 2024. 28: p. 4097-4109.
91. Marlinda, A.R., et al., Effect of graphene nanoplatelet-infused natural rubber film composite on morphology, spectral, and electrochemical properties. Journal of Materials Science: Materials in Electronics, 2023. 34(30), 2053.
92. Xiang, Q., et al., Engineered structural carbon aerogel based on bacterial Cellulose/Chitosan and graphene Oxide/Graphene for multifunctional piezoresistive sensor. Chemical Engineering Journal, 2024. 480, 147825.
93. Li, Y., et al., Multifunctional inorganic-organic phase-change hydrogel with excellent light-to-thermal energy conversion and strain sensing capabilities for medical thermotherapy and monitoring. Polymer, 2024. 305, 127171.
94. Parvin, N., et al., Recent Advances in the Characterized Identification of Mono-to-Multi-Layer Graphene and Its Biomedical Applications: A Review. Electronics, 2022. 11(20), 3345.
95. Zhang, C.C., et al., Raman Spectroscopy Characterization of Amorphous Coke Generated in Industrial Processes. ACS Omega, 2022. 7(3): p. 2565-2570.
96. Zhang, Y., et al., Temperature Coefficients of Raman Frequency of Individual Single-Walled Carbon Nanotubes. The Journal of Physical Chemistry C, 2007. 111(38): p. 14031-14034.
97. Kim, Y.S., et al., Wood-Derived Graphite: A Sustainable and Cost-Effective Material for the Wide Range of Industrial Applications. Crystals, 2024. 14(4), 309.
98. Du, Y., et al., Effective hybridization ofSiO2microsphere and graphene with tannic acid interface modifier for fabrication of multifunctional natural rubber/graphene nanocomposites. Polymers for Advanced Technologies, 2023. 34(6): p. 1918-1932.
99. Jo, J., et al., Facile synthesis of reduced graphene oxide by modified Hummer's method as anode material for Li-, Na- and K-ion secondary batteries. R Soc Open Sci, 2019. 6(4): p. 181978.
100. Lim, L.P., et al., Enhanced tensile strength and thermal conductivity of natural rubber graphene composite properties via rubber-graphene interaction. Materials Science and Engineering: B, 2019. 246: p. 112-119.
101. Li, F., et al., Preparation of GNP/SBR thermal conductivity composites with high strength and toughness by synergistic construction of interfacial multiple non‐covalent and covalent bonds. Polymer Composites, 2024. 45(6): p. 5633-5642.
102. Nganglumpoon, R., et al., Growing 3D-nanostructured carbon allotropes from CO2 at room temperature under the dynamic CO2 electrochemical reduction environment. Carbon, 2022. 187: p. 241-255.
103. Watmanee, S., et al., Formation and growth characteristics of nanostructured carbon films on nascent Ag clusters during room-temperature electrochemical CO(2) reduction. Nanoscale Adv, 2022. 4(10): p. 2255-2267.
104. Atakoohi, S.E., et al., Graphene-based materials for wastes, biomass and CO2 valorization in catalysis: A technological perspective via molten salt synthesis. Catalysis Today, 2024. 441, 114848.
105. Marlinda, A.R., et al., Simple dispersion of graphene incorporated rubber composite for resistive pressure sensor application. Polymer Engineering & Science, 2021. 61(5): p. 1476-1484.
106. Pinthong, P., et al., Room Temperature Nanographene Production via CO(2) Electrochemical Reduction on the Electrodeposited Bi on Sn Substrate. Nanomaterials (Basel), 2022. 12(19), 3389.
107. Yan, J., Z. Zhao, and L. Pan, Growth and characterization of graphene by chemical reduction of graphene oxide in solution. physica status solidi (a), 2011. 208(10): p. 2335-2338.
108. Ardyani, T., et al., Surfactants with aromatic headgroups for optimizing properties of graphene/natural rubber latex composites (NRL): Surfactants with aromatic amine polar heads. J Colloid Interface Sci, 2019. 545: p. 184-194.
109. Kumar, V., et al., Multifunctional properties of chemically reduced graphene oxide and silicone rubber composite: Facile synthesis and application as soft composites for piezoelectric energy harvesting. Express Polymer Letters, 2022. 16(9): p. 978-995.
110. Aguilar-Bolados, H., et al., Effect of the morphology of thermally reduced graphite oxide on the mechanical and electrical properties of natural rubber nanocomposites. Composites Part B: Engineering, 2016. 87: p. 350-356.
111. Wipatkrut, P. and S. Poompradub, Exfoliation approach for preparing high conductive reduced graphite oxide and its application in natural rubber composites. Materials Science and Engineering: B, 2017. 218: p. 74-83.
112. Lesiak, B., et al., Chemical and structural properties of reduced graphene oxide—dependence on the reducing agent. Journal of Materials Science, 2020. 56(5): p. 3738-3754.
113. Epaarachchi, J.A., et al., Fabrication and characterisation of graphene oxide-epoxy nanocomposite, in Fourth International Conference on Smart Materials and Nanotechnology in Engineering. 2013. 87930U: p. 1-7.
114. Ederer, J., et al., Determination of amino groups on functionalized graphene oxide for polyurethane nanomaterials: XPS quantitation vs. functional speciation. RSC Advances, 2017. 7(21): p. 12464-12473.
115. Jakubowski, W., et al., Optimization of Glutathione Adhesion Process to Modified Graphene Surfaces. Nanomaterials (Basel), 2021. 11(3), 756.
116. Bhandari, T.R., et al., Structural and vibrational properties of amines adsorbed on graphene. Nano-Structures & Nano-Objects, 2022. 29, 100816.
117. Sayfo, P., D.Z. Pirityi, and K. Pölöskei, Characterization of graphene-rubber nanocomposites: a review. Materials Today Chemistry, 2023. 29, 101397.
118. Batakliev, T., et al., Effects of Graphene Nanoplatelets and Multiwall Carbon Nanotubes on the Structure and Mechanical Properties of Poly(lactic acid) Composites: A Comparative Study. Applied Sciences, 2019. 9(3), 469.
119. Gürünlü, B., Ç. Taşdelen Yücedağ, and M.R. Bayramoğlu, Green Synthesis of Graphene from Graphite in Molten Salt Medium. Journal of Nanomaterials, 2020. 2020: p. 1-12.
120. Gu, X., et al., Enhanced thermal conductivity and antistatic property of energy-saving tyres. Journal of Polymer Research, 2021. 28(11), 420.
121. Dong, H., S. Guo, and L. Zhao, Facile Preparation of Multilayered Graphene with CO2 as a Carbon Source. Applied Sciences, 2019. 9(21), 4482.
122. Wei, J., et al., Preparation of a graphene/silicone modified polyester composite coating and its corrosion resistance. International Journal of Electrochemical Science, 2023. 18(11), 100322.
123. Tian, M., et al., Robust ultraviolet blocking cotton fabric modified with chitosan/graphene nanocomposites. Materials Letters, 2015. 145: p. 340-343.
124. Rao, D., Q. Sheng, and J. Zheng, Preparation of flower-like Pt nanoparticles decorated chitosan-grafted graphene oxide and its electrocatalysis of hydrazine. Sensors and Actuators B: Chemical, 2016. 236: p. 192-200.
125. Sutipanwihan, N., et al., Natural Rubber Films Reinforced with Cellulose and Chitosan Prepared by Latex Aqueous Microdispersion. Polymers (Basel), 2024. 16(18), 2652.
126. Dai, H., et al., Amplified electrochemiluminescence of lucigenin triggered by electrochemically reduced graphene oxide and its sensitive detection of bisphenol A. Anal. Methods, 2014. 6(13): p. 4746-4753.
127. Kingkaew, J., et al., Effect of molecular weight of chitosan on antimicrobial properties and tissue compatibility of chitosan-impregnated bacterial cellulose films. Biotechnology and Bioprocess Engineering, 2014. 19(3): p. 534-544.
128. Jirasitthanit, N. and P. Danwanichakul, Liquid-Phase Exfoliation of Graphite Using the Serum from Skim Natural Rubber Latex. Engineering Journal, 2023. 27(5): p. 37-50.
129. Ali, A.M., S.M. Elshabrawy, and E.A. Kamoun, Evaluation of the mechanical properties and degradation behavior of chitosan-PVA-graphene oxide nanocomposite scaffolds in vitro. J Taibah Univ Med Sci, 2024. 19(3): p. 585-597.
130. Chaiwarit, T., et al., Development of Carboxymethyl Chitosan Nanoparticles Prepared by Ultrasound-Assisted Technique for a Clindamycin HCl Carrier. Polymers (Basel), 2022. 14(9), 1736.
131. Mensah, B., et al., Effect of graphene on polar and nonpolar rubber matrices. Mechanics of Advanced Materials and Modern Processes, 2018. 4(1), 1.
132. Abdullah, A., et al., Effect of Graphene Nanoplatelets on Water Absorption Properties of Coconut Shell Reinforced Unsaturated Polyester Composites. Journal of Physics: Conference Series, 2021. 2129(1): p. 012072.
133. Duan, X., et al., Flexible and environmentally friendly graphene natural rubber composites with high thermal conductivity for thermal management. Composites Part A: Applied Science and Manufacturing, 2022. 163, 107223.
134. Dong, B., L. Zhang, and Y. Wu, Highly conductive natural rubber–graphene hybrid films prepared by solution casting and in situ reduction for solvent-sensing application. Journal of Materials Science, 2016. 51(23): p. 10561-10573.
135. Charoonsuk, T., et al., Achieving a highly efficient chitosan-based triboelectric nanogenerator via adding organic proteins: Influence of morphology and molecular structure. Nano Energy, 2021. 89, 106430.
136. Banou, M., et al., Fabrication of graphene nanoplatelets/MgAl-layered double hydroxide nanocomposites as efficient support for gold nanoparticles and their catalytic performance in 4-nitrophenol reduction. Process Safety and Environmental Protection, 2023. 174: p. 891-900.
137. Supanakorn, G., S. Taokaew, and M. Phisalaphong, Multifunctional Cellulosic Natural Rubber and Silver Nanoparticle Films with Superior Chemical Resistance and Antibacterial Properties. Nanomaterials (Basel), 2023. 13(3), 521.
138. Promsung, R., et al., Mechanical, thermal and optical properties of natural rubber films with different types of bifunctional aldehydes as curing agents. Express Polymer Letters, 2022. 16(8): p. 871-880.
139. Rolere, S., et al., Investigating natural rubber composition with Fourier Transform Infrared (FT-IR) spectroscopy: A rapid and non-destructive method to determine both protein and lipid contents simultaneously. Polymer Testing, 2015. 43: p. 83-93.
140. Khamkeaw, A., W. Sanprom, and M. Phisalaphong, Activated carbon from bacterial cellulose by potassium hydroxide activation as an effective adsorbent for removal of ammonium ion from aqueous solution. Case Studies in Chemical and Environmental Engineering, 2023. 8, 100499.
141. Agrebi, F., et al., Study of nanocomposites based on cellulose nanoparticles and natural rubber latex by ATR/FTIR spectroscopy: The impact of reinforcement. Polymer Composites, 2018. 40(5): p. 2076-2087.
142. Sintharm, P., et al., Bacterial cellulose reinforced with skim/fresh natural rubber latex for improved mechanical, chemical and dielectric properties. Cellulose, 2022. 29(3): p. 1739-1758.
143. Chen, D., et al., Fourier Transform Infrared Spectral Analysis of Polyisoprene of a Different Microstructure. International Journal of Polymer Science, 2013. 2013: p. 1-5.
144. Khamkeaw, A., et al., Interconnected Micro, Meso, and Macro Porous Activated Carbon from Bacterial Nanocellulose for Superior Adsorption Properties and Effective Catalytic Performance. Molecules, 2020. 25(18), 4063.
145. Krainoi, A., et al., Novel natural rubber composites based on silver nanoparticles and carbon nanotubes hybrid filler. Polymer Composites, 2019. 41(2): p. 443-458.
146. Phisalaphong, M. and N. Jatupaiboon, Biosynthesis and characterization of bacteria cellulose–chitosan film. Carbohydrate Polymers, 2008. 74(3): p. 482-488.
147. Geng, C.-z., et al., Mechanically Reinforced Chitosan/Cellulose Nanocrystals Composites with Good Transparency and Biocompatibility. Chinese Journal of Polymer Science, 2015. 33, 61-69.
148. Phomrak, S. and M. Phisalaphong, Lactic Acid Modified Natural Rubber–Bacterial Cellulose Composites. Applied Sciences, 2020. 10(10), 3583.
149. Duy, L.N.P., et al., Dioctyl Phthalate-Modified Graphene Nanoplatelets: An Effective Additive for Enhanced Mechanical Properties of Natural Rubber. Polymers (Basel), 2022. 14(13), 2541.
150. Wang, Z., et al., Synthesis of polyaniline/graphene composite and its application in zinc-rechargeable batteries. Journal of Solid State Electrochemistry, 2019. 23(12): p. 3373-3382.
151. Jenkhongkarn, R. and M. Phisalaphong, Effect of Reduction Methods on the Properties of Composite Films of Bacterial Cellulose-Silver Nanoparticles. Polymers (Basel), 2023. 15(14), 2996.
152. Supanakorn, G., S. Taokaew, and M. Phisalaphong, Ternary composite films of natural rubber, cellulose microfiber, and carboxymethyl cellulose for excellent mechanical properties, biodegradability and chemical resistance. Cellulose, 2021. 28(13): p. 8553-8566.
153. Wang, S., et al., Preparing high-performance microspheres based on the chitosan-assisted dispersion of reduced graphene oxide in aqueous solution for bilirubin removal. J Chromatogr A, 2024. 1722: p. 464884.
154. Yan, L., C. Zhang, and F. Xi, Disposable Amperometric Label-Free Immunosensor on Chitosan-Graphene-Modified Patterned ITO Electrodes for Prostate Specific Antigen. Molecules, 2022. 27(18), 5895.
155. Barbosa, R., et al., Improving the swelling, mechanical, and electrical properties in natural rubber latex/carbon nanotubes nanocomposites: Effect of the sonication method. Journal of Applied Polymer Science, 2022. 139(23), 52325.
156. Jain, R., R. Mehrotra, and S. Mishra, Synthesis of B doped graphene/polyaniline hybrids for high-performance supercapacitor application. Journal of Materials Science: Materials in Electronics, 2018. 30(3): p. 2316-2326.
157. He, C., et al., Graphene networks and their influence on free-volume properties of graphene-epoxidized natural rubber composites with a segregated structure: rheological and positron annihilation studies. Phys Chem Chem Phys, 2015. 17(18): p. 12175-84.
158. Kitsawat, V., S. Siri, and M. Phisalaphong, Electrically Conductive Natural Rubber Composite Films Reinforced with Graphite Platelets. Polymers (Basel), 2024. 16(2), 288.
159. Chai, K.L., et al., Observation of ionic conductivity on PUA-TBAI-I(2) gel polymer electrolyte. Sci Rep, 2022. 12(1): p. 124.
160. Lin, G., et al., Incorporation and optimization of RGO and GO in SSBR/NR composites expands their applicability. Polymers and Polymer Composites, 2021. 29(9_suppl): p. S411-S421.
161. Marsden, A.J., et al., Electrical percolation in graphene–polymer composites. 2D Materials, 2018. 5(3), 032003.
162. Sun, J., et al., Multifunctional wearable humidity and pressure sensors based on biocompatible graphene/bacterial cellulose bioaerogel for wireless monitoring and early warning of sleep apnea syndrome. Nano Energy, 2023. 108, 108215.
163. Encinas-Encinas, J.C., et al., Evaluation of Strain Sensors Based on Poly(acrylonitrile-co-butadiene) and Polypyrrole Synthesized by the Diffusion Method. ACS Omega, 2024. 9(23): p. 25034-25041.
164. Fu, L., A. Yu, and G. Lai, Conductive Hydrogel-Based Electrochemical Sensor: A Soft Platform for Capturing Analyte. Chemosensors, 2021. 9(10), 282.
165. Barbosa, R., et al., Multi-sensing properties of hybrid filled natural rubber nanocomposites using impedance spectroscopy. Electrochimica Acta, 2022. 435, 141341.
166. Chen, Y., et al., Poly(lactic acid)/graphene nanocomposites prepared via solution blending using chloroform as a mutual solvent. J Nanosci Nanotechnol, 2011. 11(9): p. 7813-9.
167. Farivar, F., et al., Thermogravimetric Analysis (TGA) of Graphene Materials: Effect of Particle Size of Graphene, Graphene Oxide and Graphite on Thermal Parameters. C, 2021. 7(2), 41.
168. Woraphutthaporn, S., et al., Enhancing the properties of graphene oxide/natural rubber nanocomposite‐based strain sensor modified by amino‐functionalized silanes. Polymers for Advanced Technologies, 2022. 33(10): p. 3386-3398.
169. Beryl, J.R. and J.R. Xavier, Investigation of smart graphene oxide multilayer nanocoating for improved steel structural protection in natural seawater. Journal of Materials Science, 2023. 59(2): p. 458-490.
170. Aguilar-Bolados, H., et al., High performance natural rubber/thermally reduced graphite oxide nanocomposites by latex technology. Composites Part B: Engineering, 2014. 67: p. 449-454.
171. Farivar, F., et al., Unlocking thermogravimetric analysis (TGA) in the fight against “Fake graphene” materials. Carbon, 2021. 179: p. 505-513.
172. Feng, C., et al., Facile Method to Fabricate Highly Thermally Conductive Graphite/PP Composite with Network Structures. ACS Appl Mater Interfaces, 2016. 8(30): p. 19732-8.
173. Siriwas, T., et al., Graphene-filled natural rubber nanocomposites: Influence of the composition on curing, morphological, mechanical, and electrical properties. Express Polymer Letters, 2023. 17(8): p. 819-836.
174. Supanakorn, G., et al., Alginate as Dispersing Agent for Compounding Natural Rubber with High Loading Microfibrillated Cellulose. Polymers (Basel), 2021. 13(3), 468.
175. Phomrak, S. and M. Phisalaphong, Reinforcement of Natural Rubber with Bacterial Cellulose via a Latex Aqueous Microdispersion Process. Journal of Nanomaterials, 2017. 2017: p. 1-9.
176. Potivara, K. and M. Phisalaphong, Development and Characterization of Bacterial Cellulose Reinforced with Natural Rubber. Materials (Basel), 2019. 12(14), 2323.
177. Almualla, M., M. Mosa, and m. sattar, Chemical Modification and Characterization of Chitosan for Pharmaceutical Applications. Egyptian Journal of Chemistry, 2021. 0(0): p. 0-0.
178. Nisar, S., et al., Strategy to design a smart photocleavable and pH sensitive chitosan based hydrogel through a novel crosslinker: a potential vehicle for controlled drug delivery. RSC Adv, 2020. 10(25): p. 14694-14704.
179. Phetarporn, V., et al., Composite properties of graphene-based materials/natural rubber vulcanized using electron beam irradiation. Materials Today Communications, 2019. 19: p. 413-424.
180. Nie, J., et al., Strengthened, Self-Healing, and Conductive ENR-Based Composites Based on Multiple Hydrogen Bonding Interactions. ACS Sustainable Chemistry & Engineering, 2020. 8(36): p. 13724-13733.
181. Mohammad, H., et al., Mechanical and Conductive Behavior of Graphite Filled Polysulfone-Based Composites. Applied Sciences, 2022. 13(1), 542.
182. Zhang, S., et al., Mechanical properties and thermal analysis of graphene nanoplatelets reinforced polyimine composites. e-Polymers, 2022. 22(1): p. 696-704.
183. Han, D., et al., Effect of the ratio of graphene oxide(GO) and multi-walled carbon nanotubes(MWCNTs) on metal friction and wear during mixing. Polymer Testing, 2022. 106, 107441.
184. Alam, M.N. and J. Choi, Highly reinforced magneto-sensitive natural-rubber nanocomposite using iron oxide/multilayer graphene as hybrid filler. Composites Communications, 2022. 32, 101169.
185. Kilic, U., M.M. Sherif, and O.E. Ozbulut, Tensile properties of graphene nanoplatelets/epoxy composites fabricated by various dispersion techniques. Polymer Testing, 2019. 76: p. 181-191.
186. Phomrak, S., et al., Natural Rubber Latex Foam Reinforced with Micro- and Nanofibrillated Cellulose via Dunlop Method. Polymers (Basel), 2020. 12(9), 1959.
187. Islam, I., et al., Electrical and Tensile Properties of Carbon Black Reinforced Polyvinyl Chloride Conductive Composites. C, 2018. 4(1), 15.
188. Boonrasri, S., P. Sae-Oui, and P. Rachtanapun, Chitosan and Natural Rubber Latex Biocomposite Prepared by Incorporating Negatively Charged Chitosan Dispersion. Molecules, 2020. 25(12), 2777.
189. Lu, H.C. and Y.C. Liao, Direct Printed Silver Nanowire Strain Sensor for Early Extravasation Detection. Nanomaterials (Basel), 2021. 11(10), 2583.
190. Yang, J.Y., et al., Biocompatible, Antibacterial, and Stable Deep Eutectic Solvent-Based Ionic Gel Multimodal Sensors for Healthcare Applications. ACS Appl Mater Interfaces, 2023. 15(48): p. 55244-55257.
191. Elamri, A., et al., Chitosan: A biopolymer for textile processes and products. Textile Research Journal, 2022. 93(5-6): p. 1456-1484.
192. Raju, G., et al., Effect of Chitosan Loading on Mechanical Properties, Water Uptake and Toluene Absorbency of High and Low Molecular Weight ENR50. Journal of Rubber Research, 2013. 16: p. 179–194.
193. Sintharm, P. and M. Phisalaphong, Green Natural Rubber Composites Reinforced with Black/White Rice Husk Ashes: Effects of Reinforcing Agent on Film's Mechanical and Dielectric Properties. Polymers (Basel), 2021. 13(6), 882.
194. Strnad, S., O. Sauperl, and L. Zemljič, Cellulose Fibres Funcionalised by Chitosan: Characterization and Application. 2010. DOI: 10.5772/10262
195. Qin, Z., et al., Study on Nanomaterials with Inhibitory Effects on the Growth of Aspergillus niger. Polymers (Basel), 2023. 15(18), 3820.
196. El-araby, A., L. El Ghadraoui, and F. Errachidi, Usage of biological chitosan against the contamination of post-harvest treatment of strawberries by Aspergillus niger. Frontiers in Sustainable Food Systems, 2022. 6, 881434.
197. Krake, S., et al., Production of chitosan from Aspergillus niger and quantitative evaluation of the process using adapted analytical tools. Biotechnology and Bioprocess Engineering, 2024. 29(5): p. 942-954.
198. Nasaj, M., et al., Factors influencing the antimicrobial mechanism of chitosan action and its derivatives: A review. Int J Biol Macromol, 2024. 277(Pt 2): p. 134321.
199. Yan, D., et al., Antimicrobial Properties of Chitosan and Chitosan Derivatives in the Treatment of Enteric Infections. Molecules, 2021. 26(23), 7136.
200. Guarnieri, A., et al., Antimicrobial properties of chitosan from different developmental stages of the bioconverter insect Hermetia illucens. Sci Rep, 2022. 12(1): p. 8084.
201. Kovacs, R., et al., Concentration-Dependent Antibacterial Activity of Chitosan on Lactobacillus plantarum. Pharmaceutics, 2022. 15(1), 18.
202. Ardean, C., et al., Factors Influencing the Antibacterial Activity of Chitosan and Chitosan Modified by Functionalization. Int J Mol Sci, 2021. 22(14), 7449.
203. Elsherbiny, A.S., et al., Graphene oxide-based nanocomposites for outstanding eco-friendly antifungal potential against tomato phytopathogens. Biomater Adv, 2024. 160: p. 213863.
204. Qiu, J., et al., Why does nitrogen-doped graphene oxide lose the antibacterial activity? Journal of Materials Science & Technology, 2021. 62: p. 44-51.
205. Nanda, S.S., D.K. Yi, and K. Kim, Study of antibacterial mechanism of graphene oxide using Raman spectroscopy. Sci Rep, 2016. 6: p. 28443.
206. Mohammed, H., et al., Antimicrobial Mechanisms and Effectiveness of Graphene and Graphene-Functionalized Biomaterials. A Scope Review. Front Bioeng Biotechnol, 2020. 8: p. 465.
207. Zhou, J., et al., Highly sensitive and stretchable strain sensors based on serpentine-shaped composite films for flexible electronic skin applications. Composites Science and Technology, 2020. 197, 108215.
208. Hu, T. and B. Sheng, A Highly Sensitive Strain Sensor with Wide Linear Sensing Range Prepared on a Hybrid-Structured CNT/Ecoflex Film via Local Regulation of Strain Distribution. ACS Appl Mater Interfaces, 2024. 16(16): p. 21061-21072.
209. Wang, W., et al., Double-Layered Conductive Network Design of Flexible Strain Sensors for High Sensitivity and Wide Working Range. ACS Appl Mater Interfaces, 2022. 14(32): p. 36611-36621.
210. Wang, X., et al., Polydimethylsiloxane Composite Sponge Decorated with Graphene/Carbon Nanotube via Polydopamine for Multifunctional Applications. ACS Applied Polymer Materials, 2023. 5(8): p. 6022-6033.
211. Guo, S.Z., et al., 3D Printed Stretchable Tactile Sensors. Adv Mater, 2017. 29(27), 1701218.
212. Tang, W., et al., Bioinspired Soft Pressure Sensors with Interlocked Structures Based on 3D Printing Methods. ACS Applied Polymer Materials, 2024. 6(18): p. 11575-11585.
213. Zhao, Z., et al., Fabrication of TPU-supported Ti3C2Tx/Ag2S/TiO2 electrospun mat: Dual-functional materials for human motion and gas detection. Journal of Alloys and Compounds, 2025. 1010, 177078.
214. Lu, Q., H. Li, and Z. Tan, Natural cellulose reinforced multifunctional eutectogels for wearable sensors and epidermal electrodes. Carbohydr Polym, 2025. 348(Pt B): p. 122939.
215. Dong, T., et al., Resistive and capacitive strain sensors based on customized compliant electrode: Comparison and their wearable applications. Sensors and Actuators A: Physical, 2021. 326, 112720.
216. Zahri, N.N.A.H., et al., Wearable strain sensors: design shapes, fabrication, encapsulation and performance evaluation methods. Sensors & Diagnostics, 2024. 3(10): p. 1635-1650.
217. Tseng, S.-F., et al., Laser-induced nano-Ag/graphene composites for highly responsive flexible strain sensors. Composites Part A: Applied Science and Manufacturing, 2025. 188, 108586.
218. Cong, C., et al., Self-powered strain sensing devices with wireless transmission: DIW-printed conductive hydrogel electrodes featuring stretchable and self-healing properties. J Colloid Interface Sci, 2025. 678(Pt B): p. 588-598.
219. Kumar, A., et al., Ultrasensitive Strain Sensor Utilizing a AgF-AgNW Hybrid Nanocomposite for Breath Monitoring and Pulmonary Function Analysis. ACS Appl Mater Interfaces, 2022. 14(50): p. 55402-55413.
220. Zhao, W., et al., Printable hydrogels based on starch and natural rubber latex with high toughness and self-healing capability. Int J Biol Macromol, 2022. 218: p. 580-587.
221. Du, Y., et al., Nacre-Inspired MXene Nanocomposite-based Strain Sensor with Ultrahigh Sensitivity in a Small Strain Range for Parkinson's Disease Diagnosis. ACS Appl Mater Interfaces, 2023. 15(43): p. 50413-50426.
222. Pan, C.T., et al., PVDF/AgNP/MXene composites-based near-field electrospun fiber with enhanced piezoelectric performance for self-powered wearable sensors. Int J Bioprint, 2023. 9(1): p. 647.
223. Ketelsen, B., et al., Fabrication of Strain Gauges via Contact Printing: A Simple Route to Healthcare Sensors Based on Cross-Linked Gold Nanoparticles. ACS Appl Mater Interfaces, 2018. 10(43): p. 37374-37385.
224. Kumar, A., et al., Wearable strain sensor utilizing the synergistic effect of Ti3C2Tx MXene/AgNW nanohybrid for point-of-care respiratory monitoring. Materials Today Chemistry, 2024. 37, 102024.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99495-
dc.description.abstract本研究透過乳膠水性微分散製程,開發以天然橡膠/幾丁聚醣(NR-CHI)複合材料為基礎的生物聚合物薄膜。為提升複合材料的性能,添加了石墨烯填料,包括表面改質石墨烯奈米與商業級石墨烯。幾丁聚醣作為有效的分散劑,能促進石墨烯填料在聚合物基材中的均勻分散,並經由場發射掃描電子顯微鏡(FE-SEM)影像驗證。傅立葉轉換紅外光譜(FTIR)與X射線繞射(XRD)分析顯示,NR-CHI與石墨烯填料之間存在強烈的氫鍵與范德華力,這有助於填料的分散性與介面鍵結的增強。
石墨烯填料的加入顯著提升了複合材料的機械性能、熱穩定性與導電性。與純天然橡膠薄膜相比,楊氏模數增加近100倍,電導率達到10⁻⁴ S/cm。此外,對非極性溶劑的耐化性亦有所提升,使該複合材料在嚴苛環境中具有更廣泛的應用潛力。抗菌測試結果顯示,該複合材料對革蘭氏陽性菌、革蘭氏陰性菌以及真菌具有抑菌效果。幾丁聚醣的加入可完全抑制金黃色葡萄球菌與部分抑制大腸桿菌50%,但對於真菌的抗菌活性略有下降。當加入30 phr的GNP時,對S. aureus與A. niger的抑菌率分別達到99.98%與94.31%,但由於GNP中的氮含量影響抗菌效率,對E. coli的抑制效果仍有限。NR-CHI-GC90複合材料展現平衡的抗菌性能,對S. aureus、E. coli與A. niger的抑菌率分別達97.29%、55.04%與93.85%。
壓阻測試強調NR-CHI-GC90複合材料搭配銀電極作為可穿戴感測器在人體動作偵測上的適用性。該感測器在1至6 Hz頻率範圍內表現穩定的電性響應,於7000次壓力循環下具備良好的重複性,並在10%應變下經過800次伸縮循環後展現優異的耐久性。儘管在彎折測試中因微裂縫形成而導致電阻逐漸變化,感測器仍能保持穩定響應,顯示其機械強度與長期穩定性。即時應用測試,包括手指動作、手腕齒輪運動與足部敲擊偵測,展示了該複合材料在可穿戴健康監測與人機互動方面的潛力。
研究結果顯示,NR-CHI-GC90複合材料在高效能感測器、生醫裝置與抗菌塗層等生物可分解電子應用領域具備高度潛力,並為開發下一世代柔性電子材料提供了永續的解決方案。
zh_TW
dc.description.abstractThis study developed biopolymer films based on natural rubber/chitosan (NR-CHI) composites through a latex aqueous micro-dispersion process. Graphene fillers, including surface-modified graphene nanoplatelets (GNP) and graphene commercial-grade (GC), were incorporated to enhance the properties of the composites. Chitosan (CHI) served as an effective dispersing agent, facilitating the uniform suspension of graphene fillers within the polymer matrix, as confirmed by FE-SEM imaging. Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction (XRD) analyses revealed hydrogen bonding and van der Waals interactions between NR-CHI and the graphene fillers, contributing to enhanced filler dispersion and improved interfacial bonding.
The incorporation of graphene fillers significantly enhanced the mechanical properties, thermal stability, and electrical conductivity of the composites. The Young’s modulus increased by nearly 100-fold compared to neat NR films, while electrical conductivity reached 10⁻⁴ S/cm. Furthermore, chemical resistance against non-polar solvents improved, expanding the potential applications of the composites in harsh environments. Antimicrobial tests demonstrated the efficacy of the composites against gram-positive bacteria (Staphylococcus aureus), gram-negative bacteria (Escherichia coli), and fungi (Aspergillus niger). The NR-CHI-GC90 composite demonstrated balanced antimicrobial properties, achieving 97.29%, 55.04%, and 93.85% reductions for S. aureus, E. coli, and A. niger, respectively.
Piezoresistive tests emphasized the suitability of NR-CHI-GC90 composites with silver printed electrode as wearable sensors for human motion detection. The sensors exhibited stable electrical responses across 1 – 6 Hz frequencies, excellent repeatability under 7000 pressure cycles, and superior durability over 800 stretch/release cycles at 10% strain. Despite gradual resistance changes due to micro-crack formation during bending tests, the sensors maintained consistent responses, underscoring their mechanical robustness and long-term stability. Real-time applications, including the detection of finger movements, wrist cogwheel motion, and foot tapping, demonstrated the potential of the composites for wearable health monitoring and human-machine interaction.
These findings position NR-CHI-GC90 composites as promising candidates for biodegradable electronic applications, including high-performance sensors, biomedical devices, and antimicrobial coatings, while offering a sustainable approach to developing next-generation flexible electronic materials.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:27:50Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-10T16:27:50Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
Acknowledgement ii
摘要 iii
Abstract iv
Table of Content vi
Table of Figure viii
List of Table xi
Chapter 1 Introduction 1
1.1 Rationale 1
1.2 Objective 4
1.3 Research Scopes 4
Chapter 2 Theory & Literature Review 6
2.1 Natural Rubber (NR) 6
2.2 Graphene 9
2.3 Chitosan (CHI) 13
2.4 Conductive Polymer Composites (CPCs) 15
2.5 Piezoresistive Sensors 19
2.6 Example of Rubber-graphene and Chitosan Composites 23
Chapter 3 Experiments 31
3.1 Reagents 31
3.2 Methodology 32
3.2.1 Fabrication of NR/CHI/Graphene Composite Films 32
3.2.2 Characterization of Graphene Fillers 34
3.2.3 Characterization of Composite Films 35
3.2.4 Application of the Prepared Composites for Piezoresistive Sensors 38
Chapter 4 Results & Discussion 39
4.1 Characterization of Filler Particle 39
4.1.1 Raman Spectroscopy 39
4.1.2 Transmission Electron Microscopy (TEM) 41
4.1.3 Scanning Electron Microscopy with Energy Dispersive X-ray (SEM-EDX) 42
4.1.4 Fourier Transform Infrared (FTIR) Spectroscopy 43
4.1.5 X-ray Diffraction (XRD) 45
4.2 Effect of Chitosan as Dispersant 46
4.2.1 Field Emission Scanning Electron Microscopy (FE-SEM) 49
4.2.2 Fourier Transform Infrared Spectroscopy (FTIR) of Composites 50
4.2.3 X-ray Diffraction (XRD) of Rubber Composites 52
4.3 Electrical Properties 54
4.4 Thermal Properties 58
4.5 Mechanical Properties 62
4.6 Toluene Uptake 67
4.7 Antimicrobial Efficacy 68
4.8 Preliminary Test for Piezoresistive Sensors 73
Chapter 5 Conclusion & Recommendation 78
5.1 Conclusion 78
5.2 Recommendation 79
Appendix 81
A-1 Thermal Conductivity 81
A-2 Water Adsorption Capacity (WAC) 82
References 83
VITA 96
-
dc.language.isoen-
dc.subject石墨烯zh_TW
dc.subject熱穩定性zh_TW
dc.subject天然橡膠zh_TW
dc.subject電導率zh_TW
dc.subject幾丁聚醣zh_TW
dc.subject機械性能zh_TW
dc.subjectNatural Rubberen
dc.subjectElectrical Conductivityen
dc.subjectChitosanen
dc.subjectThermal Stabilityen
dc.subjectMechanical Propertiesen
dc.subjectGrapheneen
dc.title利用石墨烯填料和幾丁聚醣增強天然橡膠複合材料之 機械、熱學與電學性能zh_TW
dc.titleEnhancement of Mechanical, Thermal, and Electrical Properties of Natural Rubber Composites by Reinforcement with Graphene Fillers and Chitosanen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.coadvisor門豋 · 裨薩臘蓬zh_TW
dc.contributor.coadvisorMuenduen Phisalaphongen
dc.contributor.oralexamcommittee童世煌;班哲 · 宗壽吉;彭通 · 查任蘇怕倪密zh_TW
dc.contributor.oralexamcommitteeShih-Huang Tung;Bunjerd Jongsomjit;Pongtorn Charoensuppanimiten
dc.subject.keyword天然橡膠,石墨烯,幾丁聚醣,電導率,機械性能,熱穩定性,zh_TW
dc.subject.keywordNatural Rubber,Graphene,Chitosan,Electrical Conductivity,Mechanical Properties,Thermal Stability,en
dc.relation.page96-
dc.identifier.doi10.6342/NTU202501293-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-29-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
dc.date.embargo-lift2028-08-31-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
33.78 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved