Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99490
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor林原佑zh_TW
dc.contributor.advisorYuan-Yu Linen
dc.contributor.author吳昀穎zh_TW
dc.contributor.authorYun-Ying Wuen
dc.date.accessioned2025-09-10T16:26:57Z-
dc.date.available2025-09-11-
dc.date.copyright2025-09-10-
dc.date.issued2025-
dc.date.submitted2025-07-11-
dc.identifier.citation環境部資源循環署。2022。112 年事業廢棄物申報量統計報告。
農業部。2023。畜牧廢棄物精進管理及資源加值計畫。
Alagawany, M., S. S. Elnesr, M. R. Farag, M. E. Abd El-Hack, A. F. Khafaga, A. E. Taha, R. Tiwari, M. I. Yatoo, P. Bhatt, S. K. Khurana, and K. Dhama. 2019. Omega-3 and Omega-6 fatty acids in poultry nutrition: effect on production performance and health. Animals 9:573. doi:10.3390/ani9080573.
Anas, M. A., M. A. Aprianto, H. Akit, A. Kurniawati, and C. Hanim. 2024. Black soldier fly larvae oil (Hermetia illucens L.) calcium salt enhances intestinal morphology and barrier function in laying hens. Poult. Sci. 103:103777. doi:10.1016/j.psj.2024.103777.
Ao, Y., C. Yang, S. Wang, Q. Hu, L. Yi, J. Zhang, Z. Yu, M. Cai, and C. Yu. 2021. Characteristics and nutrient function of intestinal bacterial communities in black soldier fly (Hermetia illucens L.) larvae in livestock manure conversion. Microb. Biotechnol. 14:886-896. doi:10.1111/1751-7915.13595.
Attia, Y. A., M. A. Al-Harthi, A. A. Al-Sagan, A. D. Alqurashi, M. A. Korish, N. M. Abdulsalam, M. J. Olal, and F. Bovera. 2022. Dietary supplementation with different ω-6 to ω-3 fatty acid ratios affects the sustainability of performance, egg quality, fatty acid profile, immunity and egg health indices of laying hens. Agriculture 12:1712. doi:10.3390/agriculture12101712.
Basri, N. E. A., N. A. Azman, I. K. Ahmad, F. Suja, N. A. A. Jalil, and N. F. Amrul. 2022. Potential applications of frass derived from black soldier fly larvae treatment of food waste: A review. Foods 11:2664. doi:10.3390/foods11172664.
Bohm, K., W. Taylor, P. Gyawali, I. Pattis, and M. J. Gutiérrez Ginés. 2024. Black soldier fly-based bioconversion of biosolids: Microbial community dynamics and fate of antibiotic resistance genes. Sci. Total Environ. 930:172823. doi:10.1016/j.scitotenv.2024.172823.
Borrelli, L., L. Coretti, L. Dipineto, F. Bovera, F. Menna, L. Chiariotti, A. Nizza, F. Lembo, and A. Fioretti. 2017. Insect-based diet, a promising nutritional source, modulates gut microbiota composition and SCFAs production in laying hens. Sci. Rep. 7:16269. doi:10.1038/s41598-017-16560-6.
Bradley, S. W., and D. C. Sheppard. 1984. House fly oviposition inhibition by larvae of Hermetia illucens, the black soldier fly. J. Chem. Ecol. 10:853-859. doi:10.1007/BF00987968.
Bruno, D., M. Bonelli, F. De Filippis, I. Di Lelio, G. Tettamanti, M. Casartelli, D. Ercolini, and S. Caccia. 2019. The intestinal microbiota of Hermetia illucens larvae is affected by diet and shows a diverse composition in the different midgut regions. Appl. Environ. Microbiol. 85: 01864-18. doi:10.1128/AEM.01864-18.
Cai, M., S. Ma, R. Hu, J. K. Tomberlin, C. Yu, Y. Huang, S. Zhan, W. Li, L. Zheng, Z. Yu, and J. Zhang. 2018. Systematic characterization and proposed pathway of tetracycline degradation in solid waste treatment by Hermetia illucens with intestinal microbiota. Environ. Pollut. 242:634-642. doi:10.1016/j.envpol.2018.06.105.
Chen, Xiaoyong, J. Jin, F. Hou, B. Song, Z. Li, and Y. Zhao. 2022. Effects of black soldier fly larvae oil on growth performance, immunity and antioxidant capacity, and intestinal function and microbiota of broilers. J. Appl. Poult. Res. 31:100292. doi:10.1016/j.japr.2022.100292.
Chen, Xiaojia, C. Wu, Q. Li, P. Zhou, Z. Chen, Y. Han, J. Shi, and Z. Zhao. 2022. Effect of thermophilic microbial agents on antibiotic resistance genes and microbial communities during co-composting of pig manure and tea stalks. Sustainability 14:12593. doi:10.3390/su141912593.
Chu, X., M. Li, G. Wang, K. Wang, R. Shang, Z. Wang, and L. Li. 2020. Evaluation of the low inclusion of full-fatted Hermetia illucens larvae meal for layer chickens: growth performance, nutrient digestibility, and gut health. Front. Vet. Sci. 27:7:585843. doi: 10.3389/fvets.2020.585843. eCollection 2020.
Cifuentes, Y., A. Vilcinskas, P. Kämpfer, and S. P. Glaeser. 2022. Isolation of Hermetia illucens larvae core gut microbiota by two different cultivation strategies. Antonie Van Leeuwenhoek. 115:821-837. doi:10.1007/s10482-022-01735-7.
Colavecchio, A., B. Cadieux, A. Lo, and L. D. Goodridge. 2017. Bacteriophages contribute to the spread of antibiotic resistance genes among foodborne pathogens of the enterobacteriaceae family - A review. Front. Microbiol. 8:1108. doi:10.3389/fmicb.2017.01108.
Craig Sheppard, D., G. Larry Newton, S. A. Thompson, and S. Savage. 1994. A value added manure management system using the black soldier fly. Bioresour. Technol. 50:275-279. doi:10.1016/0960-8524(94)90102-3.
Cullere, M., G. Tasoniero, V. Giaccone, R. Miotti-Scapin, E. Claeys, S. De Smet, and A. Dalle Zotte. 2016. Black soldier fly as dietary protein source for broiler quails: apparent digestibility, excreta microbial load, feed choice, performance, carcass and meat traits. Anim. Int. J. Anim. Biosci. 10:1923-1930. doi:10.1017/S1751731116001270.
De Smet, J., E. Wynants, P. Cos, and L. Van Campenhout. 2018. Microbial community dynamics during rearing of black soldier fly larvae (Hermetia illucens) and impact on exploitation potential. Appl. Environ. Microbiol. 84:e02722-17. doi:10.1128/AEM.02722-17.
Eke, M., K. Tougeron, A. Hamidovic, L. S. N. Tinkeu, T. Hance, and F. Renoz. 2023. Deciphering the functional diversity of the gut microbiota of the black soldier fly (Hermetia illucens): recent advances and future challenges. Anim. Microbiome. 5:40. doi:10.1186/s42523-023-00261-9.
Erickson, M. C., M. Islam, C. Sheppard, J. Liao, and M. P. Doyle. 2004. Reduction of Escherichia coli O157:H7 and Salmonella enterica Serovar Enteritidis in chicken manure by larvae of the black soldier fly. J. Food Prot. 67:685-690. doi:10.4315/0362-028X-67.4.685.
Fan, X., C. Gu, Z. Jin, J. Cai, Y. Bian, F. Wang, H. Chen, and X. Jiang. 2023. Major biotransformation of phthalic acid esters in Eisenia fetida: mechanistic insights and association with catalytic enzymes and intestinal symbionts. Environ. Int. 171:107712. doi:10.1016/j.envint.2022.107712.
Galloway, J. N., A. R. Townsend, J. W. Erisman, M. Bekunda, Z. Cai, J. R. Freney, L. A. Martinelli, S. P. Seitzinger, and M. A. Sutton. 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889-892. doi:10.1126/science.1136674.
Garcia, C., C. J. Andersen, and C. N. Blesso. 2023. The role of lipids in the regulation of immune responses. Nutrients. 15:3899. doi:10.3390/nu15183899.
He, C., J. Lei, Y. Yao, X. Qu, J. Chen, K. Xie, X. Wang, Q. Yi, B. Xiao, S. Guo, and X. Zou. 2021. Black soldier fly (Hermetia illucens) larvae meal modulates intestinal morphology and microbiota in xuefeng black-bone chickens. Front. Microbiol. 16:12:706424. doi: 10.3389/fmicb.2021.706424. eCollection 2021.
Hedman, H. D., K. A. Vasco, and L. Zhang. 2020. A review of antimicrobial resistance in poultry farming within low-resource settings. Anim. Open Access J. MDPI. 10:1264. doi:10.3390/ani10081264.
Heuel, M., C. Sandrock, F. Leiber, A. Mathys, M. Gold, C. Zurbrügg, I. D. M. Gangnat, M. Kreuzer, and M. Terranova. 2021. Black soldier fly larvae meal and fat can completely replace soybean cake and oil in diets for laying hens. Poult. Sci. 100:101034. doi:10.1016/j.psj.2021.101034.
Hou, Y., G. L. Velthof, J. P. Lesschen, I. G. Staritsky, and O. Oenema. 2017. Nutrient recovery and emissions of ammonia, nitrous oxide, and methane from animal manure in Europe: effects of manure treatment technologies. Environ. Sci. Technol. 51:375-383. doi:10.1021/acs.est.6b04524.
Jian, Z., L. Zeng, T. Xu, S. Sun, S. Yan, L. Yang, Y. Huang, J. Jia, and T. Dou. 2021. Antibiotic resistance genes in bacteria: Occurrence, spread, and control. J. Basic Microbiol. 61:1049-1070. doi:10.1002/jobm.202100201.
Kamdar, K., V. Nguyen, and R. W. DePaolo. 2013. Toll-like receptor signaling and regulation of intestinal immunity. Virulence 4:207-212. doi:10.4161/viru.23354.
Khan, S., X. Shi, R. Cai, Z. Shuai, W. Mao, I. M. Khan, A. A. Swelum, and J. Guo. 2024. Effect of black soldier fly (Hermetia illucens) larvae meal and oil on the performance, biochemical profile, intestinal health and gut microbial dynamics in laying hens. Poult. Sci. 103:104460. doi:10.1016/j.psj.2024.104460.
Kim, B., M. Kim, J. Y. Jeong, H. R. Kim, S. Y. Ji, H. Jung, and S. H. Park. 2022. Black soldier fly (Hermetia illucens) larvae oil as an alternative fat ingredient to soybean oil in laying hen diets. Anim. Biosci. 35:1408-1417. doi:10.5713/ab.22.0052.
Kim, C. H., J. Ryu, J. Lee, K. Ko, J. Y. Lee, K. Y. Park, and H. Chung. 2021. Use of black soldier fly larvae for food waste treatment and energy production in Asian countries: A review. Processes 9:161. doi:10.3390/pr9010161.
Kisková, J., A. Juhás, S. Galušková, L. Maliničová, M. Kolesárová, M. Piknová, and P. Pristaš. 2023. Antibiotic resistance and genetic variability of Acinetobacter spp. from wastewater treatment plant in Kokšov-Bakša (Košice, Slovakia). Microorganisms 11:840. doi:10.3390/microorganisms11040840.
Lalander, C. H., J. Fidjeland, S. Diener, S. Eriksson, and B. Vinnerås. 2015. High waste-to-biomass conversion and efficient Salmonella spp. reduction using black soldier fly for waste recycling. Agron. Sustain. Dev. 35:261-271. doi:10.1007/s13593-014-0235-4.
Lan, J., G. Chen, G. Cao, J. Tang, Q. Li, B. Zhang, and C. Yang. 2021. Effects of α-glyceryl monolaurate on growth, immune function, volatile fatty acids, and gut microbiota in broiler chickens. Poult. Sci. 100:100875. doi:10.1016/j.psj.2020.11.052.
Li, L., Z. Xu, J. Wu, and G. Tian. 2010. Bioaccumulation of heavy metals in the earthworm Eisenia fetida in relation to bioavailable metal concentrations in pig manure. Bioresour. Technol. 101:3430-3436. doi:10.1016/j.biortech.2009.12.085.
Li, S., H. Ji, B. Zhang, J. Tian, J. Zhou, and H. Yu. 2016. Influence of black soldier fly (Hermetia illucens) larvae oil on growth performance, body composition, tissue fatty acid composition and lipid deposition in juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture 465:43-52. doi:10.1016/j.aquaculture.2016.08.020.
Liu, C., H. Yao, S. J. Chapman, J. Su, and C. Wang. 2020. Changes in gut bacterial communities and the incidence of antibiotic resistance genes during degradation of antibiotics by black soldier fly larvae. Environ. Int. 142:105834. doi:10.1016/j.envint.2020.105834.
Liu, N., G. Li, Y. Su, Y. Zhao, J. Ma, and G. Huang. 2023. Environmental drivers and interaction mechanisms of heavy metal and antibiotic resistome exposed to amoxicillin during aerobic composting. Front. Microbiol. 4:13:1079114. doi: 10.3389/fmicb.2022.1079114. eCollection 2022.
Liu, Q., J. K. Tomberlin, J. A. Brady, M. R. Sanford, and Z. Yu. 2008. Black soldier fly (Diptera: Stratiomyidae) larvae reduce Escherichia coli in dairy manure. Environ. Entomol. 37:1525-1530. doi:10.1603/0046-225X-37.6.1525.
Liu, S., H. Luo, M. Wang, Q. Wang, L. Duan, Q. Han, S. Sun, C. Wei, and J. Jin. 2022. Microbiome analysis reveals the effects of black soldier fly oil on gut microbiota in pigeon. Front. Microbiol. 13:998524. doi:10.3389/fmicb.2022.998524.
Liu, X., X. Chen, H. Wang, Q. Yang, K. Rehman, W. Li, M. Cai, Q. Li, L. Mazza, J. Zhang, Z. Yu, and L. Zheng. 2017. Dynamic changes of nutrient composition throughout the entire life cycle of black soldier fly. PLOS ONE 12:e0182601. doi:10.1371/journal.pone.0182601.
Mai, H. C., N. D. Dao, T. D. Lam, B. V. Nguyen, D. C. Nguyen, and L. G. Bach. 2019. Purification process, physicochemical properties, and fatty acid composition of black soldier fly (Hermetia illucens Linnaeus) larvae oil. J. Am. Oil Chem. Soc. 96:1303-1311. doi:10.1002/aocs.12263.
Mao, C., Y. Feng, X. Wang, and G. Ren. 2015. Review on research achievements of biogas from anaerobic digestion. Renew. Sustain. Energy Rev. 45:540-555. doi:10.1016/j.rser.2015.02.032.
Milanović, V., A. Roncolini, F. Cardinali, C. Garofalo, L. Aquilanti, P. Riolo, S. Ruschioni, L. Corsi, N. Isidoro, M. Zarantoniello, I. Olivotto, S. Ceccobelli, S. Tavoletti, F. Clementi, and A. Osimani. 2021. Occurrence of antibiotic resistance genes in Hermetia illucens larvae fed coffee silverskin enriched with schizochytrium limacinum or isochrysis galbana microalgae. Genes 12:213. doi:10.3390/genes12020213.
Miranda, C. D., J. A. Cammack, and J. K. Tomberlin. 2019. Life-history traits of the black soldier fly, Hermetia illucens (L.) (Diptera: Stratiomyidae), reared on three manure types. Animals 9:281. doi:10.3390/ani9050281.
Muangrat, R., and S. Pannasai. 2024. Exploring the potential of black soldier fly larvae oil: supercritical CO2 extraction, physicochemical analysis, antioxidant properties, shelf life, and keratinocyte growth inhibition. J. Agric. Food Res. 15:101008. doi:10.1016/j.jafr.2024.101008.
Myers, H. M., J. K. Tomberlin, B. D. Lambert, and D. Kattes. 2008. Development of black soldier Fly (Diptera: Stratiomyidae) larvae fed dairy manure. Environ. Entomol. 37:11-15. doi:10.1093/ee/37.1.11.
Ndotono, E. W., F. M. Khamis, J. L. Bargul, and C. M. Tanga. 2022. Gut microbiota shift in layer pullets fed on black soldier fly larvae-based feeds towards enhancing healthy gut microbial community. Sci. Rep. 12:16714. doi:10.1038/s41598-022-20736-0.
Nicholson, F. A., S. R. Smith, B. J. Alloway, C. Carlton-Smith, and B. J. Chambers. 2003. An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci. Total Environ. 311:205-219. doi:10.1016/S0048-9697(03)00139-6.
Qi, H., B. Zhao, L. Li, X. Chen, J. An, and X. Liu. 2020. Heavy metal contamination and ecological risk assessment of the agricultural soil in Shanxi Province, China. R. Soc. Open Sci. 7:200538. doi:10.1098/rsos.200538.
Qiu, X., G. Zhou, L. Chen, and H. Wang. 2021. Additive quality influences the reservoir of antibiotic resistance genes during chicken manure composting. Ecotoxicol. Environ. Saf. 220:112413. doi:10.1016/j.ecoenv.2021.112413.
Ragupathi, N. K. D., Y. D. Bakthavatchalam, P. Mathur, A. K. Pragasam, K. Walia, V. C. Ohri, and B. Veeraraghavan. 2019. Plasmid profiles among some ESKAPE pathogens in a tertiary care centre in south India. Indian J. Med. Res. 149:222-231. doi:10.4103/ijmr.IJMR_2098_17.
Richter, H., O. Gover, and B. Schwartz. 2023. Anti-inflammatory activity of black soldier fly oil associated with modulation of TLR signaling: A metabolomic approach. Int. J. Mol. Sci. 24:10634. doi:10.3390/ijms241310634.
Rodionov, D. A., A. A. Arzamasov, M. S. Khoroshkin, S. N. Iablokov, S. A. Leyn, S. N. Peterson, P. S. Novichkov, and A. L. Osterman. 2019. Micronutrient requirements and sharing capabilities of the human gut microbiome. Front. Microbiol. 2:10:1316. doi: 10.3389/fmicb.2019.01316. eCollection 2019.
M. D. Marco, M. Cullere, I. Biasato, E. Biasibetti, M. T. Capucchio, S. Bergagna, D. Dezzutto, M. Meneguz, F. Gai, A. D. Zotte, and L. Gasco. 2018. Black soldier fly larva fat inclusion in finisher broiler chicken diet as an alternative fat source. Animal 12:2032-2039. doi:10.1017/S1751731117003743.
Schiavone, A., M. De Marco, S. Martínez, S. Dabbou, M. Renna, J. Madrid, F. Hernandez, L. Rotolo, P. Costa, F. Gai, and L. Gasco. 2017. Nutritional value of a partially defatted and a highly defatted black soldier fly larvae (Hermetia illucens L.) meal for broiler chickens: apparent nutrient digestibility, apparent metabolizable energy and apparent ileal amino acid digestibility. J. Anim. Sci. Biotechnol. 8:51. doi:10.1186/s40104-017-0181-5.
Sheppard, D. C., J. K. Tomberlin, J. A. Joyce, B. C. Kiser, and S. M. Sumner. 2002. Rearing methods for the black soldier fly (Diptera: Stratiomyidae). J. Med. Entomol. 39:695-698. doi:10.1603/0022-2585-39.4.695.
Song, W., X. Wang, J. Gu, S. Zhang, Y. Yin, Y. Li, X. Qian, and W. Sun. 2017. Effects of different swine manure to wheat straw ratios on antibiotic resistance genes and the microbial community structure during anaerobic digestion. Bioresour. Technol. 231:1-8. doi:10.1016/j.biortech.2017.01.054.
Spranghers, T., M. Ottoboni, C. Klootwijk, A. Ovyn, S. Deboosere, B. De Meulenaer, J. Michiels, M. Eeckhout, P. De Clercq, and S. De Smet. 2017. Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J. Sci. Food Agric. 97:2594-2600. doi:10.1002/jsfa.8081.
Sun, W., J. Gu, X. Wang, X. Qian, and H. Peng. 2019. Solid-state anaerobic digestion facilitates the removal of antibiotic resistance genes and mobile genetic elements from cattle manure. Bioresour. Technol. 274:287-295. doi:10.1016/j.biortech.2018.09.013.
Sypniewski, J., B. Kierończyk, A. Benzertiha, Z. Mikołajczak, E. Pruszyńska-Oszmałek, P. Kołodziejski, M. Sassek, M. Rawski, W. Czekała, and D. Józefiak. 2020. Replacement of soybean oil by Hermetia illucens fat in turkey nutrition: effect on performance, digestibility, microbial community, immune and physiological status and final product quality. Br. Poult. Sci. 61:294-302. doi:10.1080/00071668.2020.1716302.
Tian, Z., Y. Zhang, B. Yu, and M. Yang. 2016. Changes of resistome, mobilome and potential hosts of antibiotic resistance genes during the transformation of anaerobic digestion from mesophilic to thermophilic. Water Res. 98:261-269. doi:10.1016/j.watres.2016.04.031.
Tien, Y. C., B. Li, T. Zhang, A. Scott, R. Murray, L. Sabourin, R. Marti, and E. Topp. 2017. Impact of dairy manure pre-application treatment on manure composition, soil dynamics of antibiotic resistance genes, and abundance of antibiotic-resistance genes on vegetables at harvest. Sci. Total Environ. 581-582:32-39. doi:10.1016/j.scitotenv.2016.12.138.
Wang, Y., P. Dellatore, V. Douard, L. Qin, M. Watford, R. P. Ferraris, T. Lin, and S. A. Shapses. 2016. High fat diet enriched with saturated, but not monounsaturated fatty acids adversely affects femur, and both diets increase calcium absorption in older female mice. Nutr. Res. 36:742-750. doi:10.1016/j.nutres.2016.03.002.
Wauquier, F., L. Léotoing, C. Philippe, M. Spilmont, V. Coxam, and Y. Wittrant. 2015. Pros and cons of fatty acids in bone biology. Prog. Lipid Res. 58:121-145. doi:10.1016/j.plipres.2015.03.001.
Werisch, M., U. Berger, and T. U. Berendonk. 2017. Conjugative plasmids enable the maintenance of low cost non-transmissible plasmids. Plasmid. 91:96-104. doi:10.1016/j.plasmid.2017.04.004.
Von Wintersdorff, C. J. H., J. Penders, J. M. van Niekerk, N. D. Mills, S. Majumder, L. B. van Alphen, P. H. M. Savelkoul, and P. F. G. Wolffs. 2016. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front. Microbiol. 7:173. doi:10.3389/fmicb.2016.00173.
Wu, G. 2013. Functional amino acids in nutrition and health. Amino Acids. 45:407-411. doi:10.1007/s00726-013-1500-6.
Xia, J., C. Ge, and H. Yao. 2021. Antimicrobial peptides from black soldier fly (Hermetia illucens) as potential antimicrobial factors representing an alternative to antibiotics in livestock farming. Animals 11:1937. doi:10.3390/ani11071937.
Xie, W.Y., X. P. Yang, Q. Li, L. H. Wu, Q. R. Shen, and F. J. Zhao. 2016. Changes in antibiotic concentrations and antibiotic resistome during commercial composting of animal manures. Environ. Pollut. 219:182-190. doi:10.1016/j.envpol.2016.10.044.
Xu, Zhimin, X. Wu, J. Zhang, P. Cheng, Zhihao Xu, W. Sun, Y. Zhong, Y. Wang, G. Yu, and H. Liu. 2023. Microplastics existence intensified bloom of antibiotic resistance in livestock feces transformed by black soldier fly. Environ. Pollut. 317:120845. doi:10.1016/j.envpol.2022.120845.
Yan, W., C. Sun, J. Yuan, and N. Yang. 2017. Gut metagenomic analysis reveals prominent roles of Lactobacillus and cecal microbiota in chicken feed efficiency. Sci. Rep. 7:45308. doi:10.1038/srep45308.
Yao, L., X. Chen, M. Shen, Y. Zhao, and Q. Cao. 2023. Isosteviol attenuates DSS-induced colitis by maintaining intestinal barrier function through PDK1/AKT/NF-κB signaling pathway. Int. Immunopharmacol. 114:109532. doi:10.1016/j.intimp.2022.109532.
Yu, G., P. Cheng, Yanhong Chen, Y. Li, Z. Yang, Yuanfeng Chen, and J. K. Tomberlin. 2011. Inoculating poultry manure with companion bacteria influences growth and development of black soldier fly (Diptera: Stratiomyidae) larvae. Environ. Entomol. 40:30-35. doi:10.1603/EN10126.
Zhang, Y., X. Xiao, O. Elhag, M. Cai, L. Zheng, F. Huang, H. R. Jordan, J. K. Tomberlin, S. Sze, Z. Yu, and J. Zhang. 2022. Hermetia illucens L. larvae-associated intestinal microbes reduce the transmission risk of zoonotic pathogens in pig manure. Microb. Biotechnol. 15:2631-2644. doi:10.1111/1751-7915.14113.
Zhao, Z., C. Yu, C. Yang, B. Gao, N. Jiménez, C. Wang, F. Li, Y. Ao, L. Zheng, F. Huang, J. K. Tomberlin, Z. Ren, Z. Yu, J. Zhang, and M. Cai. 2023. Mitigation of antibiotic resistome in swine manure by black soldier fly larval conversion combined with composting. Sci. Total Environ. 879:163065. doi:10.1016/j.scitotenv.2023.163065.
Zou, Y., Y. Xiao, H. Wang, T. Fang, and P. Dong. 2020. New insight into fates of sulfonamide and tetracycline resistance genes and resistant bacteria during anaerobic digestion of manure at thermophilic and mesophilic temperatures. J. Hazard. Mater. 384:121433. doi:10.1016/j.jhazmat.2019.121433.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99490-
dc.description.abstract家禽飼養過程中常使用抗菌藥物以治療疾病,部分藥物可能以未代謝或仍具活性的形式排出體外,導致雞糞中抗生素殘留,並促進抗藥性菌株的增長,進而成為抗生素抗藥性基因(antibiotic resistance genes, ARGs)累積與擴散的重要來源。ARGs可經由垂直或水平傳播進入環境,並可能藉由食物鏈影響人類健康。黑水虻(Hermetia illucens)為一種腐食性昆蟲,能有效分解各種有機廢棄物,並將其轉化為高蛋白與高脂質的生物質。其中,黑水虻蟲油(black soldier fly oil, BSFO)富含中鏈脂肪酸(medium-chain fatty acids, MCFAs),以月桂酸(lauric acid, C12:0)含量最為豐富。研究顯示,月桂酸具有良好的抑菌效果,其可以透過調控TLR4/NF-κB訊號傳導路徑,增加腸道屏障功能,對腸道健康具有潛在益處。腸道微生物群落是個複雜而多樣的系統,對於家禽的健康和生理功能扮演重要的角色,且易受動物年齡和飼糧組成等許多因素影響。然而,關於BSFO作為飼料油脂來源對蛋雞腸道免疫功能與健康的影響仍缺乏深入探討。
本研究分為兩個部分,試驗一以雞糞飼養黑水虻,於處理第0、6與12天,採集糞便與蟲體樣本,透過即時定量聚合酶連鎖反應分析8種雞糞中常見的ARGs,包含Sul1、tetA、tetB、tetG、blaTEM、blaCTX、blaSHV及qnrB;並結合16S rRNA定序,探討黑水虻處理對基質菌群結構的影響。同時,利用塗佈平板法測定大腸桿菌、乳酸菌及腸桿菌的菌落數。結果顯示,黑水虻處理可顯著減少基質中大腸桿菌菌落數;然而,16S rRNA定序仍偵測到如Pseudomonas、Erysipelothrix等潛在病原菌。此外,ARGs分析結果顯示,黑水虻處理沒有顯著減少基質中blaSHV、tetB和Sul1表現,且蟲體中仍可檢測到抗藥性基因殘留,顯示以廢棄物飼養黑水虻仍存在安全風險。試驗二評估不同比例BSFO取代飼糧中大豆油對蛋雞生產性能與腸道健康之影響。本次試驗採用42隻57週齡羅曼褐殼蛋雞,並將其隨機分配至對照組(100%大豆油)、20% BSFO組(替代飼糧中20%大豆油)以及40% BSFO組(替代飼糧中40%大豆油),試驗為期8週。於試驗過程中記錄體重、產蛋率與蛋重,於第8週採集血液、腸道組織及盲腸內容物,並利用16S rRNA定序分析菌相。結果顯示,BSFO不影響蛋雞體重、產蛋率或蛋重。此外,蛋黃顏色、蛋白高度和豪氏單位組間無顯著差異,但蛋殼強度隨BSFO比例增加而降低(p < 0.05),推測可能因飽和脂肪酸容易與鈣形成皂化物,降低鈣吸收。而血液生化值是評估動物健康生理狀況的重要因素,結果顯示白蛋白、球蛋白、天門冬胺酸轉胺酶、膽固醇及三酸甘油酯在各組間無顯著差異(p > 0.05),顯示BSFO不影響蛋雞健康狀態及血脂代謝。在腸道結構分析中,20% BSFO組十二指腸絨毛長度減少(p < 0.05);同時,20%和40% BSFO組十二指腸與迴腸IL-1β表現量升高(p < 0.05),且20%與40% BSFO組空腸CLDN基因表現量顯著減少(p < 0.05),顯示BSFO可能誘導局部發炎反應並削弱腸道屏障功能,推測是因為BSFO的替代增加飼糧中飽和脂肪酸並減少Omega-6含量,刺激TLR4/NF-κB路徑,增加促炎因子釋放,導致腸道屏障功能受損。此外,菌相分析結果表示,各組菌群α多樣性沒有顯著差異,優勢菌門皆以厚壁菌門(Firmicutes)和擬桿菌門(Bacteroidetes)為主。然而,β多樣性分析顯示各處理組之間菌群組成有顯著差異(p < 0.05),BSFO組如Syngergistes及Flavonifractor菌屬相對豐度增加,相關代謝途徑包含泛酸、輔酶A合成及支鏈胺基酸代謝,可能促進短鏈脂肪酸生成,進而影響腸道免疫與屏障功能。綜上所述, BSFO不影響蛋雞生產性能及血液生化值,但高比例替代可能降低蛋殼強度,並透過改變脂肪酸組成誘導腸道局部炎症,同時影響菌群結構與代謝功能。黑水虻飼養基質對於蟲體應用價值及品質至關重要,未來可透過優化基質,調整黑水虻蟲油脂肪酸比例,進一步提升其於家禽腸道健康之應用。
zh_TW
dc.description.abstractIn poultry farming, antimicrobial drugs are commonly used for disease prevention and treatment. However, some drugs may be excreted in unmetabolized or active forms, leading to the presence of antibiotic residues and bacterial strains in manure. Consequently, manure serves as a significant reservoir for the accumulation and dissemination of antibiotic resistance genes (ARGs), which can be transmitted vertically or horizontally into the environment and may indirectly affect human health through the food chain. The black soldier fly (Hermetia illucens) is a saprophagous insect capable of decomposing various organic wastes and converting them into protein and lipid. Black soldier fly oil (BSFO), extracted from the larvae, is rich in medium-chain fatty acids (MCFAs), particularly lauric acid (C12:0), which can comprise 40–50% of the total fatty acids. Previous studies have demonstrated that lauric acid exhibits antimicrobial activity and enhance intestinal barrier function by modulating the TLR4/NF-κB signaling pathway, thereby potentially benefiting gut health. The gut microbiota constitutes a complex and diverse ecosystem that plays a crucial role in physiological functions of poultry. It is affected by multiple factors, including the animal’s age and diets. However, the effects of BSFO as a lipid source on intestinal health and immune function in laying hens remain inadequately explored.
This study consists of two parts. In trial one, black soldier fly were reared on manure, and samples were collected on days 0, 6, and 12. Quantitative PCR was used to detect eight common ARGs in manure: Sul1、tetA、tetB、tetG、blaTEM、blaCTX、blaSHV and qnrB. Traditional plating methods were used to quantify Escherichia coli, Enterobacteriaceae, and Lactobacillus spp. Results indicated that manure decomposed by the black soldier fly significantly reduced the counts of E. coli colony. However, 16S rRNA sequencing revealed the continued presence of potential pathogens such as Pseudomonas and Erysipelothrix. Also, ARGs such as blaSHV, tetB, or Sul1 remained detectable in both manure and larvae, suggesting biosafety concerns when rearing larvae on waste.
In trial two, evaluated the effects of replacing soybean oil with varying proportions of BSFO on production performance and gut health in laying hens. Forty-two 57-week-old Roman brown hens were randomly distributed to 3 groups: control (100% soybean oil), 20% BSFO replacement, and 40% BSFO replacement. The trial lasted 8 weeks, during which body weight, egg production rate, and egg weight were recorded. At week 8, blood, intestinal tissues, and cecal contents were collected for 16S rRNA sequencing to analyze gut microbiota. Results indicated the production performance and egg quality were unaffected (p > 0.05), except for a decrease in eggshell strength at higher BSFO levels (p < 0.05), possibly due to reduced calcium absorption from saturated fatty acids. Blood biochemical parameters, including albumin, globulin, aspartate aminotransferase (AST), cholesterol, and triglycerides, also showed no significant different. However, intestinal analysis revealed that the villus height in the duodenum reduced in the 20% BSFO group (p < 0.05). Moreover, IL-1β expression in the duodenum and ileum was elevated in both the 20% and 40% BSFO groups, while claudin (CLDN) gene expression in the jejunum was significantly reduced (p < 0.05). These effects may be linked to increased saturated fat and reduced omega-6 content in BSFO, potentially activating the TLR4/NF-κB pathway. Microbiota analysis showed no significant differences in alpha diversity across groups, with Firmicutes and Bacteroidetes dominating the microbial communities. However, beta diversity analysis revealed significant differences in microbial composition between treatments (p < 0.05). The relative abundance of genera include Synergistes and Flavonifractor increased in BSFO groups. These bacteria are involved in metabolic pathways related to pantothenic acid, coenzyme A biosynthesis, and branched-chain amino acid metabolism, which may enhance short-chain fatty acid production and thereby influence gut immunity and barrier function.
In conclusion, BSFO substitution did not affect laying hen production performance or blood biochemistry, but higher replacement may reduce eggshell strength and induce intestinal inflammation by altering fatty acid composition. This leads to weakened barrier function in microbial structure and metabolic pathway. The choice of substrate for rearing black soldier flies critically impacts the safety and quality of insect-derived products. Future research should focus on optimizing rearing substrates and modulating the fatty acid profile of BSFO to enhance its potential benefits for poultry gut health.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:26:57Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-10T16:26:57Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
中文摘要 iii
Abstract v
目次 viii
圖次 xiii
表次 xv
壹、文獻探討 1
一、畜牧廢棄物處理現況 1
(一)畜牧廢棄物問題 1
(二)畜牧廢棄物處理方式 3
二、抗藥性機制及基因傳播方式 4
(一)細菌之抗藥性 4
(二)抗藥性基因傳播機制 5
(三)常見抗藥性基因在環境中的影響 6
三、黑水虻介紹 8
(一)黑水虻特性 8
(二)黑水虻幼蟲生長發育之影響因素 9
(三)黑水虻的營養組成 12
(四)黑水虻於有機廢物管理的效益與應用 13
四、黑水虻降解有害物質之應用潛力 14
(一)黑水虻處理對基質菌相之影響 14
(二)黑水虻對病原菌抑制之潛力 14
(三)黑水虻腸道菌群的抑菌作用 15
五、黑水虻油脂的脂肪酸組成與生物活性 16
(一)黑水虻油脂組成特性 16
(二)月桂酸之功能特性 17
六、黑水虻油脂之應用 18
(一)黑水虻油脂於禽類飼糧中的應用 18
(二)黑水虻油脂對家禽腸道健康的影響 18
七、研究目的 20
貳、試驗內容 21
第一章、以雞糞為黑水虻飼養基質對病原菌殘留及抗藥性基因之影響 21
一、前言 21
二、材料與方法 22
(一)實驗用黑水虻及雞糞之來源 22
(二)試驗規劃 22
(三)黑水虻幼蟲腸道分離 23
(四)樣本菌落數計算 24
(五)雞糞殘渣DNA萃取 24
(六)黑水虻幼蟲腸道DNA萃取 25
(七)抗生素抗藥性基因之標準品製備 26
(八)抗藥性基因相對豐度(qPCR分析) 28
(九)統計方法 29
(十)建庫和定序 30
(十一)16S rRNA數據分析 30
三、 試驗結果 33
(一)抗藥性基因之變化 33
(二)樣本菌落數變化 35
(三)序列品質控制 37
(四)α多樣性 38
(五)β 多樣性 40
(六)雞糞殘渣和黑水虻幼蟲腸道菌相相對豐度 42
(七)LEfSe(Linear discriminant analysis effect size) 45
(八)PICRUSt預測分析 47
四、討論 50
(一)黑水虻處理雞糞過程中抗生素抗藥性基因之變化 50
(二)黑水虻處理對雞糞菌群結構之影響 51
(三)黑水虻處理對雞糞病原菌之影響 53
(四)黑水虻處理對雞糞優勢菌群與抗藥性菌屬之變化 54
(五)黑水虻處理對雞糞菌群代謝功能之影響 54
(六)黑水虻腸道菌群與抗藥性基因之變化 55
第貳章、以黑水虻蟲油替代飼糧中大豆油對蛋雞產蛋性能、腸道型態及菌相影響 57
一、前言 57
二、材料方法 58
(一)動物試驗 58
(二)黑水虻蟲油萃取 60
(三)飼料脂肪酸組成測定 60
(四)生長性狀 62
(五)蛋品質分析 62
(六)血液生化指數測定 63
(七)腸道收集與組織型態分析 64
(八)蛋白質濃度檢測 64
(九)促炎細胞激素檢測 65
(十)硫巴比妥酸反應物檢測 65
(十一)基因表現量分析 66
三、 試驗結果 69
(一)黑水虻蟲油與大豆油之脂肪酸組成比較 69
(二)黑水虻蟲油對蛋雞產蛋性能之影響 69
(三)黑水虻蟲油對蛋雞蛋品質之影響 72
(四)黑水虻蟲油對蛋雞免疫器官重量之影響 73
(五)黑水虻蟲油對蛋雞血液生化指數之影響 74
(六)黑水虻蟲油對蛋雞腸道型態之影響 75
(七)黑水虻蟲油對蛋雞血漿促炎細胞激素濃度之影響 77
(八)黑水虻蟲油對蛋雞迴腸促炎細胞激素濃度之影響 78
(九)黑水虻蟲油對蛋雞腸道脂肪過氧化之影響 79
(十)黑水虻蟲油對蛋雞小腸基因表現量之影響 80
(十一)序列品質控制 81
(十二)黑水虻蟲油對蛋雞腸道菌相相對豐度之影響 83
(十三)黑水虻蟲油對蛋雞盲腸F/B ratio之影響 84
(十四)黑水虻蟲油對蛋雞盲腸菌群α多樣性之影響 86
(十五)黑水虻蟲油對蛋雞盲腸菌群β多樣性之影響 88
(十六)黑水虻蟲油對蛋雞盲腸LEfSe分析 90
(十七)黑水虻蟲油對蛋雞盲腸特定菌屬相對豐度之影響 91
(十八)黑水虻蟲油對蛋雞盲腸微生物代謝功能之預測分析 93
四、討論 95
(一)黑水虻蟲油對蛋雞產蛋性能之影響 95
(二)黑水虻蟲油對蛋雞蛋品質之影響 95
(三)黑水虻蟲油對蛋雞健康狀態之影響 97
(四)黑水虻蟲油對蛋雞腸道健康之影響 98
肆、結論 107
伍、參考文獻 108
-
dc.language.isozh_TW-
dc.subject抗生素抗藥性基因zh_TW
dc.subject黑水虻zh_TW
dc.subject腸道健康zh_TW
dc.subject蛋雞zh_TW
dc.subject黑水虻蟲油zh_TW
dc.subjectblack soldier fly oilen
dc.subjectlaying hensen
dc.subjectgut healthen
dc.subjectantibiotic resistance genesen
dc.subjectblack soldier flyen
dc.title黑水虻處理雞糞對微生物相及含蟲油之飼糧對蛋雞產蛋性能、腸道型態與菌相之影響zh_TW
dc.titleEffects of black soldier fly-treated poultry manure on microbial community and its oil inclusion on laying hen performance, intestinal morphology, and microbiotaen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee游玉祥;王如邦zh_TW
dc.contributor.oralexamcommitteeYu-Hsiang Yu;Reu-Ben Wangen
dc.subject.keyword黑水虻,抗生素抗藥性基因,黑水虻蟲油,蛋雞,腸道健康,zh_TW
dc.subject.keywordblack soldier fly,antibiotic resistance genes,black soldier fly oil,laying hens,gut health,en
dc.relation.page118-
dc.identifier.doi10.6342/NTU202501649-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-15-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept動物科學技術學系-
dc.date.embargo-lift2030-07-09-
Appears in Collections:動物科學技術學系

Files in This Item:
File SizeFormat 
ntu-113-2.pdf
  Restricted Access
5.23 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved