請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99485完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周逸儒 | zh_TW |
| dc.contributor.advisor | Yi-Ju Chou | en |
| dc.contributor.author | 蔡曜鴻 | zh_TW |
| dc.contributor.author | Yao-Hung Tsai | en |
| dc.date.accessioned | 2025-09-10T16:26:03Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-28 | - |
| dc.identifier.citation | Agrawal, A. and Koutsourelakis, P.-S. (2024). A probabilistic, data-driven closure model for rans simulations with aleatoric, model uncertainty. Journal of Computational Physics, 508:112982.
Arthur, R. S. and Fringer, O. B. (2014). The dynamics of breaking internal solitary waves on slopes. Journal of Fluid Mechanics, 761:360–398. Banerjee, S., Krahl, R., Durst, F., and Zenger, C. (2007). Presentation of anisotropy properties of turbulence, invariants versus eigenvalue approaches. Journal of Turbulence,(8):N32. Beck, A. and Kurz, M. (2021). A perspective on machine learning methods in turbulence modeling. GAMM-Mitteilungen, 44(1):e202100002. Beetham, S. and Capecelatro, J. (2020). Formulating turbulence closures using sparse regression with embedded form invariance. Physical Review Fluids, 5(8):084611. Ben Hassan Saïdi, I., Schmelzer, M., Cinnella, P., and Grasso, F. (2022). Cfd-driven symbolic identification of algebraic reynolds-stress models. Journal of Computational Physics, 457:111037. Braga-Neto, U. (2024). Springer Nature Switzerland, 2nd edition. Fundamentals of Pattern Recognition and Machine Learning. Brenner, O., Piroozmand, P., and Jenny, P. (2022). Efficient assimilation of sparse data into rans-based turbulent flow simulations using a discrete adjoint method. Journal of Computational Physics, 471:111667. Brunton, S. L., Noack, B. R., and Koumoutsakos, P. (2020). Machine learning for fluid mechanics. Annual Review of Fluid Mechanics, 52:477–508. Calhoun, R. J. and Street, R. L. (2001). Turbulent flow over a wavy surface: Neutral case. Journal of Geophysical Research: Oceans, 106(C5):9277–9293. Duraisamy, K. (2021). Perspectives on machine learning-augmented reynolds-averaged and large eddy simulation models of turbulence. Physical Review Fluids, 6(5):050504. Duraisamy, K., Iaccarino, G., and Xiao, H. (2019). Turbulence modeling in the age of data. Annual Review of Fluid Mechanics, 51:357–377. El-Askary, W. A. (2009). Turbulent boundary layer structure of flow over a smooth-curved ramp. Computers Fluids, 38:1718–1730. Fang, Y., Zhao, Y., Waschkowski, F., Ooi, A. S. H., and Sandberg, R. D. (2023). Toward more general turbulence models via multicase computational-fluid-dynamics-driven training. AIAA Journal, 61(5):1668–1681. Fringer, O. B. and Street, R. L. (2003). The dynamics of breaking progressive interfacial waves. Journal of Fluid Mechanics, 494:319–353. Fukami, K. and Taira, K. (2025). Observable‑augmented manifold learning for multi‑source turbulent flow data. Journal of Fluid Mechanics, 1010:R4. Gatski, T. B. and Speziale, C. G. (1993). On explicit algebraic stress models for complex turbulent flows. Journal of Fluid Mechanics, 254:59–78. Geneva, N. and Zabaras, N. (2019). Quantifying model form uncertainty in reynolds-averaged turbulence models with bayesian deep neural networks. Journal of Computational Physics, 383:125–147. Girimaji, S. S. (1996). Fully explicit and self-consistent algebraic reynolds stress model. Theoretical and Computational Fluid Dynamics, 8:387–402. Gladstone, R. J., Rahmani, H., Suryakumar, V., Meidani, H., D’Elia, M., and Zareei, A. (2024). Mesh-based gnn surrogates for time-independent pdes. Scientific Reports, 14:3394. Hanjalić, K. and Launder, B. E. (1972). A reynolds stress model of turbulence and its application to thin shear flows. Journal of Fluid Mechanics, 52(4):609–638. Launder, B. E., Reece, G. J., and Rodi, W. (1975). Progress in the development of a reynolds–stress turbulence closure. Journal of Fluid Mechanics, 68(3):537–566. Le, H., Moint, P., and Kim, J. (1997). Direct numerical simulation of turbulent flow over a backward-facing step. Journal of Fluid Mechanics, 330:349–374. Ling, J., Jones, R., and Templeton, J. (2016a). Machine learning strategies for systems with invariance properties. Journal of Computational Physics, 318:22–35. Ling, J., Kurzawski, A., and Templeton, J. (2016b). Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. Journal of Fluid Mechanics, 807:155–166. Ling, J. and Templeton, J. (2015). Evaluation of machine learning algorithms for prediction of regions of high reynolds averaged navier–stokes uncertainty. Physics of Fluids, 27(8). Lino, M., Fotiadis, S., Bharath, A. A., and Cantwell, C. D. (2022). Multi‑scale rotation‑equivariant graph neural networks for unsteady eulerian fluid dynamics. Physics of Fluids, 34(8):087110. Liu, Y., Cao, W., Zhang, W., and Xia, Z. (2022). Analysis on numerical stability and convergence of reynolds averaged navier–stokes simulations from the perspective of coupling modes. Physics of Fluids, 34:015120. Logg, A., Mardal, K.-A., and Wells, G. (2012). Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book, volume 84. Springer Science & Business Media. Lumley, J. L. (1979). Computational modeling of turbulent flows. Advances in Applied Mechanics, 18:123–176. Mandler, H. and Weigand, B. (2022). On frozen-rans approaches in data-driven turbulence modeling: Practical relevance of turbulent scale consistency during closure inference and application. International Journal of Heat and Fluid Flow, 95:108980. McConkey, R., Yee, E., and Lien, F. S. (2022). Deep structured neural networks for turbulence closure modeling. Physics of Fluids, 34:035110. Mendez, M. A., Ianiro, A., Noack, B. R., and Brunton, S. L., editors (2023). Data-Driven Fluid Mechanics: Combining First Principles and Machine Learning. Cambridge University Press, Cambridge, United Kingdom. Milani, P. M., Ling, J., and Eaton, J. K. (2021). On the generality of tensor basis neural networks for turbulent scalar flux modeling. International Communications in Heat and Mass Transfer, 128:105626. Pope, S. B. (1975). A more general effective-viscosity hypothesis. Journal of Fluid Mechanics, 72(2):331–340. Pope, S. B. (2000). Turbulent Flows. Cambridge University Press, 4th edition. Rodi, W. (1976). A new algebraic relation for calculating the reynolds stresses. Journal for Applied Mathematics and Mechanics, 56:T219–T221. Sharma, P., Chung, W. T., Akoush, B., and Ihme, M. (2023). A review of physics-informed machine learning in fluid mechanics. Energies, 16(5):2343. Shih, T.-H., Zhu, J., and Lumley, J. L. (1995). A new reynolds stress algebraic equation model. Computer Methods in Applied Mechanics and Engineering, 125:287–302. Speziale, C. G., Sarkar, S., and Gatski, T. B. (1991). Modelling the pressure–strain correlation of turbulence: an invariant dynamical systems approach. Journal of Fluid Mechanics, 227:245–272. Tang, H., Wang, Y., Wang, T., Tian, L., and Qian, Y. (2023). Data-driven reynolds-averaged turbulence modeling with generalizable non-linear correction and uncertainty quantification using bayesian deep learning. Physics of Fluids, 35(5):055119. Vinuesa, R. and Brunton, S. L. (2022). Enhancing computational fluid dynamics with machine learning. Nature Computational Science, 2(6):358–366. Wang, J.-X., Wu, J.-L., and Xiao, H. (2017). Physics-informed machine learning approach for reconstructing reynolds stress modeling discrepancies based on dns data. Physical Review Fluids, 2(3):034603. Weatheritt, J. and Sandberg, R. (2016). A novel evolutionary algorithm applied to algebraic modifications of the rans stress–strain relationship. Journal of Computational Physics, 325:22–37. Weatheritt, J. and Sandberg, R. D. (2017). The development of algebraic stress models using a novel evolutionary algorithm. International Journal of Heat and Fluid Flow, 68:298–318. Wu, J., Xiao, H., and Paterson, E. (2018). Physics-informed machine learning approach for augmenting turbulence models: A comprehensive framework. Physical Review Fluids, 3(7):074602. Wu, J., Xiao, H., Sun, R., and Wang, Q. (2019). Reynolds-averaged navier–stokes equations with explicit data-driven reynolds stress closure can be ill-conditioned. Journal of Fluid Mechanics, 869:553–586. Xiao, H., Wu, J.-L., Laizet, S., and Duan, L. (2020). Flows over periodic hills of parameterized geometries: A dataset for data-driven turbulence modeling from direct simulations. Computers Fluids, 200:104431. Yousif, M. Z., Zhang, M., Yu, L., Vinuesa, R., and Lim, H. C. (2023). A transformer-based synthetic-inflow generator for spatially developing turbulent boundary layers. Journal of Fluid Mechanics, 957:A6. Zang, Y., Street, R. L., and Koseff, J. R. (1994). A non-staggered grid, fractional step method for time-dependent incompressible navier–stokes equations in curvilinear coordinates. Journal of Computational Physics, 114(1):18–33. Zhang, X., Xiao, H., Luo, X., and He, G. (2022). Ensemble kalman method for learning turbulence models from indirect observation data. Journal of Fluid Mechanics, 949:A26. Zhang, X.-L., Xiao, H., Jee, S., and He, G. (2023). Physical interpretation of neural network-based nonlinear eddy viscosity models. Aerospace Science and Technology, 142:108632. Zhao, C., Zhang, F., Lou, W., Wang, X., and Yang, J. (2024). A comprehensive review of advances in physics-informed neural networks and their applications in complex fluid dynamics. Physics of Fluids, 36(10):101301. Zhao, Y., Akolekar, H. D., Weatheritt, J., Michelassi, V., and Sandberg, R. D. (2020). Rans turbulence model development using cfd-driven machine learning. Journal of Computational Physics, 411:109413. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99485 | - |
| dc.description.abstract | 在計算流體力學(Computational Fluid Dynamics)中,紊流建模始終是一項核心挑戰。其中,雷諾平均納維-斯托克斯方程(Reynolds-Averaged Navier-Stokes)因兼具計算效率與模擬精度,至今仍為工程應用中最常見的紊流模擬方法之一。然而,傳統RANS紊流閉合模型高度仰賴經驗性參數,在處理複雜流場時,其模擬準確性常受到限制。為提升模型表現,近年來「物理訊息機器學習」(Physics-Informed Machine Learning)逐漸興起,透過結合物理知識與機器學習架構,建立具備可解釋性與可靠性的資料驅動紊流模型。
本研究首次提出完全獨立於基準模型(傳統紊流閉合模型)的資料驅動紊流閉合框架,並且採多階段設計進行模型建構與整合。首先,透過張量基底神經網路(Tensor Basis Neural Network)結合局部流場特徵與幾何資訊(流函數與速度勢),預測各向異性雷諾應力張量,以強化模型對整體流場狀態的識別與泛化能力。其次,運用隨機森林回歸器(Random Forest Regressor)將預測的向異性雷諾應力張量轉化為固定形式輸出下的最適紊流黏滯係數。最後,透過退火模擬演算法(Simulated Annealing)逐步調控紊流黏滯係數,確保模型整合至RANS求解器時的計算收斂性與穩定性。 為驗證本架構之適用性,本研究選取三類具挑戰性的流場幾何進行模擬,包括波狀底床、平滑曲階與後向階梯等案例。結果顯示,本架構不僅具備良好的模型預測能力,亦能在無需依賴任何傳統基準模型的情況下,成功嵌入RANS求解器進行穩定模擬。綜合而言,本研究展現機器學習應用於紊流建模上的可行性與潛力,為將來紊流模擬領域開創全新發展方向。 | zh_TW |
| dc.description.abstract | One of the key problems in Computational Fluid Dynamics is still modeling turbulence, especially in Reynolds-Averaged Navier-Stokes simulations, which are used extensively in engineering for their balance between accuracy and computational efficiency. However, traditional RANS closures often rely on ad-hoc empirical parameters, limiting their accuracy and generalizability in complex flow regimes. To overcome these limitations, recent advances in Physics-Informed Machine Learning seek to integrate data-driven techniques with physical concepts, offering a promising pathway toward more reliable and interpretable turbulence models.
This study develops a fully standalone Machine Learning-based turbulence closure framework with a multi-stage architecture. First, a Tensor Basis Neural Network predicts the anisotropic Reynolds stress tensor using both local flow features and geometry-informed variables, specifically the stream function and velocity potential. These additional inputs help the model incorporate global flow information and improve generalization. Second, a Random Forest regressor translates the predicted anisotropic Reynolds stress tensors into an optimized eddy-viscosity field with a standardized output function. Third, a Simulated Annealing approach is used to gradually control the eddy-viscosity field in order to guarantee numerical stability and convergence during integration using the RANS solver. In order to assess the efficacy and suitability of the suggested methodology, this study conducts simulation tests on three representative and complex flow configurations: a Wavy Bottom, a Smooth-Curved Step, and a Backward-Facing Step. The results demonstrate that the developed model delivers both stable and accurate predictions, while being fully integrated into the RANS solver without relying on any baseline models. In general, this study underscores the potential of combining physics-based insights with data-driven approaches to advance turbulence modeling in CFD applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:26:03Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:26:03Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要 iii Abstract v Contents vii List of Figures xi List of Tables xv Denotation xvii Chapter 1 Introduction 1 1.1 Background 1 1.2 Literature Review 3 1.2.1 Euqation-based Turbulence Closure Approaches 3 1.2.2 Machine Learning-based Turbulence Closure Approaches 5 1.3 Research Gap 7 1.4 Research Contribution 9 1.5 Dissertation Structure 10 Chapter 2 Methodology 13 2.1 Problem Formulation 13 2.1.1 Governing Equations and the Turbulence Closure Problem 13 2.1.2 Tensor Basis Representation via Scaling Arguments 14 2.2 Data-Driven Framework 16 2.2.1 Tensor Basis Neural Network 16 2.2.2 Geometry-Informed Feature Augmentation 17 2.2.3 Optimal Eddy-Viscosity Estimation 20 2.3 Numerical Solver Framework 24 2.3.1 Simulated Annealing Eddy-Viscosity Update Strategy 24 2.3.2 Sub-Iteration Approach 28 2.4 Framework Flowchart 31 Chapter 3 Implementation and Experiments 35 3.1 Data Generation 35 3.1.1 Training Dataset 37 3.1.1.1 LES Simulation 37 3.1.1.2 Potential Flow Simulation 41 3.1.2 Validation Dataset 42 3.2 Machine Learning Models 42 3.2.1 Data Pre-Processing 43 3.2.2 Tensor Basis Neural Network Architecture 46 3.2.3 Random Forest Regressor Architecture 47 3.3 FEniCSx Solver 48 Chapter 4 Results and Discussion 51 4.1 A Turbulent Flow across a Wavy Bottom 53 4.1.1 A priori Assessment 53 4.1.2 A posteriori Assessment 57 4.2 A Turbulent Flow across a Smooth-Curved Step 61 4.2.1 A priori Assessment 61 4.2.2 A posteriori Assessment 63 4.3 A Turbulent Flow across a Backward-Facing Step 65 4.3.1 A priori Assessment 66 4.3.2 A posteriori Assessment 67 Chapter 5 Conclusions 71 Chapter 6 Future Works 73 References 77 Appendix A — A Perspective Based on the Explicit Algebraic Reynolds Stress Model 85 A.1 Reynolds Stress Model and Turbulent-Kinetic-Energy Equation 85 A.2 Explicit Algebraic Reynolds Stress Model 86 A.3 Derivation of the Explicit Algebraic Reynolds Stress Model and the Explicit Algebraic Turbulent-Kinetic-Energy Equation 92 Appendix B — LES Dataset Validation 95 Appendix C — Machine Learning Implementation 99 C.1 Feature Engineering 99 C.2 Hyper-parameter Tuning Logs 101 C.3 Ensemble Learning Strategy 103 | - |
| dc.language.iso | en | - |
| dc.subject | 雷諾平均納維-斯托克斯方程式 | zh_TW |
| dc.subject | 物理訊息機器學習 | zh_TW |
| dc.subject | 無基礎模型依賴之建模 | zh_TW |
| dc.subject | 資料驅動式紊流閉合模型 | zh_TW |
| dc.subject | Data-Driven Turbulence Closure | en |
| dc.subject | Baseline-Independent Modeling | en |
| dc.subject | Reynolds-Averaged Navier-Stokes | en |
| dc.subject | Physics-Informed Machine Learning | en |
| dc.title | 無基礎模型之資料驅動物理訊息機器學習紊流閉合方法 | zh_TW |
| dc.title | Data-Driven Physics-Informed Machine Learning for Turbulence Closure without a Baseline Model | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 曾于恒;李政賢;邱德耀 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Heng Tseng;Cheng-Hsien Lee;Te-Yao Chiu | en |
| dc.subject.keyword | 物理訊息機器學習,雷諾平均納維-斯托克斯方程式,資料驅動式紊流閉合模型,無基礎模型依賴之建模, | zh_TW |
| dc.subject.keyword | Physics-Informed Machine Learning,Reynolds-Averaged Navier-Stokes,Data-Driven Turbulence Closure,Baseline-Independent Modeling, | en |
| dc.relation.page | 105 | - |
| dc.identifier.doi | 10.6342/NTU202502635 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-29 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 應用力學研究所 | - |
| dc.date.embargo-lift | 2030-07-28 | - |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 20.22 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
