請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99482完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林沛群 | zh_TW |
| dc.contributor.advisor | Pei-Chun Lin | en |
| dc.contributor.author | 沈意軒 | zh_TW |
| dc.contributor.author | Yi-Syuan Shen | en |
| dc.date.accessioned | 2025-09-10T16:25:28Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-28 | - |
| dc.identifier.citation | [1] J. Li, C. Liu, K. Nguyen, and J. M. McCarthy. A steerable robot walker driven by two actuators. Robotica, 42(12):4019–4035, 2024.
[2] L. A. Rygg. Mechanical horse. U.S. Patent US491927A, Feb. 1893. [3] M. F. Silva and J. A. T. Machado. A historical perspective of legged robots. Journal of Vibration and Control, 13(9-10):1447–1486, 2007. [4] P. González-de Santos, E. Garcia, and J. Estremera. Quadrupedal Locomotion: An Introduction to the Control of Four-Legged Robots. Springer-Verlag, Berlin, Heidelberg, 2006. [5] S. Hirose and K. Kato. Study on quadruped walking robot in tokyo institute of technology: Past, present and future. In Proceedings of the 2000 IEEE International Conference on Robotics and Automation (ICRA), volume 1, pages 414–419, 2000. [6] S. Kitano, S. Hirose, A. Horigome, and G. Endo. TITAN-XIII: Sprawling-type quadruped robot with ability of fast and energy-efficient walking. ROBOMECH Journal, 3(8), 2016. [7] D. Papadopoulos and M. Buehler. Stable running in a quadruped robot with compliant legs. In Proceedings of the 2000 IEEE International Conference on Robotics and Automation (ICRA), volume 1, pages 444–449, 2000. [8] K. Berns, W. Ilg, M. Deck, J. Albiez, and R. Dillmann. Mechanical construction and computer architecture of the four-legged walking machine BISAM. IEEE/ASME Transactions on Mechatronics, 4(1):32–38, 1999. [9] H. Kimura and Y. Fukuoka. Biologically inspired adaptive dynamic walking in outdoor environment using a self-contained quadruped robot: ’Tekken2’. In Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), volume 1, pages 986–991, 2004. [10] D. Wooden, M. Malchano, K. Blankespoor, A. Howardy, A. A. Rizzi, and M. Raibert. Autonomous navigation for BigDog. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation (ICRA), pages 4736–4741, 2010. [11] J. R. Rebula, P. D. Neuhaus, B. V. Bonnlander, M. J. Johnson, and J. E. Pratt. A controller for the LittleDog quadruped walking on rough terrain. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation (ICRA), pages 1467–1473, 2007. [12] A. Koval, S. Karlsson, and G. Nikolakopoulos. Experimental evaluation of autonomous map-based Spot navigation in confined environments. Biomimetic Intelligence and Robotics, 2(1):100035, 2022. [13] C. Semini, N. G. Tsagarakis, E. Guglielmino, M. Focchi, F. Cannella, and D. G. Caldwell. Design of HyQ–a hydraulically and electrically actuated quadruped robot. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 225(6):831–849, 2011. [14] H. Khan, S. Kitano, M. Frigerio, M. Camurri, V. Barasuol, R. Featherstone, D. G. Caldwell, and C. Semini. Development of the lightweight hydraulic quadruped robot –MiniHyQ. In Proceedings of the 2015 IEEE International Conference on Technologies for Practical Robot Applications (TePRA), pages 1–6, 2015. [15] C. Semini, V. Barasuol, J. Goldsmith, M. Frigerio, M. Focchi, Y. Gao, and D. G. Caldwell. Design of the hydraulically actuated, torque-controlled quadruped robot HyQ2Max. IEEE/ASME Transactions on Mechatronics, 22(2):635–646, 2017. [16] L. Milburn, J. Gamba, M. Fernandes, and C. Semini. Computer-vision based real-time waypoint generation for autonomous vineyard navigation with quadruped robots. In Proceedings of the 2023 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), pages 239–244, 2023. [17] S. Seok, A. Wang, M. Y. Chuah, D. Otten, J. Lang, and S. Kim. Design principles for highly efficient quadrupeds and implementation on the MIT Cheetah robot. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA), pages 3307–3312, 2013. [18] G. Bledt, M. J. Powell, B. Katz, J. Di Carlo, P. M. Wensing, and S. Kim. MIT Cheetah 3: Design and control of a robust, dynamic quadruped robot. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 2245–2252, 2018. [19] B. Katz, J. Di Carlo, and S. Kim. Mini Cheetah: A platform for pushing the limits of dynamic quadruped control. In Proceedings of the 2019 IEEE International Conference on Robotics and Automation (ICRA), pages 6295–6301, 2019. [20] M. Hutter, C. Gehring, M. A. Hoepflinger, M. Bloesch, and R. Siegwart. Toward combining speed, efficiency, versatility, and robustness in an autonomous quadruped. IEEE Transactions on Robotics, 30(6):1427–1440, 2014. [21] M. Neunert, M. Stauble, M. Giftthaler, C. D. Bellicoso, J. Carius, C. Gehring, M. Hutter, and J. Buchli. Whole-body nonlinear model predictive control through contacts for quadrupeds. IEEE Robotics and Automation Letters, 3(3):1458–1465, 2018. [22] R. Grandia, F. Jenelten, S. Yang, F. Farshidian, and M. Hutter. Perceptive locomotion through nonlinear model-predictive control. IEEE Transactions on Robotics, 39(5):3402–3421, 2023. [23] G. Kenneally, A. De, and D. E. Koditschek. Design principles for a family of direct-drive legged robots. IEEE Robotics and Automation Letters, 1(2):900–907, 2016. [24] N. Kau, A. Schultz, N. Ferrante, and P. Slade. Stanford Doggo: An opensource, quasi-direct-drive quadruped. In Proceedings of the 2019 IEEE International Conference on Robotics and Automation (ICRA), pages 6309–6315, 2019. [25] Ghost Robotics. Ghost robotics official website, 2025. [26] Unitree Robotics. Unitree robotics official website, 2025. [27] DEEP Robotics. Deep robotics official website, 2025. [28] G. Endo and S. Hirose. Study on Roller-Walk: Multi-mode steering control and self-contained locomotion. In Proceedings of the 2000 IEEE International Conference on Robotics and Automation (ICRA), volume 3, pages 2808–2814, 2000. [29] G. Besseron, C. Grand, F. BenAmar, and P. Bidaud. Decoupled control of the high mobility robot Hylos based on a dynamic stability margin. In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 2435–2440, 2008. [30] J. A. Smith, I. Sharf, and M. Trentini. PAW: A hybrid wheeled-leg robot. In Proceedings of the 2006 IEEE International Conference on Robotics and Automation (ICRA), pages 4043–4048, 2006. [31] T. Tanaka and S. Hirose. Development of leg-wheel hybrid quadruped “AirHopper”: Design of powerful light-weight leg with wheel. In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 3890–3895, 2008. [32] P. Hebert, M. Bajracharya, J. Ma, N. Hudson, A. Aydemir, J. Reid, C. Bergh, J. Borders, M. Frost, M. Hagman, J. Leichty, P. Backes, B. Kennedy, P. Karplus, B. Satzinger, K. Byl, K. Shankar, and J. Burdick. Mobile manipulation and mobility as manipulation–design and algorithms of RoboSimian. Journal of Field Robotics, 32(2):255–274, 2015. [33] M. Schwarz, T. Rodehutskors, M. Schreiber, and S. Behnke. Hybrid driving-stepping locomotion with the wheeled-legged robot Momaro. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), pages 5589–5595, 2016. [34] A. Laurenzi, E. Mingo Hoffman, and N. G. Tsagarakis. Quadrupedal walking motion and footstep placement through linear model predictive control. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 2267–2273, 2018. [35] M. Bjelonic, C. D. Bellicoso, Y. de Viragh, D. Sako, F. D. Tresoldi, F. Jenelten, and M. Hutter. Keep rollin’–whole-body motion control and planning for wheeled quadrupedal robots. IEEE Robotics and Automation Letters, 4(2):2116–2123, 2019. [36] M. Bjelonic, R. Grandia, O. Harley, C. Galliard, S. Zimmermann, and M. Hutter. Whole-body mpc and online gait sequence generation for wheeled-legged robots. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 8388–8395, 2021. [37] S. Guccione and G. Muscato. The wheeleg robot. IEEE Robotics & Automation Magazine, 10(4):33–43, 2003. [38] F. Han, X. Huang, Z. Wang, J. Yi, and T. Liu. Autonomous Bikebot control for crossing obstacles with assistive leg impulsive actuation. IEEE/ASME Transactions on Mechatronics, 27(4):1882–1890, 2022. [39] Z. Wei, G. Song, G. Qiao, Y. Zhang, and H. Sun. Design and implementation of a leg–wheel robot: Transleg. Journal of Mechanisms and Robotics, 9(5):051001, 2017. [40] Y. S. Kim, G. P. Jung, H. Kim, K. J. Cho, and C. N. Chu. Wheel Transformer: A wheel-leg hybrid robot with passive transformable wheels. IEEE Transactions on Robotics, 30(6):1487–1498, 2014. [41] R. Cao, J. Gu, C. Yu, and A. Rosendo. OmniWheg: An omnidirectional wheel-leg transformable robot. In Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 5626–5631, 2022. [42] A. Yeldan, A. Arora, and G. S. Soh. QuadRunner: A transformable quasi-wheel quadruped. In Proceedings of the 2022 IEEE International Conference on Robotics and Automation (ICRA), pages 4694–4700, 2022. [43] S. C. Chen, K. J. Huang, W. H. Chen, S. Y. Shen, C. H. Li, and P. C. Lin. Quattroped: A leg–wheel transformable robot. IEEE/ASME Transactions on Mechatronics, 19(2):730–742, 2014. [44] W. H. Chen, H. S. Lin, Y. M. Lin, and P. C. Lin. TurboQuad: A novel leg–wheel transformable robot with smooth and fast behavioral transitions. IEEE Transactions on Robotics, 33(5):1025–1040, 2017. [45] P. Biswal and P. K. Mohanty. Development of quadruped walking robots: A review. Ain Shams Engineering Journal, 12(2):2017–2031, 2021. [46] H. Chai, Y. Li, R. Song, G. Zhang, Q. Zhang, S. Liu, J. Hou, Y. Xin, M. Yuan, G. Zhang, and Z. Yang. A survey of the development of quadruped robots: Joint configuration, dynamic locomotion control method and mobile manipulation approach. Biomimetic Intelligence and Robotics, 2(1):100029, 2022. [47] Y. Fan, Z. Pei, C. Wang, M. Li, Z. Tang, and Q. Liu. A review of quadruped robots: Structure, control, and autonomous motion. Advanced Intelligent Systems, 6(6):2300783, 2024. [48] K. Arikawa and S. Hirose. Development of quadruped walking robot TITAN-VIII. In Proceedings of the 1996 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), volume 1, pages 208–214, 1996. [49] M. Buehler, R. Battaglia, A. Cocosco, G. Hawker, J. Sarkis, and K. Yamazaki. SCOUT: A simple quadruped that walks, climbs, and runs. In Proceedings of the 1998 IEEE International Conference on Robotics and Automation (ICRA), volume 2, pages 1707–1712, 1998. [50] K. Berns, W. Ilg, M. Deck, and R. Dillmann. The mammalian-like quadrupedal walking machine BISAM. In Proceedings of the 5th International Workshop on Advanced Motion Control (AMC), pages 429–433, 1998. [51] H. Kimura and Y. Fukuoka. Adaptive dynamic walking of the quadruped on irregular terrain: Autonomous adaptation using neural system model. In Proceedings of the 2000 IEEE International Conference on Robotics and Automation (ICRA), volume 1, pages 436–443, 2000. [52] J. Z. Kolter, M. P. Rodgers, and A. Y. Ng. A control architecture for quadruped locomotion over rough terrain. In Proceedings of the 2008 IEEE International Conference on Robotics and Automation (ICRA), pages 811–818, 2008. [53] M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, and S. Schaal. Fast, robust quadruped locomotion over challenging terrain. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation (ICRA), pages 2665–2670, 2010. [54] A. Bouman, M. F. Ginting, N. Alatur, M. Palieri, D. D. Fan, T. Touma, T. Pailevanian, S. K. Kim, K. Otsu, J. Burdick, and A. Agha-Mohammadi. Autonomous Spot: Longrange autonomous exploration of extreme environments with legged locomotion. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 2518–2525, 2020. [55] O. Villarreal, V. Barasuol, P. M. Wensing, D. G. Caldwell, and C. Semini. Mpcbased controller with terrain insight for dynamic legged locomotion. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), pages 2436–2442, 2020. [56] H. W. Park, S. Park, and S. Kim. Variable-speed quadrupedal bounding using impulse planning: Untethered high-speed 3d running of MIT Cheetah 2. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), pages 5163–5170, 2015. [57] C. Gehring, S. Coros, M. Hutter, M. Bloesch, M. A. Hoepflinger, and R. Siegwart. Control of dynamic gaits for a quadrupedal robot. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA), pages 3287–3292, 2013. [58] M. Wermelinger, P. Fankhauser, R. Diethelm, P. Krusi, R. Siegwart, and M. Hutter. Navigation planning for legged robots in challenging terrain. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 1184–1189, 2016. [59] M. Hutter, C. Gehring, D. Jud, A. Lauber, C. D. Bellicoso, V. Tsounis, J. Hwangbo, K. Bodie, P. Fankhauser, M. Bloesch, R. Diethelm, S. Bachmann, A. Melzer, and M. A. Hoepflinger. ANYmal: A highly mobile and dynamic quadrupedal robot. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 38–44, 2016. [60] D. Wisth, M. Camurri, and M. Fallon. VILENS: Visual, inertial, lidar, and leg odometry for all-terrain legged robots. IEEE Transactions on Robotics, 39(1):309–326, 2023. [61] Q. Zhu, X. Guan, B. Yu, J. Zhang, K. Ba, X. Li, M. Xu, and X. Kong. Overview of structure and drive for wheel-legged robots. Robotics and Autonomous Systems, 181:104777, 2024. [62] S. Hirose and H. Takeuchi. Study on Roller-Walk: Basic characteristics and its control. In Proceedings of the 1996 IEEE International Conference on Robotics and Automation (ICRA), volume 4, pages 3265–3270, 1996. [63] G. Endo and S. Hirose. Study on Roller-Walk: System integration and basic experiments. In Proceedings of the 1999 IEEE International Conference on Robotics and Automation (ICRA), volume 3, pages 2032–2037, 1999. [64] C. Grand, F. BenAmar, F. Plumet, and P. Bidaud. Decoupled control of posture and trajectory of the hybrid wheel-legged robot Hylos. In Proceedings of the 2004 IEEE International Conference on Robotics and Automation (ICRA), volume 5, pages 5111–5116, 2004. [65] T. Rodehutskors, M. Schwarz, and S. Behnke. Intuitive bimanual telemanipulation under communication restrictions by immersive 3d visualization and motion racking. In Proceedings of the 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pages 276–283, 2015. [66] T. Klamt, D. Rodriguez, M. Schwarz, C. Lenz, D. Pavlichenko, D. Droeschel, and S. Behnke. Supervised autonomous locomotion and manipulation for disaster response with a centaur-like robot. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 1–8, 2018. [67] M. Bjelonic, P. K. Sankar, C. D. Bellicoso, H. Vallery, and M. Hutter. Rolling in the deep–hybrid locomotion for wheeled-legged robots using online trajectory optimization. IEEE Robotics and Automation Letters, 5(2):3626–3633, 2020. [68] Y. Zhang, P. Wang, J. Yi, D. Song, and T. Liu. Stationary balance control of a Bikebot. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), pages 6706–6711, 2014. [69] Z. Wei, G. Song, Y. Zhang, H. Sun, and G. Qiao. Transleg: A wire-driven legwheel robot with a compliant spine. In Proceedings of the 2016 IEEE International Conference on Information and Automation (ICIA), pages 7–12, 2016. [70] 陳宣妤. 具快速變換與跳躍能力之輪腳模組開發. 碩士論文, 國立臺灣大學, 2020. [71] 莊源誠. 結合雙自由度輪足模組之四足機器人及其足部混合控制與全身力補償控制之開發. 碩士論文, 國立臺灣大學, 2023. [72] 王華豫. 輪腳複合機器人之穩定輪腳轉換策略. 碩士論文, 國立臺灣大學, 2023. [73] 盧冠綸. 基於足部力追蹤控制之輪足複合式四足機器人全機控制架構開發. 碩士論文, 國立臺灣大學, 2024. [74] 黃培郡. 應用於輪足複合平台之狀態估測器. 碩士論文, 國立臺灣大學, 2024. [75] 陳致仁. 輪足複合機器人在軟性地表跳躍軌跡規劃. 碩士論文, 國立臺灣大學, 2024. [76] 何光展. 高動態雙自由度輪腳模組之驅動與控制. 碩士論文, 國立臺灣大學, 2021. [77] 劉育如. 結合多體動力學及限制型卡曼濾波器建構輪腳機構地面接觸力估測. 碩士論文, 國立臺灣大學, 2022. [78] 賴彥澧. 輪腳複合機器人上具視覺回授與多輪腳觸地點之爬樓梯策略. 碩士論文, 國立臺灣大學, 2025. [79] 許雅婷. 輪腳複合機器人之多步態轉換與崎嶇地形適應策略. 碩士論文, 國立臺灣大學, 2025. [80] J. P. Merlet. Jacobian, manipulability, condition number, and accuracy of parallel robots. Journal of Mechanical Design, 128(1):199–206, 2005. [81] M. Schumacher, J. Wojtusch, P. Beckerle, and O. von Stryk. An introductory review of active compliant control. Robotics and Autonomous Systems, 119:185–200, 2019. [82] J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim. Dynamic locomotion in the MIT Cheetah 3 through convex model-predictive control. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 1–9, 2018. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99482 | - |
| dc.description.abstract | 本研究針對輪腳複合型移動平台之多觸地點特性,提出一套兼具估測、控制與實驗驗證的全機力控制架構。此類平台在具備地面接觸構型快速變化之能力下,能展現傳統足式或輪式平台難以達成之地形適應性。然而,控制上所面臨的挑戰也隨之增加,包含缺乏穩定接觸點的力資訊、機身動態的不確定性,以及多模態控制策略間的整合困難等問題。此研究以本實驗室第三代輪腳複合機器人為實作平台,分層設計並驗證一完整從底層驅動到全身協調的控制系統,實現輪腳機構於非典型接觸條件下的穩定運動。
在致動層面,本研究首先更新驅動模組HT-04之馬達韌體與CAN通訊格式,並建置模組化及易於維護之軟體架構。進一步於感測與估測層,發展一套基於虛功原理與多接觸點雅可比矩陣之觸地力估測方法,針對不同輪框區段推導接觸力分佈,並結合條件數分析,確認穩定估測構型範圍。控制層方面,設計結合阻抗與前饋解耦之高頻觸地力控制架構,突破既有輪腳系統控制頻率不足與力回饋不精準之限制。最後,於決策層整合模型預測控制方法,使系統於各種步態與地形情境下皆能實現穩定、順應與可預期之全身運動行為。 透過模擬與實驗驗證,本架構於步行、小跑與滾走等步態下,皆顯著改善了姿態穩定性與位置及速度追蹤精度,並於崎嶇地形實驗中有效避免傾覆,實現輪腳複合機器人在多變接觸構型下之穩定自主移動行為。 | zh_TW |
| dc.description.abstract | This study presents a complete whole-body force control framework for a leg-wheel hybrid mobile platform, addressing the unique challenges posed by its multiple and changing ground contact points. The framework integrates estimation, control, and experimental validation. While this type of platform offers superior terrain adaptability compared to conventional legged or wheeled systems due to its ability to rapidly alter its contact configuration, it also introduces significant control difficulties. These include a lack of reliable force data from stable contact points, uncertainties in the robot's dynamics, and challenges in integrating multi-modal control strategies. Using our lab's third-generation leg-wheel robot as the implementation platform, this research develops and validates a complete, hierarchical control system, from low-level actuation to whole-body coordination, to achieve stable motion under unconventional contact conditions.
At the actuation level, this work begins by updating the firmware and CAN communication protocol of the HT-04 drive modules and implementing a modular, easily maintainable software architecture. At the sensing and estimation level, a ground contact force estimation method is developed based on the principle of virtual work and a multi-contact point Jacobian matrix. This method derives the contact force distribution for different segments of the wheel rim and utilizes condition number analysis to identify configurations that ensure stable estimation. At the control level, a high-frequency contact force control architecture is designed by combining impedance control with feedforward decoupling, overcoming the limitations of insufficient control frequency and imprecise force feedback in previous leg-wheel systems. Finally, at the decision-making level, Model Predictive Control (MPC) is integrated to realize stable, compliant, and predictable whole-body motion across diverse gaits and terrains. Validated through both simulation and physical experiments, this framework demonstrates a significant improvement in postural stability and height-tracking accuracy for walking, trotting, and wheel-like-walking gaits. In rough terrain experiments, the system effectively prevents the robot from tipping over, successfully enabling stable and autonomous locomotion for the leg-wheel hybrid robot in environments with highly variable contact configurations. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:25:28Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:25:28Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii ABSTRACT iii 目次 v 圖次 viii 表次 xiv 符號列表 xvi 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 四足機器人 2 1.2.2 輪腳複合機器人 8 1.3 研究貢獻 12 1.4 論文架構 13 第二章 實驗平台 14 2.1 硬體與機電系統介紹 14 2.1.1 輪腳複合機構 14 2.1.2 機身結構 17 2.1.3 機電系統 19 2.2 馬達韌體更新 20 2.2.1 開發環境 20 2.2.2 通訊架構優化 21 2.3 軟體架構更新 26 2.3.1 開發環境 26 2.3.2 軟體系統建置 27 第三章 輪腳觸地力估測 31 3.1 輪腳機構運動學 31 3.1.1 幾何參數定義 31 3.1.2 觸地位置建模 34 3.2 觸地力估測方法開發 36 3.2.1 虛功法 36 3.2.2 穩定性分析 39 3.2.3 動態效應補償 41 3.3 模擬與實驗驗證 43 3.3.1 環境建置 43 3.3.2 單足模擬結果 44 3.3.3 多步態模擬與實驗設計 46 3.3.4 多步態模擬與實驗結果 51 第四章 輪腳觸地力控制 65 4.1 觸地力控制方法開發 65 4.1.1 順應性控制回顧 65 4.1.2 控制策略優化 68 4.2 模擬與實驗驗證 75 4.2.1 單足模組實驗結果 75 4.2.2 靜態模擬結果 78 4.2.3 動態模擬與實驗結果 83 第五章 全機運動控制 90 5.1 模型預測控制 90 5.1.1 方法概述 90 5.1.2 簡化機體動力學 92 5.1.3 最佳化問題建構 96 5.1.4 控制架構實作 100 5.2 模擬與實驗驗證 103 5.2.1 多步態模擬與實驗設計 103 5.2.2 多步態模擬與實驗結果 104 5.2.3 崎嶇地形模擬與實驗結果 140 5.2.4 各步態及地形實驗能耗比較 159 5.3 控制架構之擴充性討論 160 第六章 結論與未來展望 162 6.1 結論 162 6.2 未來展望 162 參考文獻 164 附錄A—全機運動控制實驗影片 175 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 輪腳複合機器人 | zh_TW |
| dc.subject | 四足機器人 | zh_TW |
| dc.subject | 模型預測控制 | zh_TW |
| dc.subject | 阻抗控制 | zh_TW |
| dc.subject | 觸地力估測 | zh_TW |
| dc.subject | Quadruped Robot | en |
| dc.subject | Impedance Control | en |
| dc.subject | Contact Force Estimation | en |
| dc.subject | Leg-Wheel Hybrid Robot | en |
| dc.subject | Model Predictive Control | en |
| dc.title | 輪腳複合機器人上可變多觸地點之全機力控制架構開發 | zh_TW |
| dc.title | Whole-Body Force Control Architecture on a Leg-Wheel Transformable Robot with Varying Ground Contact Points | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 連豊力;顏炳郎 | zh_TW |
| dc.contributor.oralexamcommittee | Feng-Li Lian;Ping-Lang Yen | en |
| dc.subject.keyword | 四足機器人,輪腳複合機器人,觸地力估測,阻抗控制,模型預測控制, | zh_TW |
| dc.subject.keyword | Quadruped Robot,Leg-Wheel Hybrid Robot,Contact Force Estimation,Impedance Control,Model Predictive Control, | en |
| dc.relation.page | 175 | - |
| dc.identifier.doi | 10.6342/NTU202502013 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-29 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2030-07-28 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2030-07-28 | 54.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
