請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99481完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉嚞睿 | zh_TW |
| dc.contributor.advisor | Je-Ruei Liu | en |
| dc.contributor.author | 童俊晟 | zh_TW |
| dc.contributor.author | Chun-Cheng Tung | en |
| dc.date.accessioned | 2025-09-10T16:25:15Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-16 | - |
| dc.identifier.citation | 張廖婉萍(2020)。克弗爾與其分離菌株抗病毒活性之研究。國立臺灣大學生物科技研究所碩士論文,臺北市。
謝佳霖(2024)。具抗貓傳染性腹膜炎病毒活性之乳酸菌株篩選。國立臺灣大學動物科學技術學研究所碩士論文,臺北市。 Aguilar-Toalá, J. E., Garcia-Varela, R., Garcia, H. S., Mata-Haro, V., González-Córdova, A. F., Vallejo-Cordoba, B., & Hernández-Mendoza, A. (2018). Postbiotics: An evolving term within the functional foods field. Trends in Food Science & Technology, 75, 105–114. Al Hamrashdi, M., & Brady, G. (2022). Regulation of IRF3 activation in human antiviral signaling pathways. Biochemical Pharmacology, 200, 115026. Andreu, S., von Kobbe, C., Delgado, P., Ripa, I., Buzón, M. J., Genescà, M., Gironès, N., Del Moral-Salmoral, J., Ramírez, G. A., Zúñiga, S., Enjuanes, L., López-Guerrero, J. A., & Bello-Morales, R. (2023). Dextran sulfate from Leuconostoc mesenteroides B512F exerts potent antiviral activity against SARS-CoV-2 in vitro and in vivo. Frontiers in Microbiology, 14, 1185504. Baltimore, D. (1971). Expression of animal virus genomes. Bacteriological Reviews, 35(3), 235–241. Bamford, D. H., & Zuckerman, M. (2021). Encyclopedia of virology. Academic Press. Benmechernene, Z., Chentouf, H. F., Yahia, B., Fatima, G., Quintela-Baluja, M., Calo-Mata, P., & Barros-Velázquez, J. (2013). Technological aptitude and applications of Leuconostoc mesenteroides bioactive strains isolated from Algerian raw camel milk. BioMed Research International, 2013, 418132. Black, P. N., Blair, C. D., Butcher, A., Capinera, J. L., & Happ, G. M. (1981). Biochemistry and ultrastructure of iridescent virus type 29. Journal of Invertebrate Pathology, 38(1), 12–21. Cavicchioli, V. Q., Carvalho, O. V., Paiva, J. C., Todorov, S. D., Silva Júnior, A., & Nero, L. A. (2018). Inhibition of herpes simplex virus 1 (HSV-1) and poliovirus (PV-1) by bacteriocins from Lactococcus lactis subsp. lactis and Enterococcus durans strains isolated from goat milk. International Journal of Antimicrobial Agents, 51(1), 33–37. Chang-Liao, W. P., Lee, A., Chiu, Y. H., Chang, H. W., & Liu, J. R. (2020). Isolation of a Leuconostoc mesenteroides strain with anti-porcine epidemic diarrhea virus activities from kefir grains. Frontiers in Microbiology, 11, 1578. Chen, H. H., Lin, H. T., Foung, Y. F., & Lin, J. H. Y. (2012). The bioactivity of teleost IL-6: IL-6 protein in orange-spotted grouper (Epinephelus coioides) induces Th2 cell differentiation pathway and antibody production. Developmental and Comparative Immunology, 38(2), 285–294. Chou, H. Y., Hsu, C. C., & Peng, T. Y. (1998). Isolation and characterization of a pathogenic iridovirus from cultured grouper (Epinephelus sp.) in Taiwan. Fish Pathology, 33(4), 201–206. Ding, X., Lu, D. Q., Hou, Q. H., Li, S. S., Liu, X. C., Zhang, Y., & Lin, H. R. (2012). Orange-spotted grouper (Epinephelus coioides) toll-like receptor 22: Molecular characterization, expression pattern and pertinent signaling pathways. Fish & Shellfish Immunology, 33(3), 494–503. Evangelista, A. G., dos Santos Janotto, L., de Andrade Cavalari, C. M., de Macedo, R. E. F., & Luciano, F. B. (2025). Cellular effect of lactic acid bacteria and their metabolites against animal production bacteria. Total Environment Microbiology, 1(2), 100013. Fichera, G. A., Fichera, M., & Milone, G. (2016). Antitumoural activity of a cytotoxic peptide of Lactobacillus casei peptidoglycan and its interaction with mitochondrial-bound hexokinase. Anti-Cancer Drugs, 27(7), 609–619. Fijan, S. (2014). Microorganisms with claimed probiotic properties: An overview of recent literature. International Journal of Environmental Research and Public Health, 11(5), 4745–4767. Ganguly, N., Bhattacharya, S., Sesikeran, B., Nair, G., Ramakrishna, B., Sachdev, H., Batish, V., Kanagasabapathy, A., Muthuswamy, V., & Kathuria, S. (2011). ICMR-DBT guidelines for evaluation of probiotics in food. Indian Journal of Medical Research, 134(1), 22–25. George, F., Daniel, C., Thomas, M., Singer, E., Guilbaud, A., Tessier, F. J., Revol-Junelles, A. M., Borges, F., & Foligné, B. (2018). Occurrence and dynamism of lactic acid bacteria in distinct ecological niches: A multifaceted functional health perspective. Frontiers in Microbiology, 9, 2899. Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., Scott, K., Stanton, C., Swanson, K. S., Cani, P. D., Verbeke, K., & Reid, G. (2017). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology & Hepatology, 14(8), 491–502. Greve, J. M., Davis, G., Meyer, A. M., Forte, C. P., Yost, S. C., Marlor, C. W., Kamarck, M. E., & McClelland, A. (1989). The major human rhinovirus receptor is ICAM-1. Cell, 56(5), 839–847. Gul, S., & Durante Mangoni, E. (2024). Unraveling the puzzle: Health benefits of probiotics—A comprehensive review. Journal of Clinical Medicine, 13(5), 1436. Haller, O., Staeheli, P., & Kochs, G. (2007). Interferon-induced Mx proteins in antiviral host defense. Biochimie, 89(6–7), 812–818. Han, R., Wang, J., Chen, H., Luo, X., Li, A., Dan, X., & Li, Y. (2020). Grouper (Epinephelus coioides) IRAK-4 regulates activation of NF-κB and expression of inflammatory cytokines in grouper spleen cells. Fish & Shellfish Immunology, 106, 938–947. Harikrishnan, R., Balasundaram, C., & Heo, M.-S. (2010). Molecular studies, disease status and prophylactic measures in grouper aquaculture: Economic importance, diseases and immunology. Aquaculture, 309(1–4), 1–14. Hazeri, M., Hassan, M., Abba, Y., Omar, A., Allaudin, Z., Soltani, M., Hamdan, R. H., Mohamad, N., Raina, S., & Vishkaei, M. S. (2016). Histopathological evaluation and molecular detection of natural Iridovirus infection in cultured grouper fish in Malaysia. Comparative Clinical Pathology, 25(4), 965–971. He, J. G., Lü, L., Deng, M., He, H. H., Weng, S. P., Wang, X. H., Zhou, S. Y., Long, Q. X., Wang, X. Z., & Chan, S. M. (2002). Sequence analysis of the complete genome of an iridovirus isolated from the tiger frog. Virology, 292(2), 185–197. Hemme, D., & Foucaud-Scheunemann, C. (2004). Leuconostoc, characteristics, use in dairy technology and prospects in functional foods. International Dairy Journal, 14(6), 467–494. Honda, K., & Taniguchi, T. (2006). IRFs: Master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nature Reviews Immunology, 6(9), 644–658. Honda, K., Yanai, H., Negishi, H., Asagiri, M., Sato, M., Mizutani, T., Shimada, N., Ohba, Y., Takaoka, A., & Yoshida, N. (2005). IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature, 434(7034), 772–777. Jancovich, J. K., Mao, J., Chinchar, V. G., Wyatt, C., Case, S. T., Kumar, S., Valente, G., Subramanian, S., Davidson, E. W., Collins, J. P., & Jacobs, B. L. (2003). Genomic sequence of a ranavirus (family Iridoviridae) associated with salamander mortalities in North America. Virology, 316(1), 90–103. Jang, D. I., Lee, A. H., Shin, H. Y., Song, H. R., Park, J. H., Kang, T. B., Lee, S. R., & Yang, S. H. (2021). The role of tumor necrosis factor alpha (TNF α) in autoimmune disease and current TNF α inhibitors in therapeutics. International Journal of Molecular Sciences, 22(5), 2480. Kabak, B., & Dobson, A. D. (2011). An introduction to the traditional fermented foods and beverages of Turkey. Critical Reviews in Food Science and Nutrition, 51(3), 248–260. Kaisho, T., & Akira, S. (2006). Toll-like receptor function and signaling. Journal of Allergy and Clinical Immunology, 117(5), 979–987. Khalaf, H., Jass, J., & Olsson, P. E. (2010). Differential cytokine regulation by NF-kappaB and AP-1 in Jurkat T-cells. BMC Immunology, 11, 26. Koonin, E. V., Krupovic, M., & Agol, V. I. (2021). The Baltimore classification of viruses 50 years later: How does it stand in the light of virus evolution? Microbiology and Molecular Biology Reviews, 85(3), e0005321. Kou, M., & Wang, L. (2023). Surface toll-like receptor 9 on immune cells and its immunomodulatory effect. Frontiers in Immunology, 14, 1259989. Kuang, J., Liu, M., Yu, Q., Cheng, Y., Huang, J., Han, S., Shi, J., Huang, L., & Li, P. (2023). Antiviral effect and mechanism of edaravone against grouper iridovirus infection. Viruses, 15(11), 2213. Lai, Y. S., Murali, S., Ju, H. Y., Wu, M. F., Guo, I. C., Chen, S. C., Fang, K., & Chang, C. Y. (2000). Two iridovirus‐susceptible cell lines established from kidney and liver of grouper, Epinephelus awoara (Temminck & Schlegel), and partial characterization of grouper iridovirus. Journal of Fish Diseases, 23(6), 379–388. Leu, J. H., Wu, M. H., & Chou, H. Y. (2013). A comparative study between ranavirus and megalocytivirus infections in orange-spotted grouper (Epinephelus coioides). Journal of Marine Science and Technology, 21(7), 9. Li, L., Chen, S. N., Laghari, Z. A., Huo, H. J., Hou, J., Huang, L., Li, N., & Nie, P. (2020). Myxovirus resistance (Mx) gene and its differential expression regulated by three type I and two type II IFNs in mandarin fish, Siniperca chuatsi. Developmental and Comparative Immunology, 105, 103604. Li, P., Huang, S., Xiao, S., Xu, Y., Wei, X., Xiao, J., Guo, Z., Yu, Q., & Liu, M. (2022). Antiviral activities of green tea components against grouper iridovirus infection in vitro and in vivo. Viruses, 14(6), 1201. Liew, W. P., & Mohd-Redzwan, S. (2018). Mycotoxin: Its impact on gut health and microbiota. Frontiers in Cellular and Infection Microbiology, 8, 60. Liu, C. C., Ho, L. P., Yang, C. H., Kao, T. Y., Chou, H. Y., & Pai, T. W. (2017). Comparison of grouper infection with two different iridoviruses using transcriptome sequencing and multiple reference species selection. Fish and Shellfish Immunology, 71, 264–274. Liu, M., Yu, Q., Yi, Y., Xiao, H., Putra, D. F., Ke, K., Zhang, Q., & Li, P. (2020). Antiviral activities of Lonicera japonica Thunb. components against grouper iridovirus in vitro and in vivo. Aquaculture, 519, 734882. Liu, T., Zhang, L., Joo, D., & Sun, S. C. (2017). NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy, 2, 17023. Liu, W., Pang, H., Zhang, H., & Cai, Y. (2014). Biodiversity of lactic acid bacteria. In H. Zhang & W. Chen (Eds.), Lactic acid bacteria: Fundamentals and practice (pp. 103–203). Springer. Lopez-Castejon, G., & Brough, D. (2011). Understanding the mechanism of IL-1β secretion. Cytokine & Growth Factor Reviews, 22(4), 189–195. Louten, J. (2016). Virus replication. In Essential human virology (pp. 49–72). Academic Press. Low, Z. X., Kanauchi, O., Tiong, V., Sahimin, N., Lani, R., Tsuji, R., AbuBakar, S., & Hassandarvish, P. (2024). The antiviral effects of heat-killed Lactococcus lactis strain Plasma against dengue, chikungunya, and Zika viruses in humans by upregulating the IFN-α signaling pathway. Microorganisms, 12(11), 2304. Ma, H., Cheng, C., Deng, Y., Liu, G., Fan, S., Feng, J., & Guo, Z. (2022). Effective protection against ranavirus-type grouper iridovirus and Vibrio harveyi by priming a bivalent grouperVAC-Irido-R-Vh followed by boosting a monovalent V. harveyi vaccine. Aquaculture, 560, 738455. Mackowiak, P. A. (2013). Recycling Metchnikoff: Probiotics, the intestinal microbiome and the quest for long life. Frontiers in Public Health, 1, 52. Markowiak, P., & Śliżewska, K. (2018). The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathogens, 10, 21. Miura, H., Ihira, M., Kozawa, K., Kawamura, Y., Higashimoto, Y., Hattori, F., & Yoshikawa, T. (2021). Effect of Lactococcus lactis strain Plasma on HHV-6 and HHV-7 shedding in saliva: A prospective observational study. Microorganisms, 9(8), 1683. Mokoena, M. P. (2017). Lactic acid bacteria and their bacteriocins: Classification, biosynthesis and applications against uropathogens: A mini-review. Molecules, 22(8), 1255. Mokoena, M. P., Omatola, C. A., & Olaniran, A. O. (2021). Applications of lactic acid bacteria and their bacteriocins against food spoilage microorganisms and foodborne pathogens. Molecules, 26(22), 6787. Moll, G. N., Konings, W. N., & Driessen, A. J. (1999). Bacteriocins: Mechanism of membrane insertion and pore formation. Antonie Van Leeuwenhoek, 76(1–4), 185–198. Murali, S., Wu, M. F., Guo, I. C., Chen, S. C., Yang, H. W., & Chang, C. Y. (2002). Molecular characterization and pathogenicity of a grouper iridovirus (GIV) isolated from yellow grouper, Epinephelus awoara (Temminck & Schlegel). Journal of Fish Diseases, 25(2), 91–100. Nácher-Vázquez, M., Ballesteros, N., Canales, Á., Rodríguez Saint-Jean, S., Pérez-Prieto, S. I., Prieto, A., Aznar, R., & López, P. (2015). Dextrans produced by lactic acid bacteria exhibit antiviral and immunomodulatory activity against salmonid viruses. Carbohydrate Polymers, 124, 292–301. Naidu, A. S., Bidlack, W. R., & Clemens, R. A. (1999). Probiotic spectra of lactic acid bacteria (LAB). Critical Reviews in Food Science and Nutrition, 39(1), 13–126. Nataraj, B. H., Ali, S. A., Behare, P. V., & Yadav, H. (2020). Postbiotics-parabiotics: The new horizons in microbial biotherapy and functional foods. Microbial Cell Factories, 19(1), 168. Netherton, C. L., Simpson, J., Haller, O., Wileman, T. E., Takamatsu, H. H., Monaghan, P., & Taylor, G. (2009). Inhibition of a large double-stranded DNA virus by MxA protein. Journal of Virology, 83(5), 2310–2320. Nishihira, J., Nishimura, M., Moriya, T., Sakai, F., Kabuki, T., & Kawasaki, Y. (2018). Lactobacillus gasseri potentiates immune response against influenza virus infection. In Immunity and inflammation in health and disease (pp. 249–255). Elsevier. Oliveira-Nascimento, L., Massari, P., & Wetzler, L. M. (2012). The role of TLR2 in infection and immunity. Frontiers in Immunology, 3, 79. Ou-yang, Z., Wang, P., Huang, X., Cai, J., Huang, Y., Wei, S., Ji, H., Wei, J., Zhou, Y., & Qin, Q. (2012). Immunogenicity and protective effects of inactivated Singapore grouper iridovirus (SGIV) vaccines in orange-spotted grouper, Epinephelus coioides. Developmental and Comparative Immunology, 38(2), 254–261. Perlmutter, J. D., & Hagan, M. F. (2015). Mechanisms of virus assembly. Annual Review of Physical Chemistry, 66, 217–239. Perng, Y. C., & Lenschow, D. J. (2018). ISG15 in antiviral immunity and beyond. Nature Reviews Microbiology, 16(7), 423–439. Prado, M. R., Blandón, L. M., Vandenberghe, L. P., Rodrigues, C., Castro, G. R., Thomaz-Soccol, V., & Soccol, C. R. (2015). Milk kefir: Composition, microbial cultures, biological activities, and related products. Frontiers in Microbiology, 6, 1177. Radoshevich, L., Impens, F., Ribet, D., Quereda, J. J., Nam Tham, T., Nahori, M. A., Bierne, H., Dussurget, O., Pizarro-Cerdá, J., Knobeloch, K. P., & Cossart, P. (2015). ISG15 counteracts Listeria monocytogenes infection. eLife, 4, e06848. Shao, L., Wu, Z., Zhang, H., Chen, W., Ai, L., & Guo, B. (2014). Partial characterization and immunostimulatory activity of exopolysaccharides from Lactobacillus rhamnosus KF5. Carbohydrate Polymers, 107, 51–56. Singh, T. P., Kaur, G., Kapila, S., & Malik, R. K. (2017). Antagonistic activity of Lactobacillus reuteri strains on the adhesion characteristics of selected pathogens. Frontiers in Microbiology, 8, 486. Tanaka, T., Narazaki, M., & Kishimoto, T. (2014). IL-6 in inflammation, immunity, and disease. Cold Spring Harbor Perspectives in Biology, 6(10), a016295. Taverniti, V., & Guglielmetti, S. (2011). The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: Proposal of paraprobiotic concept). Genes & Nutrition, 6(3), 261–274. Tidona, C. A., & Darai, G. (1997). The complete DNA sequence of lymphocystis disease virus. Virology, 230(2), 207–216. Tsai, C. T., Ting, J. W., Wu, M. H., Wu, M. F., Guo, I. C., & Chang, C. Y. (2005). Complete genome sequence of the grouper iridovirus and comparison of genomic organization with those of other iridoviruses. Journal of Virology, 79(4), 2010–2023. van Loo, G., & Bertrand, M. J. M. (2023). Death by TNF: A road to inflammation. Nature Reviews Immunology, 23(5), 289–303. Wang, W., DeFeo, C. J., Alvarado-Facundo, E., Vassell, R., & Weiss, C. D. (2015). Intermonomer interactions in hemagglutinin subunits HA1 and HA2 affecting hemagglutinin stability and influenza virus infectivity. Journal of Virology, 89(20), 10602–10611. Wang, Y., Xu, N., Xi, A., Ahmed, Z., Zhang, B., & Bai, X. (2009). Effects of Lactobacillus plantarum MA2 isolated from Tibet kefir on lipid metabolism and intestinal microflora of rats fed on high-cholesterol diet. Applied Microbiology and Biotechnology, 84(2), 341–347. Wei, J., Li, C., Ou, J., Zhang, X., Liu, Z., & Qin, Q. (2020). The roles of grouper TANK in innate immune defense against iridovirus and nodavirus infections. Fish & Shellfish Immunology, 104, 506–516. Willis, D. B., Goorha, R., Miles, M., & Granoff, A. (1977). Macromolecular synthesis in cells infected by frog virus 3. VII. Transcriptional and post-transcriptional regulation of virus gene expression. Journal of Virology, 24(1), 326–342. Wu, H., & Chiou, J. (2021). Potential benefits of probiotics and prebiotics for coronary heart disease and stroke. Nutrients, 13(8), 2697. Yamauchi, Y., & Greber, U. F. (2016). Principles of virus uncoating: Cues and the snooker ball. Traffic, 17(6), 569–592. Yan, X., Zhao, X., Huo, R., & Xu, T. (2020). IRF3 and IRF8 regulate NF-κB signaling by targeting MyD88 in teleost fish. Frontiers in Immunology, 11, 606. Zhou, S., Song, D., Zhou, X., Mao, X., Zhou, X., Wang, S., Wei, J., Huang, Y., Wang, W., Xiao, S. M., & Qin, Q. (2019). Characterization of Bacillus subtilis from gastrointestinal tract of hybrid Hulong grouper (Epinephelus fuscoguttatus × E. lanceolatus) and its effects as probiotic additives. Fish & Shellfish Immunology, 84, 1115–1124. Zhu, W., Zhou, Y., Guo, L., & Feng, S. (2024). Biological function of sialic acid and sialylation in human health and disease. Cell Death Discovery, 10(1), 415. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99481 | - |
| dc.description.abstract | 目前石斑魚在臺灣的水產養殖業中仍然佔有重要的經濟地位,但由於近年來高密度的養殖方法,使得病毒的傳染變得非常容易又快速,其中最盛行且具有高感染力的病毒之一是石斑魚虹彩病毒(Grouper iridovirus, GIV),GIV屬於Ranavirus屬,當幼魚感染GIV時,死亡率甚至可高達60%。先前的研究指出,益生菌具有顯著的抗病毒效果,然而目前對於克菲爾(一種發酵乳產品),其是否具有抗GIV效果的研究仍然相當有限。
因此本研究使用實驗室先前於克菲爾粒分離出的29株乳酸菌(lactic acid bacteria, LAB)進行抗GIV活性的評估,利用石斑魚腎臟細胞(grouper kidney cells, GK cells)進行病毒感染的試驗。細胞毒性試驗的結果顯示,所有的LAB萃取物,包含胞內萃取物(intracellular fraction, IF)、胞外液(extracellular fraction, EF)與細胞壁(cell wall, CW),皆不具有細胞毒性。在預防模式下,所有LAB的EF、19株LAB的IF與11株LAB的CW,在細胞存活率試驗中皆具有抗GIV活性,其中具有最高抗GIV活性的菌株為YPK25與YPK30,兩株菌皆屬於Leuconostoc mesenteroides。而在基因表現量分析方面,雖然大部份促發炎相關基因的表現量在經由LAB萃取物預處理再感染GIV後沒有顯著差異,但與單純只有感染GIV的組別相比,大部份干擾素相關基因的表現量顯著地上升,因此推測Ln. mesenteroides在受GIV感染的GK細胞中主要是透過調節干擾素訊號,而不是藉由調節促發炎激素來抑制病毒的活性,因此未來研究干擾素相關基因的調節可能是個可行的方向。 | zh_TW |
| dc.description.abstract | Groupers remain an economically important species in Taiwan's aquaculture industry. However, high-density aquafarming practices have facilitated rapid and widespread viral transmission. Among the most prevalent and highly infectious viruses is the Grouper iridovirus (GIV), a major Ranavirus pathogen that can cause mortality rates up to 60%. Previous studies have indicated that probiotics possess significant antiviral properties. Nevertheless, the antiviral potential of kefir, a fermented dairy product, against GIV remains largely unexplored.
In this study, 29 lactic acid bacteria (LAB) strains previously isolated from kefir grains by our laboratory were evaluated for their antiviral activity against GIV using grouper kidney (GK) cells as an in vitro infection model. Results from cytotoxicity assays showed that the intracellular fraction (IF), extracellular fraction (EF), and cell wall (CW) of all LAB strains, were non-cytotoxic. In the subsequent evaluation of antiviral activity, a pretreatment model was employed. All EF samples, along with 19 IF samples and 11 CW samples, significantly improved cell viability following GIV infection, indicating antiviral potential. Among these, two strains, YPK25 and YPK30, both identified as Leuconostoc mesenteroides, exhibited the strongest antiviral effects. Gene expression analysis further demonstrated that cells pretreated with LAB extracts prior to GIV infection exhibited a significant upregulation of most interferon-related genes, whereas the expression levels of pro-inflammatory cytokines remained largely unchanged when compared with the GIV group. These findings suggest that Ln. mesenteroides may exert its antiviral effects in GIV-infected GK cells primarily through modulation of the interferon signaling pathway rather than by pro-inflammatory cytokines. Thus, future studies investigating the regulation of interferon-related genes may provide promising directions for anti-GIV research. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:25:15Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:25:15Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii 目次 v 圖次 ix 表次 xi 第一章、文獻探討 1 第一節、病毒 1 一、病毒簡介 1 二、石斑魚虹彩病毒簡介 2 三、石斑魚虹彩病毒之基因體特性 2 四、石斑魚虹彩病毒之致病機制與感染途徑 3 五、已知的抗病毒策略的發展現況 3 第二節、益生菌、後生元與副生元 4 一、益生菌之定義與歷史發展 4 二、益生菌之特性與功能 4 三、後生元與副生元 5 第三節、乳酸菌 6 一、乳酸菌簡介 6 二、乳酸菌的功能與應用 6 三、乳酸菌的抗病毒作用機制 7 第四節、克菲爾 8 第五節、研究動機與目的 10 第二章、材料與方法 11 一、實驗架構 11 二、乳酸菌之培養、活化與保存 12 三、乳酸菌萃取物製備 12 (一)胞內萃取物 12 (二)胞外液 12 (三)細胞壁 12 (四)蛋白質濃度定量 13 四、細胞繼代、保存與培養 13 (一)細胞活化與繼代 13 (二)細胞冷凍保存 14 五、病毒製備與保存 15 (一)病毒培養與純化 15 (二)病毒感染力價測定 15 六、樣品之細胞毒性分析 16 七、經不同乳酸菌菌株萃取物預處理之抗病毒活性分析 16 八、促發炎、干擾素相關基因與病毒基因表現量 17 (一)RNA萃取與純化 17 (二)合成cDNA 17 (三)即時定量聚合酶連鎖反應 18 九、統計分析 18 第三章、結果 21 一、不同乳酸菌菌株萃取物對於石斑魚腎臟細胞的細胞毒性 21 (一)胞內萃取物 21 (二)胞外液 21 (三)細胞壁 21 二、在預防模式下不同乳酸菌菌株萃取物對於石斑魚虹彩病毒的抗病毒活性 22 (一)胞內萃取物 22 (二)胞外液 22 (三)細胞壁 22 三、乳酸菌菌株萃取物預處理後感染GIV之GK細胞中促發炎與干擾素相關基因的表現量 23 (一)胞內萃取物 23 (二)胞外液 24 (三)細胞壁 24 四、乳酸菌菌株萃取物預處理後感染GIV之GK細胞中病毒基因的表現量 25 第四章、討論 48 一、乳酸菌之細胞毒性與益生菌潛力評估 48 二、乳酸菌菌種與抗GIV活性之關聯 48 三、促發炎與干擾素相關基因表現量分析 49 四、病毒基因表現量分析 52 第五章、結論 54 第六章、參考資料 55 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 石斑魚虹彩病毒 | zh_TW |
| dc.subject | 石斑魚腎臟細胞 | zh_TW |
| dc.subject | 益生菌 | zh_TW |
| dc.subject | Leuconostoc mesenteroides | zh_TW |
| dc.subject | grouper kidney cells | en |
| dc.subject | probiotic | en |
| dc.subject | Grouper iridovirus | en |
| dc.subject | Leuconostoc mesenteroides | en |
| dc.title | 具抗石斑魚虹彩病毒活性之乳酸菌篩選 | zh_TW |
| dc.title | Screening of lactic acid bacteria strains with anti-grouper iridovirus activity | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 劉啟德;彭及忠;謝建元 | zh_TW |
| dc.contributor.oralexamcommittee | Chi-Te Liu;Chi-Chung Peng;Chien-Yan Hsieh | en |
| dc.subject.keyword | 石斑魚虹彩病毒,石斑魚腎臟細胞,益生菌,Leuconostoc mesenteroides, | zh_TW |
| dc.subject.keyword | Grouper iridovirus,grouper kidney cells,probiotic,Leuconostoc mesenteroides, | en |
| dc.relation.page | 65 | - |
| dc.identifier.doi | 10.6342/NTU202501816 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-18 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物科技研究所 | - |
| dc.date.embargo-lift | 2027-07-15 | - |
| 顯示於系所單位: | 生物科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 42.64 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
