請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99479完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊台鴻 | zh_TW |
| dc.contributor.advisor | Tai-Horng Young | en |
| dc.contributor.author | 劉秉修 | zh_TW |
| dc.contributor.author | Ping-Hsiu Liu | en |
| dc.date.accessioned | 2025-09-10T16:24:53Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-22 | - |
| dc.identifier.citation | [1] S.A. Mofidi, S. Rajai Firouzabadi, I. Mohammadi, A. Aarabi, M. Alinejadfard, S. Sadraei, S.M. Soltani, N. Izadi, S. Goodarzi, A. Shafiee, Regional and National Burden of Traumatic Brain Injury and Spinal Cord Injury in North Africa and Middle East Regions, 1990–2021: A Systematic Analysis for The Global Burden of Disease Study 2021, Journal of Epidemiology and Global Health 15(1) (2025) 1-10.
[2] M.T. Fitch, J. Silver, CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure, Experimental Neurology 209(2) (2008) 294-301. [3] D. Cederberg, P. Siesjö, What has inflammation to do with traumatic brain injury?, Child's Nervous System 26 (2010) 221-226. [4] M. Galgano, G. Toshkezi, X. Qiu, T. Russell, L. Chin, L.-R. Zhao, Traumatic Brain Injury:Current Treatment Strategies and Future Endeavors, Cell Transplantation 26(7) (2017) 1118-1130. [5] Q.M. Alhadidi, G.A. Bahader, O. Arvola, P. Kitchen, Z.A. Shah, M.M. Salman, Astrocytes in functional recovery following central nervous system injuries, The Journal of Physiology 602(13) (2024) 3069-3096. [6] W.-S. Chung, L.E. Clarke, G.X. Wang, B.K. Stafford, A. Sher, C. Chakraborty, J. Joung, L.C. Foo, A. Thompson, C. Chen, Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways, Nature 504(7480) (2013) 394-400. [7] E. Yavin , Z. Yavin ATTACHMENT AND CULTURE OF DISSOCIATED CELLS FROM RAT EMBRYO CEREBRAL HEMISPHERES ON POLYLYSINE-COATED SURFACE, Journal of Cell Biology 62(2) (1974) 540-546. [8] P.A. Wender, W.C. Galliher, E.A. Goun, L.R. Jones, T.H. Pillow, The design of guanidinium-rich transporters and their internalization mechanisms, Advanced drug delivery reviews 60(4-5) (2008) 452-472. [9] C.B. Cooley, B.M. Trantow, F. Nederberg, M.K. Kiesewetter, J.L. Hedrick, R.M. Waymouth, P.A. Wender, Oligocarbonate molecular transporters: oligomerization-based syntheses and cell-penetrating studies, Journal of the American Chemical Society 131(45) (2009) 16401-16403. [10] Y.-R. Ji, S. Homaeigohar, Y.-h. Wang, C. Lin, T.-Y. Su, C.-C. Cheng, S.-H. Yang, T.-H. Young, Selective regulation of neurons, glial cells, and neural stem/precursor cells by poly (allylguanidine)-coated surfaces, ACS Applied Materials & Interfaces 11(51) (2019) 48381-48392. [11] Y.-R. Ji, C.-C. Cheng, A.-L. Lee, J.C.-C. Shieh, H.-J. Wu, A.P.-H. Huang, Y.-H. Hsu, T.-H. Young, Poly (allylguanidine)-coated surfaces regulate TGF-β in glioblastoma cells to induce apoptosis via NF-κB Pathway Activation, ACS Applied Materials & Interfaces 13(49) (2021) 59400-59410. [12] L. Zheng, H.S. Sundaram, Z. Wei, C. Li, Z. Yuan, Applications of zwitterionic polymers, Reactive and Functional Polymers 118 (2017) 51-61. [13] Z. Chen, Surface hydration and antifouling activity of zwitterionic polymers, Langmuir 38(15) (2022) 4483-4489. [14] J. Wen, S. Huang, Q. Hu, W. He, Z. Wei, L. Wang, J. Lu, X. Yue, S. Men, C. Miao, Recent advances in zwitterionic polymers-based non-fouling coating strategies for biomedical applications, Materials Today Chemistry 40 (2024) 102232. [15] R. Lalani, L. Liu, Synthesis, characterization, and electrospinning of zwitterionic poly (sulfobetaine methacrylate), Polymer 52(23) (2011) 5344-5354. [16] Y. Xu, J. Liu, P. Zhang, X. Ao, Y. Li, Y. Tian, X. Qiu, J. Guo, X. Hu, Zwitterionic conductive hydrogel-based nerve guidance conduit promotes peripheral nerve regeneration in rats, ACS Biomaterials Science & Engineering 9(12) (2023) 6821-6834. [17] Q. Li, C. Wen, J. Yang, X. Zhou, Y. Zhu, J. Zheng, G. Cheng, J. Bai, T. Xu, J. Ji, Zwitterionic biomaterials, Chemical reviews 122(23) (2022) 17073-17154. [18] K. Sakamoto, T. Ozaki, Y.-C. Ko, C.-F. Tsai, Y. Gong, M. Morozumi, Y. Ishikawa, K. Uchimura, S. Nadanaka, H. Kitagawa, Glycan sulfation patterns define autophagy flux at axon tip via PTPRσ-cortactin axis, Nature chemical biology 15(7) (2019) 699-709. [19] R. Chandra, R. Rustgi, Biodegradable polymers, Progress in polymer science 23(7) (1998) 1273-1335. [20] C. Martins, F. Sousa, F. Araújo, B. Sarmento, Functionalizing PLGA and PLGA derivatives for drug delivery and tissue regeneration applications, Advanced Healthcare Materials 7(1) (2018) 1701035. [21] M. Mir, N. Ahmed, A. ur Rehman, Recent applications of PLGA based nanostructures in drug delivery, Colloids and Surfaces B: Biointerfaces 159 (2017) 217-231. [22] A.A. D’souza, R. Shegokar, Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications, Expert opinion on drug delivery 13(9) (2016) 1257-1275. [23] L. Huang, K. Nishinari, Interaction between poly (ethylene glycol) and water as studied by differential scanning calorimetry, Journal of Polymer Science Part B: Polymer Physics 39(5) (2001) 496-506. [24] A. Albisa, E. Piacentini, V. Sebastian, M. Arruebo, J. Santamaria, L. Giorno, Preparation of drug-loaded PLGA-PEG nanoparticles by membrane-assisted nanoprecipitation, Pharmaceutical Research 34 (2017) 1296-1308. [25] K. Zhang, X. Tang, J. Zhang, W. Lu, X. Lin, Y. Zhang, B. Tian, H. Yang, H. He, PEG–PLGA copolymers: Their structure and structure-influenced drug delivery applications, Journal of Controlled release 183 (2014) 77-86. [26] W. Jiang, L. Weifeng, W. Zhen, C. Shengfu, C. Yung, Investigation of the Hydration of Nonfouling Material Poly (sulfobetaine methacrylate) by Low-Field Nuclear Magnetic Resonance, (2012). [27] B.L. Leigh, E. Cheng, L. Xu, A. Derk, M.R. Hansen, C.A. Guymon, Antifouling photograftable zwitterionic coatings on PDMS substrates, Langmuir 35(5) (2018) 1100-1110. [28] T. Christoff‐Tempesta, E. Deiss‐Yehiely, P.C. Dromel, L.D. Uliassi, C.A. Chazot, E. Postelnicu, A.J. Hart, M. Spector, P.T. Hammond, J.H. Ortony, Antifouling Surface Coatings from Self‐Assembled Zwitterionic Aramid Amphiphile Nanoribbons, Advanced Materials Interfaces 9(22) (2022) 2200311. [29] Z. Hou, Y. Wu, C. Xu, S. Reghu, Z. Shang, J. Chen, D. Pranantyo, K. Marimuth, P.P. De, O.T. Ng, Precisely structured nitric-oxide-releasing copolymer brush defeats broad-spectrum catheter-associated biofilm infections in vivo, ACS Central Science 6(11) (2020) 2031-2045. [30] K. Amoako, R. Ukita, K.E. Cook, Antifouling Zwitterionic Polymer Coatings for Blood-Bearing Medical Devices, Langmuir (2025). [31] T.M. Gomez, Pioneering studies on the mechanisms of neuronal morphogenesis, Developmental neurobiology 71(9) (2011) 780-784. [32] D.A. Tonge, H.T. De Burgh, R. Docherty, M.J. Humphries, S.E. Craig, J. Pizzey, Fibronectin supports neurite outgrowth and axonal regeneration of adult brain neurons in vitro, Brain research 1453 (2012) 8-16. [33] Y. Zang, E. Marder, Interactions among diameter, myelination, and the Na/K pump affect axonal resilience to high-frequency spiking, Proceedings of the National Academy of Sciences 118(32) (2021) e2105795118. [34] L.I. Benowitz, A. Routtenberg, GAP-43: an intrinsic determinant of neuronal development and plasticity, Trends in neurosciences 20(2) (1997) 84-91. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99479 | - |
| dc.description.abstract | 創傷性腦損傷(TBI)因中樞神經系統再生能力有限及膠質細胞引發的慢性發炎反應,至今仍是一大臨床挑戰。為同時促進神經軸突再生並抑制膠質細胞貼附,本研究開發並合成一種新型兩性離子聚合物——具備胍基與磺酸基的poly(3-(3-allylguanidino)propane-1-sulfonic acid)(PAGPs)。PAGPs的兩性結構不僅提升材料親水性,亦強化其抗細胞貼附特性;其成功磺酸化經 FTIR、NMR與元素分析驗證。
抗貼附測試顯示,PAGPs對星狀膠細胞(CTX-TNA2)具有顯著抑制效果。小鼠初代小腦神經細胞培養實驗進一步證實,PAGPs 可有效促進軸突延伸並提升 GAP-43表現與細胞活性。此現象亦符合文獻中指出含磺酸根之聚合物能抑制 PTPRσ活性、進而促進神經再生的觀察結果。 為提升材料之可降解性,本研究將 PAGPs 塗佈於 PLGA/PEG可降解共聚膜上。結果顯示,複合膜在具備良好降解性的同時,亦能維持 PAGPs 的神經促生長及抗膠質細胞貼附功能。 綜合以上結果,PAGPs展現出促進神經修復並抑制膠質反應的潛力,未來有望應用於 TBI 損傷修復,提供患者更安全有效的治療選項。 | zh_TW |
| dc.description.abstract | Traumatic brain injury (TBI) remains a major clinical challenge due to the limited regenerative capacity of the central nervous system and the persistent inflammatory response triggered by glial cells. To simultaneously promote axonal regeneration and suppress glial adhesion, we developed and synthesized a novel zwitterionic polymer, poly(3-(3-allylguanidino)propane-1-sulfonic acid) (PAGPs), which contains both guanidinium (positive) and sulfonate (negative) groups. The zwitterionic structure of PAGPs enhances its hydrophilicity and anti-adhesive properties, and successful sulfonation was confirmed by FTIR, NMR, and elemental analysis.
Adhesion assays showed that PAGPs effectively suppressed astrocyte (CTX-TNA2) attachment. Further culture of primary cerebellar neurons from mice demonstrated that PAGPs significantly promoted axonal outgrowth, enhanced GAP-43 expression, and increased neuronal viability. These findings are consistent with reports that sulfonated polymers inhibit PTPRσ activity, a receptor known to block axon regeneration, thus facilitating neural repair. To address the non-degradable nature of PAGPs, the polymer was coated onto biodegradable PLGA/PEG membranes. The composite membrane not only retained the biofunctionality of PAGPs but also exhibited excellent degradation profiles. In summary, PAGPs exhibit dual functionality in enhancing neuronal regeneration and suppressing glial responses. This material shows strong potential for application in TBI repair, offering a promising strategy for safe and effective neural tissue regeneration. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:24:53Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:24:53Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES viii LIST OF TABLES viii LIST OF EQUATIONS viii Chapter 1 Introduction 1 1.1 Background 1 1.1.1 Traumatic Brain Injury 1 1.1.2 Glia scar 2 1.2 Polymers for Neuron Culture 4 1.2.1 Poly-D-lysine 4 1.2.2 Poly(allylguanidine) 4 1.3 Zwitterionic polymer 5 1.3.1 Poly sulfobetaine methacrylate 5 1.3.2 Poly Allyl Guanidine Propanesultone 6 1.4 The carrier of the PAGPs 7 1.4.1 Poly(lactic-co-glycolic) acid 7 1.4.2 Polyethylene glycol 8 1.5 Specific aims 9 Chapter 2 Materials and Methods 11 2.1 Materials 11 2.2 Experimental Instruments 13 2.3 Methods 14 2.3.1 Preparation of PAG and PAGPs 14 2.3.2 Characterization of PAGPs 15 2.3.3 Preparation of Poly SBMA 16 2.3.4 Water contact angle test 17 2.3.5 Degradation Test 18 2.3.6 Preparation of polycations and zwitterionic polymer coated surface 19 2.3.7 Astrocyte adhesion assays 19 2.3.8 Preparation of cerebellar neurons 20 2.3.9 Cellular viability test 21 2.3.10 Immunocytochemical staining 21 Chapter 3 Results 23 3.1 Characterization of PAGPs 23 3.2 Water contact angle test 24 3.3 Astrocyte adhesion assays 26 3.4 The effect of PAGPs on neuron culture 28 3.4.1 Neuron cells morphology 28 3.4.2 Neuron cells viability 29 3.4.3 Immunocytochemical staining of neuron cells 31 3.5 Degradation Test 33 3.6 The effect of Polycations and zwitterionic polymer coated PLGA/PEG on neuron culture 34 Chapter 4 Discussion 37 4.1 Preparation and characterization of PAGPs 37 4.2 Astrocyte adhesion assays 37 4.3 The effect of PAGPs on neuron culture 39 4.4 The impact of PAGPs coated PLGA/PEG 40 Chapter 5 Conclusion 41 REFERENCE 43 | - |
| dc.language.iso | en | - |
| dc.subject | 抗細胞貼附 | zh_TW |
| dc.subject | 聚乳酸甘醇酸 | zh_TW |
| dc.subject | 聚乙二醇 | zh_TW |
| dc.subject | 聚丙烯胍 | zh_TW |
| dc.subject | 兩性離子聚合物 | zh_TW |
| dc.subject | 創傷性腦損傷 | zh_TW |
| dc.subject | 神經修復 | zh_TW |
| dc.subject | zwitterionic polymer | en |
| dc.subject | polyethylene glycol | en |
| dc.subject | poly(lactic-co-glycolic acid) | en |
| dc.subject | poly(allylguanidine) | en |
| dc.subject | anti-cell-adhesion | en |
| dc.subject | neural repair | en |
| dc.subject | Traumatic brain injury | en |
| dc.title | 應用於創傷性腦損傷修復之兩性離子聚合物PAGPs | zh_TW |
| dc.title | Application of Zwitterionic Polymer PAGPs in the Repair of Traumatic Brain Injury | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李亦宸;洪智煌 | zh_TW |
| dc.contributor.oralexamcommittee | Yi-Chen Ethan Li;Chih-Huang Hung | en |
| dc.subject.keyword | 創傷性腦損傷,神經修復,抗細胞貼附,聚丙烯胍,聚乳酸甘醇酸,聚乙二醇,兩性離子聚合物, | zh_TW |
| dc.subject.keyword | Traumatic brain injury,neural repair,anti-cell-adhesion,poly(allylguanidine),poly(lactic-co-glycolic acid),polyethylene glycol,zwitterionic polymer, | en |
| dc.relation.page | 45 | - |
| dc.identifier.doi | 10.6342/NTU202501952 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-07-23 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 醫學工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 3.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
