Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99478
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor劉振良zh_TW
dc.contributor.advisorCheng-Liang Liuen
dc.contributor.author林柏伸zh_TW
dc.contributor.authorPo-Shen Linen
dc.date.accessioned2025-09-10T16:24:43Z-
dc.date.available2025-09-11-
dc.date.copyright2025-09-10-
dc.date.issued2025-
dc.date.submitted2025-07-24-
dc.identifier.citation[1] A. Weaver, T. DeMichael, J. Woytach, J.-P. Fleurial, J. Birch, S. Davis, presented at 2023 IEEE Aerospace Conference 2023.
[2] R. O’brien, R. Ambrosi, N. Bannister, S. Howe, H. V. Atkinson, J. Nucl. Mater. 2008, 377, 506.
[3] A. Marvão, P. J. Coelho, H. C. Rodrigues, Energy Convers. Manag. 2019, 179, 178.
[4] D. Champier, Energy Convers. Manag. 2017, 140, 167.
[5] M. Haghi, K. Thurow, R. Stoll, Healthc. Inform. Res. 2017, 23, 4.
[6] W. D. Li, K. Ke, J. Jia, J. H. Pu, X. Zhao, R. Y. Bao, Z. Y. Liu, L. Bai, K. Zhang, M. B. Yang, Small 2022, 18, 2103734.
[7] K. Cherenack, L. Van Pieterson, J. Appl. Phys. 2012, 112, 1301.
[8] J. Shi, S. Liu, L. Zhang, B. Yang, L. Shu, Y. Yang, M. Ren, Y. Wang, J. Chen, W. Chen, Adv. Mater. 2020, 32, 1901958.
[9] W. Gao, H. Ota, D. Kiriya, K. Takei, A. Javey, Acc. Chem. Res. 2019, 52, 523.
[10] H. Wu, Y. Huang, F. Xu, Y. Duan, Z. Yin, Adv. Mater. 2016, 28, 9881.
[11] Y. Wang, L. Yang, X. L. Shi, X. Shi, L. Chen, M. S. Dargusch, J. Zou, Z. G. Chen, Adv. Mater. 2019, 31, 1807916.
[12] X. He, X.-L. Shi, X. Wu, C. Li, W.-D. Liu, H. Zhang, X. Yu, L. Wang, X. Qin, Z.-G. Chen, Nat. Commun 2025, 16, 2523.
[13] B. Hu, X.-L. Shi, T. Cao, M. Li, W. Chen, W.-D. Liu, W. Lyu, T. Tesfamichael, Z.-G. Chen, Small Sci. 2025, 5, 2300061.
[14] J. L. Blackburn, A. J. Ferguson, C. Cho, J. C. Grunlan, Adv. Mater. 2018, 30, 1704386.
[15] Z. Fan, J. Ouyang, Adv. Electron. Mater. 2019, 5, 1800769.
[16] N. Sharma, A. Singh, N. Kumar, A. Tiwari, M. Lal, S. Arya, J. Mater. Sci. 2024, 59, 6206.
[17] L. Hao, D. Yu, Synth. Met. 2022, 290, 117138.
[18] A. Tripathi, Y. Lee, S. Lee, H. Y. Woo, J. Mater. Chem. C 2022, 10, 6114.
[19] E. H. Suh, S. B. Kim, H. S. Yang, J. Jang, Adv. Funct. Mater. 2022, 32, 2207413.
[20] P. Rossi, F. Pallini, G. Coco, S. Mattiello, W. L. Tan, L. Mezzomo, M. Cassinelli, G. Lanzani, C. R. McNeill, L. Beverina, Adv. Mater. Interfaces 2023, 10, 2202416.
[21] J. Kim, D. Ju, S. Kim, K. Cho, Adv. Funct. Mater. 2024, 34, 2309156.
[22] D. E. Choi, J. Im, Y. Ahn, K. Hwang, J. Kim, J. E. Kwon, S. K. Park, H. H. Choi, B.-G. Kim, Small Structures 2024, 5, 2300321.
[23] J. Min, D. Kim, S. G. Han, C. Park, H. Lim, W. Sung, K. Cho, Adv. Electron. Mater. 2022, 8, 2101142.
[24] H. Wei, P. A. Chen, J. Guo, Y. Liu, X. Qiu, H. Chen, Z. Zeng, T. Q. Nguyen, Y. Hu, Adv. Funct. Mater. 2021, 31, 2102768.
[25] B. T. McGrail, A. Sehirlioglu, E. Pentzer, Angew. Chem. Int. Ed. 2015, 54, 1710.
[26] Z. Liu, G. Chen, Adv. Mater. Technol. 2020, 5, 2000049.
[27] H. Yao, Z. Fan, H. Cheng, X. Guan, C. Wang, K. Sun, J. Ouyang, Macromol. Rapid Commun. 2018, 39, 1700727.
[28] G. Chen, W. Xu, D. Zhu, J. Mater. Chem. C 2017, 5, 4350.
[29] L. Vaisman, H. D. Wagner, G. Marom, Adv. Colloid Interface Sci. 2006, 128, 37.
[30] M. S. Strano, V. C. Moore, M. K. Miller, M. J. Allen, E. H. Haroz, C. Kittrell, R. H. Hauge, R. Smalley, J. Nanosci. Nanotechnol. 2003, 3, 81.
[31] N. Jacob, I. Vijitha, N. Raveendran, R. Dheepika, R. Martin, T. P. Yuvaraj, B. Deb, C. Vijayakumar, Adv. Mater. Technol. 2025, 2500202.
[32] J. Chen, L. Wang, D. Ren, Y. Chu, Y. Wu, K. Meng, J. Miao, X. Xu, Y. Jiang, Synth. Met. 2018, 239, 13.
[33] M. He, J. Ge, Z. Lin, X. Feng, X. Wang, H. Lu, Y. Yang, F. Qiu, Energy Environ. Sci. 2012, 5, 8351.
[34] Y. H. Kang, U.-H. Lee, I. H. Jung, S. C. Yoon, S. Y. Cho, ACS Appl. Electron. Mater. 2019, 1, 1282.
[35] C. Gayner, Y. Amouyal, Adv. Funct. Mater. 2020, 30, 1901789.
[36] R. Kim, M. S. Lundstrom, J. Appl. Phys. 2012, 111, 4508.
[37] X. Guan, J. Ouyang, CCS Chem. 2021, 3, 2415.
[38] P. S. Lin, Y. Shoji, S. N. Afraj, M. Ueda, C. H. Lin, S. Inagaki, T. Endo, S. H. Tung, M. C. Chen, C. L. Liu, T. Higashihara, ACS Appl. Mater. Interfaces 2021, 13, 31898.
[39] X. Guo, M. D. Watson, Org. Lett. 2008, 10, 5333.
[40] T. Lei, Y. Cao, Y. Fan, C. J. Liu, S. C. Yuan, J. Pei, J. Am. Chem. Soc. 2011, 133, 6099.
[41] P.-S. Lin, S. Inagaki, J.-H. Liu, M.-C. Chen, T. Higashihara, C.-L. Liu, Chem. Eng. J. 2023, 458, 141366.
[42] J. L. Blackburn, A. J. Ferguson, C. Cho, J. C. Grunlan, Adv. Mater. 2018, 30, 1704386

[43] Y. Zhang, Q. Zhang, G. Chen, Carbon Energy 2020, 2, 408.
[44] J. S. Yun, S. Choi, S. H. Im, Carbon Energy 2021, 3, 667.
[45] J. Jung, E. H. Suh, Y. J. Jeong, H. S. Yang, T. Lee, J. Jang, ACS Appl. Mater. Interfaces 2019, 11, 47330.
[46] H. Wang, S. I. Yi, X. Pu, C. Yu, ACS Appl. Mater. Interfaces 2015, 7, 9589.
[47] C. T. Hong, Y. H. Kang, J. Ryu, S. Y. Cho, K.-S. Jang, J. Mater. Chem. A 2015, 3, 21428.
[48] C. Bounioux, P. Díaz-Chao, M. Campoy-Quiles, M. S. Martín-González, A. R. Goñi, R. Yerushalmi-Rozen, C. Müller, Energy Environ. Sci. 2013, 6, 918.
[49] W. Lee, C. T. Hong, O. H. Kwon, Y. Yoo, Y. H. Kang, J. Y. Lee, S. Y. Cho, K. S. Jang, ACS Appl. Mater. Interfaces 2015, 7, 6550.
[50] C. T. Hong, W. Lee, Y. H. Kang, Y. Yoo, J. Ryu, S. Y. Cho, K.-S. Jang, J. Mater. Chem. A 2015, 3, 12314.
[51] S. Qu, M. Wang, Y. Chen, Q. Yao, L. Chen, RSC Adv. 2018, 8, 33855.
[52] M. Tonga, L. Wei, E. Wilusz, L. Korugic-Karasz, F. E. Karasz, P. M. Lahti, Synth. Met. 2018, 239, 51.
[53] X. Li, Z. Zhu, T. Wang, J. Xu, C. Liu, Q. Jiang, F. Jiang, P. Liu, Compos. Commun. 2019, 12, 128.
[54] B. C. Schroeder, T. Kurosawa, T. Fu, Y. C. Chiu, J. Mun, G. J. N. Wang, X. Gu, L. Shaw, J. W. E. Kneller, T. Kreouzis, M. F. Toney, Z. Bao, Adv. Funct. Mater. 2017, 27, 1701973.
[55] K. Takahashi, D. Kumagai, N. Yamada, D. Kuzuhara, Y. Yamaguchi, N. Aratani, T. Koganezawa, S. Koshika, N. Yoshimoto, S. Masuo, M. Suzuki, K.-i. Nakayama, H. Yamada, J. Mater. Chem. A 2017, 5, 14003.
[56] L. Xue, Y. Yang, J. Xu, C. Zhang, H. Bin, Z. G. Zhang, B. Qiu, X. Li, C. Sun, L. Gao, J. Yao, X. Chen, Y. Yang, M. Xiao, Y. Li, Adv. Mater. 2017, 29, 1703344.
[57] R. Kroon, D. Kiefer, D. Stegerer, L. Yu, M. Sommer, C. Muller, Adv. Mater. 2017, 29, 1700930.
[58] J. Liu, L. Qiu, R. Alessandri, X. Qiu, G. Portale, J. Dong, W. Talsma, G. Ye, A. A. Sengrian, P. C. T. Souza, M. A. Loi, R. C. Chiechi, S. J. Marrink, J. C. Hummelen, L. J. A. Koster, Adv. Mater. 2018, 30, 1704630.
[59] D. Kiefer, A. Giovannitti, H. Sun, T. Biskup, A. Hofmann, M. Koopmans, C. Cendra, S. Weber, L. J. Anton Koster, E. Olsson, J. Rivnay, S. Fabiano, I. McCulloch, C. Muller, ACS Energy Lett. 2018, 3, 278.
[60] P. He, S. Shimano, K. Salikolimi, T. Isoshima, Y. Kakefuda, T. Mori, Y. Taguchi, Y. Ito, M. Kawamoto, ACS Appl. Mater. Interfaces 2019, 11, 4211.
[61] Z. Chen, T. Liu, C. Pan, G. Tan, Polymers 2020, 12, 848.
[62] L. Hao, J. Kang, J. Shi, J. Xu, J. Cao, L. Wang, Y. Liu, C. Pan, Compos. Sci. Technol. 2020, 199, 108359.
[63] C. Liu, X. Yin, Z. Chen, C. Gao, L. Wang, Chem. Eng. J. 2021, 419, 129624.
[64] X. Zhou, C. Pan, A. Liang, L. Wang, W.-Y. Wong, Compos. Sci. Technol. 2017, 145, 40.
[65] L. Wang, C. Pan, Z. Chen, W. Zhou, C. Gao, L. Wang, ACS Appl. Energy Mater. 2018, 1, 5075.
[66] T. Wan, X. Yin, C. Pan, D. Liu, X. Zhou, C. Gao, W. Y. Wong, L. Wang, Polymers 2019, 11, 593.
[67] Z. Chen, M. Lai, L. Cai, W. Zhou, D. Xie, C. Pan, Y. Qiu, Polymers 2020, 12, 1447.
[68] H. Zhou, X. Li, C. Gao, F. Yang, X. Ye, Y. Liu, L. Wang, Compos. Sci. Technol. 2021, 201, 108518.
[69] W. Lee, Y. H. Kang, J. Y. Lee, K.-S. Jang, S. Y. Cho, Materials Today Communications 2017, 10, 41.
[70] V. Ignatious, N. Raveendran, A. Prabhakaran, Y. Tanjore Puli, V. Chakkooth, B. Deb, Chem. Eng. J. 2021, 409, 128294.
[71] H. Song, Y. Qiu, Y. Wang, K. Cai, D. Li, Y. Deng, J. He, Compos. Sci. Technol. 2017, 153, 71.
[72] W. Park, H. Hwang, S. Kim, S. Park, K. S. Jang, ACS Appl. Mater. Interfaces 2021, 13, 7208.
[73] R. Prabhakar, M. S. Hossain, W. Zheng, P. K. Athikam, Y. Zhang, Y.-Y. Hsieh, E. Skafidas, Y. Wu, V. Shanov, J.-H. Bahk, ACS Appl. Energy Mater. 2019, 2, 2419.
[74] B. Norton-Baker, R. Ihly, I. E. Gould, A. D. Avery, Z. R. Owczarczyk, A. J. Ferguson, J. L. Blackburn, ACS Energy Lett. 2016, 1, 1212.
[75] C. Liu, X. Yin, Z. Chen, C. Gao, L. Wang, Chem. Eng. J. 2021, 419.
[76] P. S. Lin, J. M. Lin, S. H. Tung, T. Higashihara, C. L. Liu, Small 2024, 20, e2306166.
[77] Y. Bao, Y. Sun, F. Jiao, W. Hu, Adv. Electron. Mater. 2023, 9, 2201310.
[78] J. Liang, R. Cui, X. Zhang, K. Koumoto, C. Wan, Adv. Funct. Mater. 2022, 33, 2208813.
[79] L. Deng, Y. Liu, Y. Zhang, S. Wang, P. Gao, Adv. Funct. Mater. 2022, 33, 2210770.
[80] F. Zhang, C.-a. Di, Chem. Mater. 2020, 32, 2688.
[81] J. Tang, Y. Chen, S. R. McCuskey, L. Chen, G. C. Bazan, Z. Liang, Adv. Electron. Mater. 2019, 5, 1800943.
[82] J. Wang, L. Liu, F. Wu, Z. Liu, Z. Fan, L. Chen, Y. Chen, Chemsuschem 2022, 15, e202102420.
[83] V. Derycke, R. Martel, J. Appenzeller, P. Avouris, Appl. Phys. Lett. 2002, 80, 2773.
[84] D. Kang, N. Park, J.-h. Ko, E. Bae, W. Park, Nanotechnology 2005, 16, 1048.
[85] S. Hata, R. Nakata, S. Yasuda, H. Ihara, Y. Du, Y. Shiraishi, N. Toshima, Mater. Adv. 2022, 3, 373.
[86] S. Yonezawa, T. Chiba, Y. Seki, M. Takashiri, Sci. Rep. 2021, 11, 5758.
[87] J. Jung, E. Hyun Suh, Y. Jeong, D.-J. Yun, S. Chan Park, J. Gyu Oh, J. Jang, Chem. Eng. J. 2022, 438, 135526.
[88] K. S. Mistry, B. A. Larsen, J. D. Bergeson, T. M. Barnes, G. Teeter, C. Engtrakul, J. L. Blackburn, ACS Nano 2011, 5, 3714.
[89] C. Klinke, J. Chen, A. Afzali, P. Avouris, Nano Lett. 2005, 5, 555.
[90] G. Wu, C. Gao, G. Chen, X. Wang, H. Wang, J. Mater. Chem. A 2016, 4, 14187.
[91] C. Yu, A. Murali, K. Choi, Y. Ryu, Energy Environ. Sci. 2012, 5, 9481.
[92] W. Zhou, Q. Fan, Q. Zhang, L. Cai, K. Li, X. Gu, F. Yang, N. Zhang, Y. Wang, H. Liu, W. Zhou, S. Xie, Nat. Commun. 2017, 8, 14886.
[93] C. Yu, K. Choi, L. Yin, J. C. Grunlan, ACS Nano 2011, 5, 7885.
[94] Q. Hu, Z. Lu, Y. Wang, J. Wang, H. Wang, Z. Wu, G. Lu, H.-L. Zhang, C. Yu, J. Mater. Chem. A 2020, 8, 13095.
[95] N. Tanaka, T. Ishii, I. Yamaguchi, A. Hamasuna, T. Fujigaya, J. Mater. Chem. A 2023, 11, 6909.
[96] C. Dong, B. Meng, J. Liu, L. Wang, ACS Appl. Mater. Interfaces 2020, 12, 10428.
[97] K. Shi, F. Zhang, C. A. Di, T. W. Yan, Y. Zou, X. Zhou, D. Zhu, J. Y. Wang, J. Pei, J. Am. Chem. Soc. 2015, 137, 6979.
[98] Y. Zeng, W. Zheng, Y. Guo, G. Han, Y. Yi, J. Mater. Chem. A 2020, 8, 8323.
[99] X. Yin, F. Zhong, Z. Chen, C. Gao, G. Xie, L. Wang, C. Yang, Chem. Eng. J. 2020, 382, 122817.
[100] Y. Liu, D. R. Villalva, A. Sharma, M. A. Haque, D. Baran, ACS Appl. Mater. Interfaces 2021, 13, 411.
[101] E. H. Suh, M. K. Jeong, K. Lee, W. Jeong, Y. J. Jeong, I. H. Jung, J. Jang, Adv. Funct. Mater. 2022, 32, 2207886.
[102] S. Deng, C. Dong, J. Liu, B. Meng, J. Hu, Y. Min, H. Tian, J. Liu, L. Wang, Angew. Chem., Int. Ed. Engl. 2023, 62, e202216049.
[103] W. Zhao, J. Ding, Y. Zou, C. A. Di, D. Zhu, Chem. Soc. Rev. 2020, 49, 7210.
[104] T. L. D. Tam, J. Xu, J. Mater. Chem. A 2021, 9, 5149.
[105] T. Takenobu, T. Takano, M. Shiraishi, Y. Murakami, M. Ata, H. Kataura, Y. Achiba, Y. Iwasa, Nat. Mater. 2003, 2, 683.
[106] R. Shimizu, S. Matsuzaki, K. Yanagi, T. Takenobu, Appl. Phys. Express 2012, 5, 125102.
[107] Y. Yan, Y. Liu, Q. Zhang, Y. Han, Front. Chem. 2020, 8, 394.
[108] M. R. Mohammad, D. S. Ahmed, M. K. A. Mohammed, J Solgel Sci Technol. 2019, 90, 498.
[109] Y. Zhang, S. Chen, H. Zhang, X. Ding, P. Fu, F. Du, Compos. Commun. 2021, 27, 100883.
[110] S. Qin, J. Tan, J. Qin, J. Luo, J. Jin, S. Huang, L. Wang, D. Liu, Adv. Electron. Mater. 2021, 7, 2100557.
[111] R. M. Kluge, N. Saxena, W. Chen, V. Körstgens, M. Schwartzkopf, Q. Zhong, S. V. Roth, P. Müller‐Buschbaum, Adv. Funct. Mater. 2020, 30, 2003092.
[112] J. Li, C. Dong, J. Hu, J. Liu, Y. Liu, ACS Appl. Electron. Mater. 2021, 3, 3641.
[113] I. Puchades, C. C. Lawlor, C. M. Schauerman, A. R. Bucossi, J. E. Rossi, N. D. Cox, B. J. Landi, J. Mater. Chem. C. 2015, 3, 10256.
[114] C. Zhou, J. Kong, E. Yenilmez, H. Dai, Science 2000, 290, 1552.
[115] S. H. Kim, S. Jeong, D. Kim, C. Y. Son, K. Cho, Adv. Electron. Mater. 2023, 2201293.
[116] D. Suzuki, Y. Nonoguchi, K. Shimamoto, N. Terasaki, ACS Appl. Mater. Interfaces 2023, 15, 9873.
[117] Y. Nakashima, R. Yamaguchi, F. Toshimitsu, M. Matsumoto, A. Borah, A. Staykov, M. S. Islam, S. Hayami, T. Fujigaya, ACS Appl. Nano Mater. 2019, 2, 4703.
[118] W. He, H. Wang, Y. Huang, T. He, F. Chi, H. Cheng, D. Liu, L. Dai, L. Qu, Nano Energy 2022, 95, 107017.
[119] M. A. U. Khalid, S. H. Chang, Compos. Struct. 2022, 284, 115214.
[120] S. Masihi, M. Panahi, D. Maddipatla, A. J. Hanson, A. K. Bose, S. Hajian, V. Palaniappan, B. B. Narakathu, B. J. Bazuin, M. Z. Atashbar, ACS Sens. 2021, 6, 938.
[121] S. M. Vahidhosseini, S. Rashidi, M. H. Ehsani, Renew. Sust. Energ. 2025, 216, 115662.
[122] X. Zuo, X. Zhang, L. Qu, J. Miao, Adv. Mater. Technol. 2023, 8, 2201137.
[123] W. Le, W. Yang, W. Sheng, J. Shuai, ACS Appl. Mater. Interfaces. 2023, 15, 12611.
[124] L. Xie, L. Yin, Y. Yu, G. Peng, S. Song, P. Ying, S. Cai, Y. Sun, W. Shi, H. Wu, Science 2023, 382, 921.
[125] A. S. Bati, Y. L. Zhong, P. L. Burn, M. K. Nazeeruddin, P. E. Shaw, M. Batmunkh, Commun. Mater. 2023, 4, 2.
[126] Y. Li, X. Ru, M. Yang, Y. Zheng, S. Yin, C. Hong, F. Peng, M. Qu, C. Xue, J. Lu, Nature 2024, 626, 105.
[127] Z. Sun, X. Chen, Y. He, J. Li, J. Wang, H. Yan, Y. Zhang, Adv. Energy Mater. 2022, 12, 2200015.
[128] T. Cheng, J. Shao, Z. L. Wang, Nat. Rev. Methods Primers. 2023, 3, 39.
[129] W.-G. Kim, D.-W. Kim, I.-W. Tcho, J.-K. Kim, M.-S. Kim, Y.-K. Choi, ACS Nano 2021, 15, 258.
[130] Z. L. Wang, Rep. Prog. Phys. 2021, 84, 096502.
[131] Z. Zhao, L. Zhou, S. Li, D. Liu, Y. Li, Y. Gao, Y. Liu, Y. Dai, J. Wang, Z. L. Wang, Nat. Commun 2021, 12, 4686.
[132] J. Bae, J. Song, W. Jeong, K. R. Nandanapalli, N. Son, N. A. B. Zulkifli, G. Gwon, M. Kim, S. Yoo, H. Lee, Nano Energy 2022, 97, 107223.
[133] C. C. Jin, D. M. Liu, L. X. Zhang, Small 2023, 19, 2303586.
[134] N. Sezer, M. Koç, Nano Energy 2021, 80, 105567.
[135] S. J. Kim, J. H. We, B. J. Cho, Energy Environ. Sci. 2014, 7, 1959.
[136] L. Miao, S. Zhu, C. Liu, J. Gao, Z. Zhang, Y. Peng, J.-L. Chen, Y. Gao, J. Liang, T. Mori, Nat. Commun 2024, 15, 8516.
[137] W. Ren, Y. Sun, D. Zhao, A. Aili, S. Zhang, C. Shi, J. Zhang, H. Geng, J. Zhang, L. Zhang, Sci. Adv. 2021, 7, eabe0586.
[138] T. Lee, J. W. Lee, K. T. Park, J.-S. Kim, C. R. Park, H. Kim, ACS Nano 2021, 15, 13118.
[139] J. Li, J. Wang, X. Yang, G. Dong, Y. Liu, Z. Wang, M. Zhang, X. Zuo, X. Han, C. Wu, T. Zhang, R. Liu, K. Cai, L. Chen, Adv. Funct. Mater. 2024, 34, 2404195.
[140] W. Li, T. Zhang, B. Li, F. Cui, L. Liu, Energy Convers. Manag. 2021, 243, 114429.
[141] K. T. Park, Y. S. Cho, I. Jeong, D. Jang, H. Cho, Y. Choi, T. Lee, Y. Ko, J. Choi, S. Y. Hong, M.-W. Oh, S. Chung, C. R. Park, H. Kim, Adv. Energy Mater. 2022, 12, 2200256.
[142] B. Xu, T. Feng, M. T. Agne, L. Zhou, X. Ruan, G. J. Snyder, Y. Wu, Angew. Chem. Int. Ed. 2017, 56, 3546.
[143] C. Meng, C. Liu, S. Fan, Adv. Mater. 2010, 22, 535.
[144] L. Tzounis, M. Liebscher, R. Fuge, A. Leonhardt, V. Mechtcherine, Energy Build. 2019, 191, 151.
[145] W. Zhao, S. Fan, N. Xiao, D. Liu, Y. Y. Tay, C. Yu, D. Sim, H. H. Hng, Q. Zhang, F. Boey, Energy Environ. Sci. 2012, 5, 5364.
[146] P. S. Lin, J. M. Lin, S. H. Tung, T. Higashihara, C. L. Liu, Small 2024, 20, 2306166.
[147] S. H. Kim, S. Jeong, D. Kim, C. Y. Son, K. Cho, Adv. Electron. Mater. 2023, 9, 2201293.
[148] K. Nishiyama, Y.-T. Hsiao, W.-N. Wu, J.-M. Lin, S.-H. Tung, C.-L. Liu, T. Higashihara, J. Mater. Chem. A 2025, 13, 3551.
[149] Q.-B. Zheng, C.-C. Tseng, M.-H. Lin, J.-M. Lin, S.-H. Tung, Y.-J. Cheng, C.-L. Liu, J. Mater. Chem. C 2024, 12, 7446.
[150] D. Liu, Y. Lei, X. Ji, Y. Wu, Y. Lin, Y. Wang, S. Zhang, Y. Zheng, Y. Chen, J. C. Lai, Adv. Funct. Mater. 2022, 32, 2203527.
[151] Y. Yan, Y. Liu, Q. Zhang, Y. Han, Front. Chem. 2020, 8, 394.
[152] Y. Ma, X. Cheng, H. Ma, Z. He, Z. Zhang, W. Zhang, Chem. Sci. 2022, 13, 13623.
[153] M. R. Mohammad, D. S. Ahmed, M. K. Mohammed, J. Sol-Gel Sci. Technol. 2019, 90, 498.
[154] A. Setaro, M. Adeli, M. Glaeske, D. Przyrembel, T. Bisswanger, G. Gordeev, F. Maschietto, A. Faghani, B. Paulus, M. Weinelt, R. Arenal, R. Haag, S. Reich, Nat. Commun 2017, 8, 14281.
[155] S. Gil-Guerrero, Á. Peña-Gallego, M. Mandado, J. Phys. Chem. C 2020, 124, 1585.
[156] S. W. Kim, T. Kim, Y. S. Kim, H. S. Choi, H. J. Lim, S. J. Yang, C. R. Park, Carbon 2012, 50, 3.
[157] L. Vaisman, G. Marom, H. D. Wagner, Adv. Funct. Mater. 2006, 16, 357.
[158] J. Jung, E. H. Suh, Y. J. Jeong, H. S. Yang, T. Lee, J. Jang, ACS Appl. Mater. Interfaces. 2019, 11, 47330.
[159] H. Ago, M. S. Shaffer, D. S. Ginger, A. H. Windle, R. H. Friend, Phys. Rev. B. 2000, 61, 2286.
[160] P. J. Goutam, D. K. Singh, P. K. Iyer, J. Phys. Chem. C 2012, 116, 8196.
[161] N. A. Nismy, K. I. Jayawardena, A. D. T. Adikaari, S. R. P. Silva, Adv. Mater. 2011, 23, 3796.
[162] S. Costa, E. Borowiak-Palen, M. Kruszynska, A. Bachmatiuk, R. Kalenczuk, Mater. Sci.-Pol. 2008, 26, 433.
[163] R. Graupner, J. Raman Spectrosc. 2007, 38, 673.
[164] S. Grimm, S. P. Schießl, Y. Zakharko, M. Rother, M. Brohmann, J. Zaumseil, Carbon 2017, 118, 261.
[165] J. Liang, R. Cui, X. Zhang, K. Koumoto, C. Wan, Adv. Funct. Mater. 2023, 33, 2208813.
[166] Y. Liu, W. Yang, A. Sharma, D. Rosas‐Villalva, H. Xu, M. A. Haque, F. Laquai, D. Baran, Adv. Electron. Mater. 2024, 2400216.
[167] Z. Saadi, S. G. King, J. V. Anguita, V. Stolojan, S. R. P. Silva, EEM 2023, 6, e12281.
[168] W.-C. Shih, M. Matsuda, K. Konno, P.-S. Lin, T. Higashihara, C.-L. Liu, Compos. B: Eng. 2024, 286, 111779.
[169] H. Kuzmany, W. Plank, M. Hulman, C. Kramberger, A. Grüneis, T. Pichler, H. Peterlik, H. Kataura, Y. Achiba, EPJ B 2001, 22, 307.
[170] F. Eller, C. R. McNeill, E. M. Herzig, Adv. Energy Mater. 2024, 14, 2304455.
[171] P.-S. Lin, Y. Shoji, S. N. Afraj, M. Ueda, C.-H. Lin, S. Inagaki, T. Endo, S.-H. Tung, M.-C. Chen, C.-L. Liu, ACS Appl. Mater. Interfaces. 2021, 13, 31898.
[172] S. Y. Son, T. Park, W. You, Chem. Mat. 2021, 33, 4541.
[173] E. F. Manley, J. Strzalka, T. J. Fauvell, N. E. Jackson, M. J. Leonardi, N. D. Eastham, T. J. Marks, L. X. Chen, Adv. Mater. 2017, 29, 1703933.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99478-
dc.description.abstract軟性熱電材料被視為為新一代穿戴式電子裝置提供電力的潛在解決方案,因其具備無需機械運動部件、可於嚴苛環境中穩定運作,以及僅需利用溫度梯度即可發電等多種優勢。然而,針對不同應用需求最大化功能性時,往往需在發電性能與機械性能間取得平衡。因此,本論文首先透過設計高分子側鏈化學結構,開發出高分子/單壁碳奈米管(SWCNT)複合材料(Chapter 3)。特別是合成了含有硫烷基側鏈的聚[3-(烷基硫)噻吩] (P3ATTs),如P3EHTT與P3HDTT,以引入高分子與SWCNT間的硫–π作用,增進奈米管分散性並提升導電度,最終使P3HDTT/SWCNT複合材料達到最高功率因子307.7 µW m–1 K–2。接著於Chapter 4探討透過調控能階來提升功率效率並開發n型熱電材料。製作方法為將以萘酰亞胺(NDI)或異靛藍(IID)為主鏈的共軛高分子與SWCNT混合,並經小分子N-DMBI進行序列式摻雜,賦予n型熱電特性。進一步透過製程控制與製備工程,成功製作出p–n串聯之原型熱電元件,於20 K溫度差下實現27.2 nW功率輸出。最後,本論文設計了一系列本徵可延展的金屬超分子區段共聚物,應用於可拉伸高分子/SWCNT熱電材料。該共聚物藉由交替排列含terpyridine (TPY)官能基的聚(3-己基噻吩)(P3HT)與聚(n-丁基丙烯酸酯) (PnBA)區段,並透過異配型ZnII-TPY金屬-配位作用進行組裝。所得金屬高分子/SWCNT複合材料展現優異的機械性能,在拉伸至100%應變時仍能保有初始功率因子約50% (46.2 µW m–1 K–2)。綜上所述,本論文系統性地探討並實現了高功率因子、高p型與n型熱電性能,以及本質可拉伸的高分子/SWCNT複合材料設計,進一步推進軟性熱電材料於次世代穿戴式電子裝置中的應用潛力。zh_TW
dc.description.abstractFlexible thermoelectrics offer a promising solution for powering next-generation wearable electronics, thanks to their advantages such as solid-state, stable performance under extreme enviorments, and electricity generation driven by temperature gradients. However, maximizing functionality often requires balancing power generation with mechanical flexibility. In this thesis, we first developed polymer/single-walled carbon nanotube (SWCNT) composites (Chapter 3) by designing polymer side chains to introduce sulfur–π interactions, improving SWCNT dispersion and electrical conductivity. As a result, the P3HDTT/SWCNT nanocomposite achieved a excellent power factor of 307.7 μW m–1 K–2. Chapter 4 focuses on tuning energy levels to enhance power efficiency and develop n-type thermoelectric materials. By blending naphthalene-diimide (NDI)- or isoindigo (IID)- based conjugated polymers with SWCNTs and sequentially doping with 4-[2,3-dihydro-1,3-dimethyl-1H-benzimidazol-2-yl]-N,N-dimethylbenzenamine (N-DMBI), nanocomposite devices with n-type behavior was achieved. Process optimization enabled the fabrication of a p–n prototype device, delivering a power output of 27.2 nW under a 20 K temperature gradient. Lastly, in Chapter 5, intrinsically stretchable metallo-supramolecular block copolymers were designed by alternating terpyridine (TPY)-modified P3HT and PnBA segments, assembled via ZnII–TPY coordination. These metallopolymer/SWCNT composites exhibited excellent mechanical properties, sustaining up to 100 % strain while retaining ~50 % of their initial power factor (46.2 μW m–1 K–2). In summary, this thesis presents a systematic approach to designing high-performance, p- and n-type, and stretchable polymer/SWCNT thermoelectrics, advancing the practical potential of flexible thermoelectric devices for wearable applications in the future.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:24:43Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-10T16:24:43Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsACKNOWLEDGMENTS i
ABSTRACT ii
中文摘要 iv
Table of Contents vi
List of Schemes x
List of Figures xi
List of Tables xxii
Chapter 1 Introduction 1
1.1 Thermoelectric 1
1.1.1 Thermoelectric parameters 3
1.1.2 Material systems 6
1.2 Organic semiconductors 7
1.2.1 Chemical doping 8
1.2.2 Conductive filler 13
1.3 Polymer/Carbon nanotubes (CNT) thermoelectric nanocomposite 15
1.3.1 Interface interactions 16
1.3.2 Post treatments 20
1.3.3 Energy levels 24
1.4 Research motivation 26
Chapter 2 Experimental Section 29
2.1 Materials 29
2.1.1 Synthesis of poly[3-(2-hexyldecylthio)thiophen] 30
2.2 Characterization and analysis 32
2.2.1 Spectroscopic methods 32
2.2.2 Molecular and thermal analysis 33
2.2.3 Morphology and microstructure 33
2.2.4 Thermoelectric parameter 34
2.3 Fabrication of thermoelectric films and devices 35
2.3.1 Preparation of polymer/SWCNT composite solution 35
2.3.2 Fabrication of thermoelectric films and devices 36
Chapter 3 Side Chain Engineering: Branched Alkylthio Influence on Regioregular Polythiophene and SWCNT Nanocomposite Performance 39
3.1 Research background 39
3.2 Results and discussion 46
3.2.1 Polymer synthesis and characterization 46
3.2.2 Spectroscopic properties 55
3.2.3 Morphological properties 60
3.2.4 Thermoelectric properties 64
3.2.5 Evaluation of flexible thermoelectric generator 67
3.3 Summary 70
Chapter 4 Role of Sequential Process Doping in Improving N-Type Thermoelectric Behavior of Polymer/SWCNT Nanocomposites 72
4.1 Research background 72
4.2 Results and discussion 76
4.2.1 N-doped polymer/SWCNT nanocomposite characterization 76
4.2.2 The morphological and microstructural properties 87
4.2.3 Thermoelectric properties 92
4.2.4 Flexible p-n integrated thermoelectric generator 101
4.3 Summary 104
Chapter 5 Fully Stretchable Composites of Rapidly Synthesized Metallo-Supramolecular Poly(3-hexylthiophene)/Poly(n-butyl acrylate) with Single-walled Carbon Nanotubes for Thermoelectric Applications 106
5.1 Research background 106
5.2 Results and discussion 109
5.2.1 Synthesis and characterization 109
5.2.2 Morphological and microstructural properties 118
5.2.3 Thermoelectric properties 126
5.3 Summary 132
Chapter 6 Conclusion 134
References 136
Autobiography 152
Publications 153
-
dc.language.isoen-
dc.subject奈米複合材zh_TW
dc.subject熱電zh_TW
dc.subject軟性電子元件zh_TW
dc.subject共軛高分子zh_TW
dc.subject奈米碳管zh_TW
dc.subjectFlexible electronicen
dc.subjectThermoelectricen
dc.subjectCarbon nanotubeen
dc.subjectNanocompositeen
dc.subjectConjugated polymeren
dc.title共軛高分子/奈米碳管複合材料應用於軟性熱電穿戴式裝置應用zh_TW
dc.titleConjugated Polymer/Carbon Nanotube Nanocomposites for Thermoelectric Application and Flexible/Wearable Deviceen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee童世煌;陳銘洲;鄭彥如;詹益慈zh_TW
dc.contributor.oralexamcommitteeShi-Huang Tung;Ming-Chou Chen;Yen-Ju Cheng;Yi-Tsu Chanen
dc.subject.keyword共軛高分子,奈米複合材,奈米碳管,熱電,軟性電子元件,zh_TW
dc.subject.keywordConjugated polymer,Nanocomposite,Carbon nanotube,Thermoelectric,Flexible electronic,en
dc.relation.page155-
dc.identifier.doi10.6342/NTU202502374-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-26-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
dc.date.embargo-lift2030-07-23-
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat 
ntu-113-2.pdf
  Restricted Access
7.22 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved