Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99475Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 陳慧文 | zh_TW |
| dc.contributor.advisor | Hui-Wen Chen | en |
| dc.contributor.author | 陳利昀 | zh_TW |
| dc.contributor.author | Li-Yuan Chen | en |
| dc.date.accessioned | 2025-09-10T16:24:10Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-17 | - |
| dc.identifier.citation | Babapoor, S., Neef, T., Mittelholzer, C., Girshick, T., Garmendia, A., Shang, H., Khan, M.I., Burkhard, P., 2011. A Novel Vaccine Using Nanoparticle Platform to Present Immunogenic M2e against Avian Influenza Infection. Influenza Res Treat 2011, 126794.
Bimler, L., Ronzulli, S.L., Song, A.Y., Johnson, S.K., Jones, C.A., Kim, T., Le, D.T., Tompkins, S.M., Paust, S., 2021. Matrix Protein 2 Extracellular Domain-Specific Monoclonal Antibodies Are an Effective and Potentially Universal Treatment for Influenza A. J Virol 95. Blagodatski, A., Trutneva, K., Glazova, O., Mityaeva, O., Shevkova, L., Kegeles, E., Onyanov, N., Fede, K., Maznina, A., Khavina, E., Yeo, S.J., Park, H., Volchkov, P., 2021. Avian Influenza in Wild Birds and Poultry: Dissemination Pathways, Monitoring Methods, and Virus Ecology. Pathogens 10. Bóna, M., Földi, J., Dénes, L., Harnos, A., Paszerbovics, B., Mándoki, M., 2023. Evaluation of the Virulence of Low Pathogenic H9N2 Avian Influenza Virus Strains in Broiler Chickens. Vet Sci 10. Braz Gomes, K., Zhang, Y.N., Lee, Y.Z., Eldad, M., Lim, A., Ward, G., Auclair, S., He, L., Zhu, J., 2023. Single-Component Multilayered Self-Assembling Protein Nanoparticles Displaying Extracellular Domains of Matrix Protein 2 as a Pan-influenza A Vaccine. ACS Nano 17, 23545-23567. Buescher, J., Novak, A.W., Khan, S.A., Weiss, A.-V., Lee, S., Schneider, M. 2023. Chapter 11 - PLGA-based nanoparticles for treatment of infectious diseases, In: Kesharwani, P. (Ed.) Poly(lactic-co-glycolic acid) (PLGA) Nanoparticles for Drug Delivery. Elsevier, 303-333. Calzas, C., Mao, M., Turpaud, M., Viboud, Q., Mettier, J., Figueroa, T., Bessière, P., Mangin, A., Sedano, L., Hervé, P.L., Volmer, R., Ducatez, M.F., Bourgault, S., Archambault, D., Le Goffic, R., Chevalier, C., 2021. Immunogenicity and Protective Potential of Mucosal Vaccine Formulations Based on Conserved Epitopes of Influenza A Viruses Fused to an Innovative Ring Nanoplatform in Mice and Chickens. Front Immunol 12, 772550. Cargnin Faccin, F., Perez, D.R., 2024. Pandemic preparedness through vaccine development for avian influenza viruses. Hum Vaccin Immunother 20, 2347019. Chen, X., Sun, H.-y., Lee, C.Y., Rostad, C.A., Trost, J., Abreu, R.B., Carlock, M.A., Wilson, J.R., Gansebom, S., Ross, T.M., Steinhauer, D.A., Anderson, E.J., Anderson, L.J., 2022. Functional antibody-dependent cell mediated cytotoxicity (ADCC) responses to vaccine and circulating influenza strains following vaccination. Virology 569, 44-55. Chlanda, P., Schraidt, O., Kummer, S., Riches, J., Oberwinkler, H., Prinz, S., Kräusslich, H.-G., Briggs John, A.G., 2015. Structural Analysis of the Roles of Influenza A Virus Membrane-Associated Proteins in Assembly and Morphology. Journal of Virology 89, 8957-8966. Christensen, D., Mortensen, R., Rosenkrands, I., Dietrich, J., Andersen, P., 2017. Vaccine-induced Th17 cells are established as resident memory cells in the lung and promote local IgA responses. Mucosal Immunol 10, 260-270. de Vries, R.D., Hoschler, K., Rimmelzwaan, G.F., 2023. ADCC: An underappreciated correlate of cross-protection against influenza? Front Immunol 14, 1130725. Deng, L., Mohan, T., Chang, T.Z., Gonzalez, G.X., Wang, Y., Kwon, Y.M., Kang, S.M., Compans, R.W., Champion, J.A., Wang, B.Z., 2018. Double-layered protein nanoparticles induce broad protection against divergent influenza A viruses. Nat Commun 9, 359. El Bakkouri, K., Descamps, F., De Filette, M., Smet, A., Festjens, E., Birkett, A., Van Rooijen, N., Verbeek, S., Fiers, W., Saelens, X., 2011. Universal vaccine based on ectodomain of matrix protein 2 of influenza A: Fc receptors and alveolar macrophages mediate protection. J Immunol 186, 1022-1031. Elmanfi, S., Yilmaz, M., Ong, W.W.S., Yeboah, K.S., Sintim, H.O., Gürsoy, M., Könönen, E., Gürsoy, U.K., 2021. Bacterial Cyclic Dinucleotides and the cGAS-cGAMP-STING Pathway: A Role in Periodontitis? Pathogens 10. Fan, J., Liang, X., Horton, M.S., Perry, H.C., Citron, M.P., Heidecker, G.J., Fu, T.-M., Joyce, J., Przysiecki, C.T., Keller, P.M., Garsky, V.M., Ionescu, R., Rippeon, Y., Shi, L., Chastain, M.A., Condra, J.H., Davies, M.-E., Liao, J., Emini, E.A., Shiver, J.W., 2004. Preclinical study of influenza virus A M2 peptide conjugate vaccines in mice, ferrets, and rhesus monkeys. Vaccine 22, 2993-3003. Gillim-Ross, L., Santos, C., Chen, Z., Aspelund, A., Yang, C.F., Ye, D., Jin, H., Kemble, G., Subbarao, K., 2008. Avian influenza h6 viruses productively infect and cause illness in mice and ferrets. J Virol 82, 10854-10863. Hajam, I.A., Senevirathne, A., Hewawaduge, C., Kim, J., Lee, J.H., 2020. Intranasally administered protein coated chitosan nanoparticles encapsulating influenza H9N2 HA2 and M2e mRNA molecules elicit protective immunity against avian influenza viruses in chickens. Vet Res 51, 37. He, J., Kam, Y.W., 2024. Insights from Avian Influenza: A Review of Its Multifaceted Nature and Future Pandemic Preparedness. Viruses 16. Jansen, C.A., van de Haar, P.M., van Haarlem, D., van Kooten, P., de Wit, S., van Eden, W., Viertlböck, B.C., Göbel, T.W., Vervelde, L., 2010. Identification of new populations of chicken natural killer (NK) cells. Developmental & Comparative Immunology 34, 759-767. Jegerlehner, A., Schmitz, N., Storni, T., Bachmann, M.F., 2004. Influenza A vaccine based on the extracellular domain of M2: weak protection mediated via antibody-dependent NK cell activity. J Immunol 172, 5598-5605. Kamel, M., Davidson, J.L., Schober, J.M., Fraley, G.S., Verma, M.S., 2025. A paper-based loop-mediated isothermal amplification assay for highly pathogenic avian influenza. Scientific Reports 15, 12110. Kim, K.H., Li, Z., Bhatnagar, N., Subbiah, J., Park, B.R., Shin, C.H., Pushko, P., Wang, B.Z., Kang, S.M., 2022. Universal protection against influenza viruses by multi-subtype neuraminidase and M2 ectodomain virus-like particle. PLoS Pathog 18, e1010755. Kumar, G., Sakharam, K.A., 2024. Tackling Influenza A virus by M2 ion channel blockers: Latest progress and limitations. European Journal of Medicinal Chemistry 267, 116172. Landmann, M., Scheibner, D., Graaf, A., Gischke, M., Koethe, S., Fatola, O.I., Raddatz, B., Mettenleiter, T.C., Beer, M., Grund, C., Harder, T., Abdelwhab, E.M., Ulrich, R., 2021. A Semiquantitative Scoring System for Histopathological and Immunohistochemical Assessment of Lesions and Tissue Tropism in Avian Influenza. Viruses 13. Lee, C.-W., Saif, Y.M., 2009. Avian influenza virus. Comparative Immunology, Microbiology and Infectious Diseases 32, 301-310. Lee, Y.N., Kim, M.C., Lee, Y.T., Kim, Y.J., Kang, S.M., 2015. Mechanisms of Cross-protection by Influenza Virus M2-based Vaccines. Immune Netw 15, 213-221. Liang, Y., Guo, J., Li, Z., Liu, S., Zhang, T., Sun, S., Lu, F., Zhai, Y., Wang, W., Ning, C., Tan, W., 2024. A novel method to assess antibody-dependent cell-mediated cytotoxicity against influenza A virus M2 in immunized murine models. Biosafety and Health 06, 178-185. Lim, C.M.L., Komarasamy, T.V., Adnan, N., Radhakrishnan, A.K., Balasubramaniam, V., 2024. Recent Advances, Approaches and Challenges in the Development of Universal Influenza Vaccines. Influenza Other Respir Viruses 18, e13276. Lin, W., Cui, H., Teng, Q., Li, L., Shi, Y., Li, X., Yang, J., Liu, Q., Deng, J., Li, Z., 2020. Evolution and pathogenicity of H6 avian influenza viruses isolated from Southern China during 2011 to 2017 in mice and chickens. Scientific Reports 10, 20583. Liu, H., Wang, F., Cao, Y., Dang, Y., Ge, B., 2022a. The multifaceted functions of cGAS. Journal of Molecular Cell Biology 14. Liu, Z., Zhou, J., Xu, W., Deng, W., Wang, Y., Wang, M., Wang, Q., Hsieh, M., Dong, J., Wang, X., Huang, W., Xing, L., He, M., Tao, C., Xie, Y., Zhang, Y., Wang, Y., Zhao, J., Yuan, Z., Qin, C., Jiang, S., Lu, L., 2022b. A novel STING agonist-adjuvanted pan-sarbecovirus vaccine elicits potent and durable neutralizing antibody and T cell responses in mice, rabbits and NHPs. Cell Research 32, 269-287. Lotfi, Z., Golchin, M., Khalili-Yazdi, A., Khalili, M., 2019. Immunological properties of the SLLTEVET epitope of Influenza A virus in multiple display on filamentous M13 phage. Comp Immunol Microbiol Infect Dis 65, 76-80. Lu, D., Shang, G., Li, J., Lu, Y., Bai, X.-c., Zhang, X., 2022. Activation of STING by targeting a pocket in the transmembrane domain. Nature 604, 557-562. Makadia, H.K., Siegel, S.J., 2011. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers (Basel) 3, 1377-1397. McMenamy, M.J., McKenna, R., Bailie, V.B., Cunningham, B., Jeffers, A., McCullough, K., Forsythe, C., Cuartero, L.G., Flynn, O., Byrne, C., Connaghan, E., Moriarty, J., Fanning, J., Ronan, S., Barrett, D., Fusaro, A., Monne, I., Terregino, C., James, J., Byrne, A.M.P., Lean, F.Z.X., Núñez, A., Reid, S.M., Hansen, R., Brown, I.H., Banyard, A.C., Lemon, K., 2024. Evaluating the Impact of Low-Pathogenicity Avian Influenza H6N1 Outbreaks in United Kingdom and Republic of Ireland Poultry Farms during 2020. Viruses 16. Mezhenskaya, D., Isakova-Sivak, I., Rudenko, L., 2019. M2e-based universal influenza vaccines: a historical overview and new approaches to development. J Biomed Sci 26, 76. Mo, J., Spackman, E., Swayne, D.E., 2023. Prediction of highly pathogenic avian influenza vaccine efficacy in chickens by comparison of in vitro and in vivo data: A meta-analysis and systematic review. Vaccine 41, 5507-5517. Nabeshima, K., Asakura, S., Iwata, R., Honjo, H., Haga, A., Goka, K., Onuma, M., 2023. Sequencing methods for HA and NA genes of avian influenza viruses from wild bird feces using Oxford Nanopore sequencing. Comparative Immunology, Microbiology and Infectious Diseases 102, 102076. Neumann, G., Eisfeld, A.J., Kawaoka, Y., Viral factors underlying the pandemic potential of influenza viruses. Microbiology and Molecular Biology Reviews 0, e00066-00024. Nypaver, C., Dehlinger, C., Carter, C., 2021. Influenza and Influenza Vaccine: A Review. J Midwifery Womens Health 66, 45-53. OIE 2015. Chapter 2.3.4. Avian influenza (infection with Avian Influenza Viruses) (World Organisation for Animal Health) (OIE). Pati, R., Shevtsov, M., Sonawane, A., 2018. Nanoparticle Vaccines Against Infectious Diseases. Front Immunol 9, 2224. Reed, L.J., Muench, H., 1938. A SIMPLE METHOD OF ESTIMATING FIFTY PER CENT ENDPOINTS12. American Journal of Epidemiology 27, 493-497. Shen, Y., Huang, W., Nie, J., Zhang, L., 2025. Progress Update on STING Agonists as Vaccine Adjuvants. Vaccines 13, 371. Shi, J., Zeng, X., Cui, P., Yan, C., Chen, H., 2023. Alarming situation of emerging H5 and H7 avian influenza and effective control strategies. Emerg Microbes Infect 12, 2155072. Spackman, E., 2020. A Brief Introduction to Avian Influenza Virus. Methods Mol Biol 2123, 83-92. Srivastava, V., Yang, Z., Hung, I.F., Xu, J., Zheng, B., Zhang, M.Y., 2013. Identification of dominant antibody-dependent cell-mediated cytotoxicity epitopes on the hemagglutinin antigen of pandemic H1N1 influenza virus. J Virol 87, 5831-5840. Subbiah, J., Oh, J., Kim, K.-H., Shin, C.-H., Park, B.R., Bhatnagar, N., Seong, B.-L., Wang, B.-Z., Kang, S.-M., 2022. A chimeric thermostable M2e and H3 stalk-based universal influenza A virus vaccine. npj Vaccines 7, 68. Sun, W., Luo, T., Liu, W., Li, J., 2020. Progress in the Development of Universal Influenza Vaccines. Viruses 12. Swayne, D.E., 2012. Impact of vaccines and vaccination on global control of avian influenza. Avian Dis 56, 818-828. Takahama, S., Yamamoto, T., 2020. Pattern Recognition Receptor Ligands as an Emerging Therapeutic Agent for Latent HIV-1 Infection. Front Cell Infect Microbiol 10, 216. Tao, W., Gill, H.S., 2015. M2e-immobilized gold nanoparticles as influenza A vaccine: Role of soluble M2e and longevity of protection. Vaccine 33, 2307-2315. Treanor, J.J., Tierney, E.L., Zebedee, S.L., Lamb, R.A., Murphy, B.R., 1990. Passively transferred monoclonal antibody to the M2 protein inhibits influenza A virus replication in mice. Journal of Virology 64, 1375-1377. Tsai, H.H., Huang, P.H., Lin, L.C., Yao, B.Y., Liao, W.T., Pai, C.H., Liu, Y.H., Chen, H.W., Hu, C.J., 2023. Lymph Node Follicle-Targeting STING Agonist Nanoshells Enable Single-Shot M2e Vaccination for Broad and Durable Influenza Protection. Adv Sci (Weinh) 10, e2206521. Vanderven, H.A., Jegaskanda, S., Wheatley, A.K., Kent, S.J., 2017. Antibody-dependent cellular cytotoxicity and influenza virus. Current Opinion in Virology 22, 89-96. Victora, G.D., Nussenzweig, M.C., 2012. Germinal centers. Annu Rev Immunol 30, 429-457. Von Holle, T.A., Moody, M.A., 2019a. Influenza and Antibody-Dependent Cellular Cytotoxicity. Frontiers in Immunology Volume 10 - 2019. Von Holle, T.A., Moody, M.A., 2019b. Influenza and Antibody-Dependent Cellular Cytotoxicity. Front Immunol 10, 1457. Wang, Q., Zhang, Y., Zou, P., Wang, M., Fu, W., She, J., Song, Z., Xu, J., Huang, J., Wu, F., 2020. Self-Assembly M2e-Based Peptide Nanovaccine Confers Broad Protection Against Influenza Viruses. Frontiers in Microbiology Volume 11 - 2020. Wang, X., Huang, Z., Xing, L., Shang, L., Jiang, J., Deng, C., Yu, W., Peng, L., Yang, H., Zheng, X., Liu, X., Yang, H., Chen, Y., Li, Y., Liu, J., Xie, X., Xu, W., Xia, X., Liu, Z., Liu, W., Jiang, S., Zeng, Y., Lu, L., Wang, J., 2025. STING agonist-based ER-targeting molecules boost antigen cross-presentation. Nature 641, 202-210. Ward, C.L., Dempsey, M.H., Ring, C.J., Kempson, R.E., Zhang, L., Gor, D., Snowden, B.W., Tisdale, M., 2004. Design and performance testing of quantitative real time PCR assays for influenza A and B viral load measurement. J Clin Virol 29, 179-188. Wei, S.H., Yang, J.R., Wu, H.S., Chang, M.C., Lin, J.S., Lin, C.Y., Liu, Y.L., Lo, Y.C., Yang, C.H., Chuang, J.H., Lin, M.C., Chung, W.C., Liao, C.H., Lee, M.S., Huang, W.T., Chen, P.J., Liu, M.T., Chang, F.Y., 2013. Human infection with avian influenza A H6N1 virus: an epidemiological analysis. Lancet Respir Med 1, 771-778. Wibowo, D., Jorritsma, S.H.T., Gonzaga, Z.J., Evert, B., Chen, S., Rehm, B.H.A., 2021. Polymeric nanoparticle vaccines to combat emerging and pandemic threats. Biomaterials 268, 120597. Xu, H., Zhu, S., Govinden, R., Chenia, H.Y., 2023a. Multiple Vaccines and Strategies for Pandemic Preparedness of Avian Influenza Virus. Viruses 15. Xu, X., Qi, C., Min, T., Jia, L., Xiyan, L., Lei, Y., Yuelong, S., Dayan, W., and Zhu, W., 2023b. Epidemiology, evolution, and biological characteristics of H6 avian influenza viruses in China. Emerging Microbes & Infections 12, 2151380. Yasuda, M., Kajiwara, E., Ekino, S., Taura, Y., Hirota, Y., Horiuchi, H., Matsuda, H., Furusawa, S., 2003. Immunobiology of chicken germinal center: I. Changes in surface Ig class expression in the chicken splenic germinal center after antigenic stimulation. Developmental & Comparative Immunology 27, 159-166. Zhang, X., Bai, X.-c., Chen, Z.J., 2020. Structures and mechanisms in the cGAS-STING innate immunity pathway. Immunity 53, 43-53. Zhao, L., Seth, A., Wibowo, N., Zhao, C.-X., Mitter, N., Yu, C., Middelberg, A.P.J., 2014. Nanoparticle vaccines. Vaccine 32, 327-337. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99475 | - |
| dc.description.abstract | 家禽流行性感冒是一種易於突變的人畜共通傳染病,持續對全球家禽產業造成鉅大的經濟損失與公共衛生的威脅。在開發具廣效保護力的禽流感疫苗的過程中,流感病毒基質蛋白2的細胞外結構域 (M2e) 是一個適合的候選抗原,因為M2e的序列在多數A型流感病毒中具有高度保守性,產生之抗體可介導抗體依賴性細胞毒殺作用(ADCC),能在病毒釋放前清除受感染的細胞。然而,M2e因分子量小且表現量低,免疫原性相當有限,因此需要有效的抗原遞送系統來提升其免疫效果。本研究中,我們使用專利奈米殼來同時包覆M2e胜肽作為抗原、STING促進劑作為佐劑,評估其在無特定病原雞中的免疫原性與保護效果。結果顯示,雞隻免疫M2e 奈米殼疫苗之後,能在多種淋巴組織中偵測到顯著較多的B細胞標誌與IgG產生細胞,並在血液中測得顯著較高之M2e特異性抗體,此抗體能辨識跨7種不同亞型流感病毒感染MDCK細胞所表現的M2e蛋白質。在H6N1病毒攻毒後,皮下注射疫苗雞隻的肺與腎臟病毒量有下降的趨勢,腎臟的肉眼病變明顯減輕,組織病理分析亦顯示腎臟、肺及氣管有較低的病變指數。此外,以雞脾臟來源之自然殺手細胞進行ADCC的細胞試驗,發現免疫M2e奈米殼疫苗之雞隻血清能有效誘發MDCK細胞在流感病毒感染後的死亡。總結來說,本研究顯示M2e奈米殼疫苗在雞隻可誘發具跨病毒亞型的交叉免疫反應,並透過ADCC路徑減少病毒增殖、降低組織損傷,有潛力作為廣效保護性之禽流感疫苗,對於禽流感的防控策略具有應用價值。 | zh_TW |
| dc.description.abstract | Avian influenza virus (AIV) is a zoonotic pathogen that easily mutates and continues to cause economic loss in the poultry industry and poses a threat to public health. To develop a broadly protective influenza vaccine, the extracellular domain of matrix protein 2 (M2e) is a promising antigen candidate as it is highly conserved across most influenza A subtypes. M2e-induced immune protection is primarily mediated through antibody-dependent cellular cytotoxicity (ADCC), which enables the clearance of infected cells before viral release. However, the immunogenicity of M2e is limited due to its small size and low abundance on the viral surface, necessitating effective antigen delivery systems to enhance immunogenicity. In this study, we encapsulated M2e peptides as the antigen and STING agonist as an adjuvant within proprietary nanoshells and evaluated their immunogenicity and protective efficacy in specific-pathogen-free (SPF) chickens. The results showed that immunization of SPF chickens with the M2e nanoshell vaccine significantly enhanced the proliferation of B cells and IgG-producing cells in various lymphoid tissues, thereby inducing a robust and durable M2e-specific antibody response. In addition, the induced antibodies demonstrated cross-reactivity by effectively recognizing the M2e protein expressed on the surface of MDCK cells infected with seven different subtypes of influenza viruses. Following challenge with H6N1, vaccinated chickens exhibited a trend of reduced viral loads in both lung and kidney tissues and fewer gross lesions in the kidneys. Histopathological analysis revealed attenuated tissue damage in the kidney, lung, and trachea, with significantly lower pathology scores in the M2e nanoshell vaccinated group. Furthermore, to assess ADCC activity, an in vitro killing assay demonstrated that chicken splenic natural killer cells were capable of lysing influenza-infected MDCK cells in the presence of M2e nanoshells immune sera. In conclusion, this study demonstrates that the M2e nanoshell vaccine elicits durable and cross-reactive immune responses and reduces tissue damage through ADCC-mediated mechanisms. M2e nanoshell vaccine shows potential as a broadly protective avian influenza vaccine and holds value for controlling AIV outbreaks in poultry. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:24:10Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:24:10Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Contents
誌謝 i 中文摘要 ii Abstract iii Contents v List of Figures viii List of Tables ix Chapter 1 Introduction 1 1.1 Avian influenza virus 1 1.2 Vaccines against the avian influenza virus 2 1.3 Matrix protein 2 (M2) of influenza virus and its conserved extracellular domain (M2e) 3 1.4 Antibody-dependent cellular cytotoxicity (ADCC) 4 1.5 Nanoparticles for vaccine delivery and the role of nanoshells 4 1.6 Stimulator of interferon genes (STING) agonist as vaccine adjuvants 5 1.7 Objective of this study 6 Chapter 2 Materials and Methods 7 2.1 Cell and virus cultures 7 2.2 Hemagglutination (HA) test 8 2.3 50% embryo infective dose (EID50) titration of influenza virus 8 2.4 50% cell culture infectious dose (TCID50) endpoint dilution assay 9 2.5 Preparation of M2e nanoshell vaccine 10 2.6 STING reporter cell assays 10 2.7 Quantitative peptide assays 11 2.8 Transmission electron microscopy (TEM) staining 11 2.9 Immunization studies in chickens 12 2.10 Viral challenge studies in chickens 13 2.11 Enzyme-linked immunosorbent assay (ELISA) 13 2.12 Immunocytochemical (ICC) staining 14 2.13 Immunohistochemical (IHC) staining 14 2.14 3D immunofluorescence staining 15 2.15 Virus RNA extraction and RT-PCR 16 2.16 Quantitative real-time PCR (qPCR) 16 2.17 Scoring of histopathological lesions 17 2.18 Chicken NK cell sorting 18 2.19 In vitro killing assay 19 2.20 Statistical analysis 19 Chapter 3 Results 21 3.1 Preparation and characterization of M2e nanoshell vaccine 21 3.2 Quantification of encapsulated M2e peptide 21 3.3 Evaluation of STING pathway activation 22 3.4 IgG-producing cells localization 22 3.5 3D Visualization of immune cellular responses in tissues 23 3.6 Detection of M2e-specific antibodies 23 3.7 Preparation and titration of influenza A virus 24 3.8 Cross-type immunity of antibodies against M2e-expressing infected cells 25 3.9 Protective efficacy of M2e nanoshell vaccine 26 3.9.1 Quantification of tissue virus load 26 3.9.2 Gross and histopathological evaluation of kidney lesions from H6N1-infected chickens 26 3.9.3 Evaluation of trachea and lung responses to H6N1 infection 27 3.10 Isolation and characterization of chicken NK cells 28 3.11 ADCC activity induced by vaccinated chicken serum 28 Chapter 4 Discussion 30 Chapter 5 Figures and Tables 36 Chapter 6 References 54 | - |
| dc.language.iso | en | - |
| dc.subject | 家禽流行性感冒 | zh_TW |
| dc.subject | M2e | zh_TW |
| dc.subject | 奈米殼疫苗 | zh_TW |
| dc.subject | 抗體依賴性細胞毒殺 | zh_TW |
| dc.subject | Nanoshell vaccine | en |
| dc.subject | Avian influenza virus | en |
| dc.subject | M2e | en |
| dc.subject | Antibody-dependent cellular cytotoxicity | en |
| dc.title | M2e奈米殼疫苗對雞隻禽流感廣泛保護力之評估 | zh_TW |
| dc.title | Evaluation of cross-protective immunity induced by M2e nanoshell vaccine against avian influenza in chickens | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 胡哲銘;鄭明珠;王金和 | zh_TW |
| dc.contributor.oralexamcommittee | Che-Ming Jack Hu;Ming-Chu Cheng;Ching-Ho Wang | en |
| dc.subject.keyword | 家禽流行性感冒,M2e,奈米殼疫苗,抗體依賴性細胞毒殺, | zh_TW |
| dc.subject.keyword | Avian influenza virus,M2e,Nanoshell vaccine,Antibody-dependent cellular cytotoxicity, | en |
| dc.relation.page | 58 | - |
| dc.identifier.doi | 10.6342/NTU202501954 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-07-18 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 獸醫學系 | - |
| dc.date.embargo-lift | N/A | - |
| Appears in Collections: | 獸醫學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf Restricted Access | 4.1 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
