Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99474
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor駱尚廉zh_TW
dc.contributor.advisorShang-Lien Loen
dc.contributor.author張育瑄zh_TW
dc.contributor.authorYu-Hsuan Changen
dc.date.accessioned2025-09-10T16:23:59Z-
dc.date.available2025-09-11-
dc.date.copyright2025-09-10-
dc.date.issued2025-
dc.date.submitted2025-07-16-
dc.identifier.citationAlyaseri, I., & Zhou, J. (2017). Towards better environmental performance of wastewater sludge treatment using endpoint approach in LCA methodology. Heliyon, 3(3), e00268. https://doi.org/10.1016/j.heliyon.2017.e00268
Aman, M. M., Solangi, K. H., Hossain, M. S., Badarudin, A., Jasmon, G. B., Mokhlis, H., Bakar, A. H. A., & Kazi, S. N. (2015). A review of Safety, Health and Environmental (SHE) issues of solar energy system. Renewable and Sustainable Energy Reviews, 41, 1190-1204. https://doi.org/10.1016/j.rser.2014.08.086
Andorka, F. (2014). CIGS Solar Cells, Simplified. Solar Power World. Archived from the original on, 16.
Anisimov, d. R. B. a. l. I. (1997). <Possibility_of_recycling_silicon_PV_modules.pdf>. Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997. https://doi.org/10.1109/PVSC.1997.654298
Ansanelli, G., Fiorentino, G., Tammaro, M., & Zucaro, A. (2021). A Life Cycle Assessment of a recovery process from End-of-Life Photovoltaic Panels. Applied Energy, 290. https://doi.org/10.1016/j.apenergy.2021.116727
Ardente, F., Latunussa, C. E. L., & Blengini, G. A. (2019). Resource efficient recovery of critical and precious metals from waste silicon PV panel recycling. Waste Manag, 91, 156-167. https://doi.org/10.1016/j.wasman.2019.04.059
Aryan, V., Font‐Brucart, M., & Maga, D. (2018). A comparative life cycle assessment of end‐of‐life treatment pathways for photovoltaic backsheets. Progress in Photovoltaics: Research and Applications, 26(7), 443-459.
Azeumo, M. F., Germana, C., Ippolito, N. M., Franco, M., Luigi, P., & Settimio, S. (2019). Photovoltaic module recycling, a physical and a chemical recovery process. Solar Energy Materials and Solar Cells, 193, 314-319. https://doi.org/10.1016/j.solmat.2019.01.035
Chitaka, T. Y., Russo, V., & von Blottnitz, H. (2020). In pursuit of environmentally friendly straws: a comparative life cycle assessment of five straw material options in South Africa. The International Journal of Life Cycle Assessment, 25(9), 1818-1832. https://doi.org/10.1007/s11367-020-01786-w
Chowdhury, M. S., Rahman, K. S., Chowdhury, T., Nuthammachot, N., Techato, K., Akhtaruzzaman, M., Tiong, S. K., Sopian, K., & Amin, N. (2020). An overview of solar photovoltaic panels’ end-of-life material recycling. Energy Strategy Reviews, 27. https://doi.org/10.1016/j.esr.2019.100431
Deng, R., Chang, N. L., Ouyang, Z., & Chong, C. M. (2019). A techno-economic review of silicon photovoltaic module recycling. Renewable and Sustainable Energy Reviews, 109, 532-550.
Dhere, N. G., Gambogi, W., Heta, Y., Hashimoto, K., Kopchick, J., Felder, T., MacMaster, S., Bradley, A., Hamzavytehraney, B., Felix, V., Aoki, T., Stika, K., Garreau-Illes, L., Trout, T. J., Wohlgemuth, J. H., & Lynn, K. W. (2013). Weathering and durability of PV backsheets and impact on PV module performance Reliability of Photovoltaic Cells, Modules, Components, and Systems VI,
Dhilipan, J., Vijayalakshmi, N., Shanmugam, D. B., Jai Ganesh, R., Kodeeswaran, S., & Muralidharan, S. (2022). Performance and efficiency of different types of solar cell material – A review. Materials Today: Proceedings, 66, 1295-1302. https://doi.org/10.1016/j.matpr.2022.05.132
Dias, P. R., Benevit, M. G., & Veit, H. M. (2016). Photovoltaic solar panels of crystalline silicon: Characterization and separation. Waste Management & Research, 34(3), 235-245.
Efaz, E. T., Rhaman, M. M., Imam, S. A., Bashar, K. L., Kabir, F., Mourtaza, M. D. E., Sakib, S. N., & Mozahid, F. A. (2021). A review of primary technologies of thin-film solar cells. Engineering Research Express, 3(3). https://doi.org/10.1088/2631-8695/ac2353
Feldman, D., Dummit, K., Zuboy, J., & Margolis, R. (2023). Spring 2023 Solar Industry Update.
Finnveden, G., Hauschild, M. Z., Ekvall, T., Guinee, J., Heijungs, R., Hellweg, S., Koehler, A., Pennington, D., & Suh, S. (2009). Recent developments in Life Cycle Assessment. J Environ Manage, 91(1), 1-21. https://doi.org/10.1016/j.jenvman.2009.06.018
Fraas, L. M. (2014). <History of Solar Cell Development.pdf>. Low-Cost Solar Electric Power. https://doi.org/10.1007/978-3-319-07530-3
Garcı́a, A. N., Esperanza, M. M., & Font, R. (2003). Comparison between product yields in the pyrolysis and combustion of different refuse. Journal of Analytical and Applied Pyrolysis, 68-69, 577-598. https://doi.org/10.1016/s0165-2370(03)00066-4
Gerbinet, S., Belboom, S., & Léonard, A. (2014). Life Cycle Analysis (LCA) of photovoltaic panels: A review. Renewable and Sustainable Energy Reviews, 38, 747-753. https://doi.org/10.1016/j.rser.2014.07.043
Geretschläger, K. J., Wallner, G. M., & Fischer, J. (2016). Structure and basic properties of photovoltaic module backsheet films. Solar Energy Materials and Solar Cells, 144, 451-456. https://doi.org/10.1016/j.solmat.2015.09.060
Goedkoop, M., Heijungs, R., Huijbregts, M., Schryver, A. D., Struijs, J., & Zelm, R. v. (2009). <selected sections - Goedkoop etal ReCiPe_main_report_final_27-02-2009_web.pdf>.
Granata, G., Pagnanelli, F., Moscardini, E., Havlik, T., & Toro, L. (2014). Recycling of photovoltaic panels by physical operations. Solar Energy Materials and Solar Cells, 123, 239-248. https://doi.org/10.1016/j.solmat.2014.01.012
Hauschild, M. Z., & Huijbregts, M. A. J. (2015). <Life Cycle Impact Assessment.pdf>.
Heath, G. A., Silverman, T. J., Kempe, M., Deceglie, M., Ravikumar, D., Remo, T., Cui, H., Sinha, P., Libby, C., Shaw, S., Komoto, K., Wambach, K., Butler, E., Barnes, T., & Wade, A. (2020). Research and development priorities for silicon photovoltaic module recycling to support a circular economy. Nature Energy, 5(7), 502-510. https://doi.org/10.1038/s41560-020-0645-2
Huang, Y.-F., Chiueh, P.-T., Kuan, W.-H., & Lo, S.-L. (2015). Effects of lignocellulosic composition and microwave power level on the gaseous product of microwave pyrolysis. Energy, 89, 974-981. https://doi.org/10.1016/j.energy.2015.06.035
Iannicelli-Zubiani, E. M., Giani, M. I., Recanati, F., Dotelli, G., Puricelli, S., & Cristiani, C. (2017). Environmental impacts of a hydrometallurgical process for electronic waste treatment: A life cycle assessment case study. Journal of Cleaner Production, 140, 1204-1216. https://doi.org/10.1016/j.jclepro.2016.10.040
IRENA. (2016). End of life management: solar photovoltaic panels.
ISO. (2006). Environmental management-life cycle assessment-principles and framework. International Organization for Standardization.
Jorgensen, G., Terwilliger, K., Delcueto, J., Glick, S., Kempe, M., Pankow, J., Pern, F., & McMahon, T. (2006). Moisture transport, adhesion, and corrosion protection of PV module packaging materials. Solar Energy Materials and Solar Cells, 90(16), 2739-2775. https://doi.org/10.1016/j.solmat.2006.04.003
Khatibi, A., Razi Astaraei, F., & Ahmadi, M. H. (2019). Generation and combination of the solar cells: A current model review. Energy Science & Engineering, 7(2), 305-322. https://doi.org/10.1002/ese3.292
Klugmann-Radziemska, E., & Ostrowski, P. (2010). Chemical treatment of crystalline silicon solar cells as a method of recovering pure silicon from photovoltaic modules. Renewable Energy, 35(8), 1751-1759.
Kristen J. Hansen, L. A. C., Mark E. Ellefson, and Harold O. Johnson. (2001). Compound-Specific, Quantitative Characterization of Organic Fluorochemicals in Biological Matrices. Environ. Sci. Technol.
Kuczyńska-Łażewska, A., Klugmann-Radziemska, E., Sobczak, Z., & Klimczuk, T. (2018). Recovery of silver metallization from damaged silicon cells. Solar Energy Materials and Solar Cells, 176, 190-195. https://doi.org/10.1016/j.solmat.2017.12.004
Li, X., Liu, H., You, J., Diao, H., Zhao, L., & Wang, W. (2022). Back EVA recycling from c-Si photovoltaic module without damaging solar cell via laser irradiation followed by mechanical peeling. Waste Management, 137, 312-318.
Lim, M. S. W., He, D., Tiong, J. S. M., Hanson, S., Yang, T. C.-K., Tiong, T. J., Pan, G.-T., & Chong, S. (2022). Experimental, economic and life cycle assessments of recycling end-of-life monocrystalline silicon photovoltaic modules. Journal of Cleaner Production, 340. https://doi.org/10.1016/j.jclepro.2022.130796
Lin, C.-C., Krommenhoek, P. J., Watson, S. S., & Gu, X. (2016). Depth profiling of degradation of multilayer photovoltaic backsheets after accelerated laboratory weathering: Cross-sectional Raman imaging. Solar Energy Materials and Solar Cells, 144, 289-299. https://doi.org/10.1016/j.solmat.2015.09.021
Ludin, N. A., Mustafa, N. I., Hanafiah, M. M., Ibrahim, M. A., Asri Mat Teridi, M., Sepeai, S., Zaharim, A., & Sopian, K. (2018). Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review. Renewable and Sustainable Energy Reviews, 96, 11-28. https://doi.org/10.1016/j.rser.2018.07.048
Lunardi, M. M., Alvarez-Gaitan, J. P., Bilbao, J. I., & Corkish, R. (2018). A review of recycling processes for photovoltaic modules. Solar Panels and Photovoltaic Materials, 9-27.
Maehlum, M. (2015). Energy informative the homeowner’s guide to solar panels, best thin film solar panels—Amorphous, cadmium telluride or CIGS. Last updated, 6.
Mahmoudi, S., Huda, N., & Behnia, M. (2021). Multi-levels of photovoltaic waste management: A holistic framework. Journal of Cleaner Production, 294. https://doi.org/10.1016/j.jclepro.2021.126252
Mao, D., Yang, S., Ma, L., Ma, W., Yu, Z., Xi, F., & Yu, J. (2024). Overview of life cycle assessment of recycling end-of-life photovoltaic panels: A case study of crystalline silicon photovoltaic panels. Journal of Cleaner Production, 434. https://doi.org/10.1016/j.jclepro.2023.140320
Miller-Chou, B. A., & Koenig, J. L. (2003). A review of polymer dissolution. Progress in polymer science, 28(8), 1223-1270.
Mohanta, P. R., Patel, J., Bhuva, J., & Gandhi, M. (2015). A Review on solar Photovoltaics and Roof Top application of it. International Journal of Advanced Research in Science, Engineering and Technology, 2, 2394-2444.
Morita, Y., Saito, Y., Kumagai, S., Kameda, T., Shiratori, T., & Yoshioka, T. (2023). Alkaline hydrolysis of photovoltaic backsheet containing PET and PVDF for the recycling of PVDF. Journal of Material Cycles and Waste Management, 25(2), 674-683. https://doi.org/10.1007/s10163-023-01609-8
Mugdha V Dambhare, Butey, B., & Moharil, S. V. (2021). <Solar photovoltaic technology A review of different.pdf>. Journal of Physics: Conference SeriesInternational Conference on Research Frontiers in Sciences. https://doi.org/10.1088/1742-6596/1913/1/012053
Mulazzani, A., Eleftheriadis, P., & Leva, S. (2022). Recycling c-Si PV Modules: A Review, a Proposed Energy Model and a Manufacturing Comparison. Energies, 15(22). https://doi.org/10.3390/en15228419
Muller, R. S., & Kamins, T. I. (2002). Device electronics for integrated circuits. John Wiley & Sons.
PRé, V. (2016). SimaPro database manual methods library. In: Creative Commons San Francisco, CA, USA.
Rashedi, A., & Khanam, T. (2020). Life cycle assessment of most widely adopted solar photovoltaic energy technologies by mid-point and end-point indicators of ReCiPe method. Environ Sci Pollut Res Int, 27(23), 29075-29090. https://doi.org/10.1007/s11356-020-09194-1
Rathore, N., Panwar, N. L., Yettou, F., & Gama, A. (2019). A comprehensive review of different types of solar photovoltaic cells and their applications. International Journal of Ambient Energy, 42(10), 1200-1217. https://doi.org/10.1080/01430750.2019.1592774
Riech, I., Castro-Montalvo, C., Wittersheim, L., Giácoman-Vallejos, G., González-Sánchez, A., Gamboa-Loira, C., Acosta, M., & Méndez-Gamboa, J. (2021). Experimental methodology for the separation materials in the recycling process of silicon photovoltaic panels. Materials, 14(3), 581.
Rimaszeki, G., Kulcsar, T., & Kekesi, T. (2012). Application of HCl solutions for recovering the high purity metal from tin scrap by electrorefining. Hydrometallurgy, 125-126, 55-63. https://doi.org/10.1016/j.hydromet.2012.05.012
Roy, P., Nei, D., Orikasa, T., Xu, Q., Okadome, H., Nakamura, N., & Shiina, T. (2009). A review of life cycle assessment (LCA) on some food products. Journal of Food Engineering, 90(1), 1-10. https://doi.org/10.1016/j.jfoodeng.2008.06.016
Seo, B., Kim, J. Y., & Chung, J. (2021). Overview of global status and challenges for end-of-life crystalline silicon photovoltaic panels: A focus on environmental impacts. Waste Manag, 128, 45-54. https://doi.org/10.1016/j.wasman.2021.04.045
Sharma, S., Jain, K. K., & Sharma, A. (2015). Solar Cells: In Research and Applications—A Review. Materials Sciences and Applications, 06(12), 1145-1155. https://doi.org/10.4236/msa.2015.612113
Sica, D., Malandrino, O., Supino, S., Testa, M., & Lucchetti, M. C. (2018). Management of end-of-life photovoltaic panels as a step towards a circular economy. Renewable and Sustainable Energy Reviews, 82, 2934-2945. https://doi.org/10.1016/j.rser.2017.10.039
Soumya, C., Deepanraj, B., & Ranjitha, J. (2021). A review on solar photovoltaic systems and its application in electricity generation. AIP Conference Proceedings,
Tammaro, M., Salluzzo, A., Rimauro, J., Schiavo, S., & Manzo, S. (2016). Experimental investigation to evaluate the potential environmental hazards of photovoltaic panels. Journal of Hazardous Materials, 306, 395-405.
Tariq, M., Siddhantakar, A., Sherman, J. D., Cimprich, A., & Young, S. B. (2024). Life cycle assessment of medical oxygen. Journal of Cleaner Production, 444. https://doi.org/10.1016/j.jclepro.2024.141126
Vieira, D. R., Calmon, J. L., & Coelho, F. Z. (2016). Life cycle assessment (LCA) applied to the manufacturing of common and ecological concrete: A review. Construction and Building Materials, 124, 656-666. https://doi.org/10.1016/j.conbuildmat.2016.07.125
Wang, R., Song, E., Zhang, C., Zhuang, X., Ma, E., Bai, J., Yuan, W., & Wang, J. (2019). Pyrolysis-based separation mechanism for waste crystalline silicon photovoltaic modules by a two-stage heating treatment. RSC Adv, 9(32), 18115-18123. https://doi.org/10.1039/c9ra03582f
Wang, X., Tian, X., Chen, X., Ren, L., & Geng, C. (2022). A review of end-of-life crystalline silicon solar photovoltaic panel recycling technology. Solar Energy Materials and Solar Cells, 248. https://doi.org/10.1016/j.solmat.2022.111976
Xu, Y., Li, J., Tan, Q., Peters, A. L., & Yang, C. (2018). Global status of recycling waste solar panels: A review. Waste Manag, 75, 450-458. https://doi.org/10.1016/j.wasman.2018.01.036
Yan, Y., Wang, Z., Wang, D., Cao, J., Ma, W., Wei, K., & Yun, L. (2020). Recovery of silicon via using KOH-ethanol solution by separating different layers of end-of-life PV modules. JOM, 72, 2624-2632.
Yang, Y., Heijungs, R., & Brandão, M. (2017). Hybrid life cycle assessment (LCA) does not necessarily yield more accurate results than process-based LCA. Journal of Cleaner Production, 150, 237-242. https://doi.org/10.1016/j.jclepro.2017.03.006
劉宜君. (2019). 生命週期評估概念在公共政策應用之探討. 國土及公共治理季刊, 7(3), 8-17.
鄭庭庭. (2023). 廢棄矽晶太陽能板資源化. https://doi.org/10.6342/NTU202301277
謝佑昀. (2013). 土地利用之生命週期衝擊評估工具開發.
顏哲揚. (2013). 生命週期永續性評估之應用研究─ 以太陽能產品為例.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99474-
dc.description.abstract在永續發展的浪潮下,再生能源已成為炙手可熱的議題,太陽能板安裝數量成指數性上升,其中又以矽晶太陽能電池為主流,其使用壽命在20至25年,若未妥善處置將造成環境汙染。矽晶太陽能板回收的前處理流程可大致分為物理處理、化學處理以及熱處理,其中熱處理可獲得完整電池片且無廢溶劑產生,但乙烯/醋酸乙烯酯(Ethylene-Vinyl Acetate, EVA)封裝膠和背板裂解過程會產生廢氣,而關於廢氣所造成的環境影響討論甚少。近年來關於太陽能板的生命週期評估研究與日俱增,但卻鮮少討論太陽能板資源化流程,若有也幾乎是引用數據而非真實數據。

  本研究目的為使用實際實驗數據對「傳統裂解」、「兩階段裂解」和「微波裂解」三種不同前處理流程進行生命週期評估,兩階段裂解前處理嘗試在高溫裂解前去除背板,接著進行背板材料分析、裂解廢氣分析,最後利用生命週期評估軟體SimaPro 9.2以ReCiPe 2016 Endpoint評估模式量化潛在衝擊,以便未來建立具永續性的太陽能板資源化流程。

  兩階段裂解第一階段在150 ℃持溫5分鐘,去除部分背板,第二階段在480 ℃持溫20分鐘去除剩餘背板與EVA封裝膠。利用化學溶劑法獲得背板後,使用FTIR分析背板材料,分析結果本研究所使用之背板為不含氟背板,外層與核心層使用PET材料,內層使用EVA材料。

  生命週期評估結果環境衝擊由大至小為微波裂解>兩階段裂解>傳統裂解,單點得分結果得分最高的衝擊類別分別為Fine particulate matter formation和Global warming, Human health,根據生命週期評估結果能源、耗材使用與背板裂解所產生的微粒是導致環境衝擊的最大原因,若撇除耗材使用環境衝擊由大至小為兩階段裂解>傳統裂解>微波裂解,此結果表明未來可朝這些方向去減少前處理流程所造成的環境衝擊。本研究雖僅為實驗室規模,然而使用真實數據、討論背板裂解氣體皆是目前較缺少的研究,可作為未來建立永續太陽能板資源化流程之參考。
zh_TW
dc.description.abstractIn the wave of sustainable development, renewable energy has become a significant topic, leading to an exponential increase in the installation of solar panels. Among these, crystalline silicon solar cells dominate the market. These cells have a lifespan of 20 to 25 years of lifespan, and improper disposal can result in environmental problems. The pre-treatment process for recycling silicon crystal solar panels can be divided into physical, chemical, and thermal treatments. Thermal treatment can yield complete solar cells without generating waste solvents, but the pyrolysis of Ethylene-Vinyl Acetate (EVA) and the backsheet produces emissions, which have been limitedly discussed regarding their environmental impact. In recent years, life cycle assessment (LCA) studies on solar panels have increased, but discussions on the recovery processes for solar panels are rare and often reference data rather than utilizing actual data.

  The purpose of this study is to use empirical data to conduct a life cycle assessment on three different pre-treatment processes: "traditional pyrolysis," "two-stage pyrolysis," and "microwave pyrolysis." The study begins with the two-stage pyrolysis pre-treatment, attempting to remove the backsheet before high-temperature pyrolysis, followed by an analysis of the backsheet material and pyrolysis emission. Finally, the potential impacts are quantified using the ReCiPe 2016 Endpoint assessment model in the life cycle assessment software SimaPro 9.2, to establish the most sustainable solar panel resource recovery process for the future.

  In the first stage of the two-stage pyrolysis, the temperature was maintained at 150°C for 5 minutes to remove part of the backsheet. In the second stage, the temperature was maintained at 480°C for 20 minutes to remove the remaining backsheet and EVA. After obtaining the backsheet using a chemical solvent method, the backsheet material was analyzed by FTIR. The analysis results indicated that the backsheet used in this study was a fluorine-free backsheet, with the outer and core layers made of PET and the inner layer made of EVA.

  The life cycle assessment results indicated that the environmental impacts, from highest to lowest, were as follows: microwave pyrolysis > two-stage pyrolysis > traditional pyrolysis. The single score results' highest impact categories were Fine Particulate Matter Formation and Global Warming, Human Health. According to the LCA results, the major causes of environmental impact were energy, material consumption and the fine particulates produced during backsheet pyrolysis. Excluding material consumption, the impact result was two-stage pyrolysis > traditional pyrolysis > microwave pyrolysis. This suggests that future efforts should focus on reducing the environmental impacts associated with pretreatment processes. Although this study was limited to a lab-scale, it used real data and discussed backsheet pyrolysis emission, which were areas currently lacking in research, providing a reference for establishing sustainable solar panel resource recovery processes moving forward.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:23:59Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-10T16:23:59Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
目次 vi
圖次 x
表次 xiv
Chapter 1 緒論 1
1.1 研究背景及動機 1
1.2 研究目的 3
1.3 研究內容 3
Chapter 2 文獻回顧 5
2.1 太陽能電池 5
2.2 太陽能電池種類 7
2.3 矽晶太陽能電池 9
2.3.1 矽晶太陽能板組成 9
2.3.2 太陽能電池背板 10
2.3.3 廢棄矽晶太陽能板現狀 11
2.4 矽晶太陽能電池回收前處理 13
2.4.1 物理機械法 13
2.4.2 化學溶劑法 14
2.4.3 熱處理法 15
2.5 矽晶太陽能電池金屬回收 15
2.6 生命週期評估 17
2.6.1 生命週期方法 17
2.6.2 評估模式介紹 19
2.6.3 太陽能板回收研究 20
2.7 小結 21
Chapter 3 研究方法與材料 22
3.1 研究架構 22
3.1.1 案例說明 23
3.2 生命週期評估法 25
3.2.1 目標範圍界定 25
3.2.2 盤查分析 28
3.3 材料 31
3.3.1 實驗樣品 31
3.3.2 實驗設備 31
3.3.3 實驗藥品 32
3.4 儀器設備方法 32
Chapter 4 實驗結果與討論 39
4.1 兩階段前處理 39
4.1.1 基本性質 39
4.1.2 近似值分析 41
4.1.3 兩階段前處理結果 42
4.1.4 鋁電極回收 49
4.2 背板分析 53
4.2.1 化學溶劑法 53
4.2.2 背板材料 56
4.3 前處理比較 59
4.3.1 回收產品比較 60
4.3.2 SEM-EDS比較 62
4.3.3 鋁回收比較 65
4.4 生命週期評估結果 65
4.4.1 特徵化結果 65
4.4.2 損害評估結果 68
4.4.3 環境衝擊與衝擊熱點 69
4.4.4 無耗材之生命週期評估 71
4.4.5 敏感度分析 76
Chapter 5 結論與建議 79
5.1 結論 79
5.2 建議 80
REFERENCE 82
附錄 87
-
dc.language.isozh_TW-
dc.subject熱裂解zh_TW
dc.subject太陽能背板zh_TW
dc.subject兩階段裂解zh_TW
dc.subject生命週期評估zh_TW
dc.subject矽晶太陽能板回收zh_TW
dc.subjectsolar panel backsheeten
dc.subjectlife cycle assessmenten
dc.subjecttwo-stage pyrolysisen
dc.subjectpyrolysisen
dc.subjectsilicon solar panel recyclingen
dc.title利用生命週期評估比較不同矽晶太陽能板之前處理zh_TW
dc.titleLife Cycle Assessment of Different Pre-treatment Methods For Silicon Solar Panel Recyclingen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee闕蓓德;陳映竹;黃于峯zh_TW
dc.contributor.oralexamcommitteePei-Te Chiueh;Ying-Chu Chen;Yu-Fong Huangen
dc.subject.keyword矽晶太陽能板回收,熱裂解,太陽能背板,生命週期評估,兩階段裂解,zh_TW
dc.subject.keywordsilicon solar panel recycling,pyrolysis,solar panel backsheet,life cycle assessment,two-stage pyrolysis,en
dc.relation.page91-
dc.identifier.doi10.6342/NTU202501518-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-17-
dc.contributor.author-college工學院-
dc.contributor.author-dept環境工程學研究所-
dc.date.embargo-lift2030-07-02-
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2030-07-02
7.79 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved