Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99471
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳安宇zh_TW
dc.contributor.advisorAn-Yeu Wuen
dc.contributor.author李翊銘zh_TW
dc.contributor.authorYi-Ming Leeen
dc.date.accessioned2025-09-10T16:23:26Z-
dc.date.available2025-09-11-
dc.date.copyright2025-09-10-
dc.date.issued2025-
dc.date.submitted2025-07-29-
dc.identifier.citation[1] Z.Wei, W.Yuan,S.Li, J.Yuan, G.Bharatula, R. Hadani, and L. Hanzo, “Orthogonal time-frequency space modulation: A promising next-generation waveform,” IEEE Wireless Communications, vol. 28, no. 4, pp. 136–144, 2021.
[2] H. Yin, Y. Tang, A. Bemani, M. Kountouris, Y. Zhou, X. Zhang, Y. Liu, G. Chen, K. Yang, F. Liu, C. Masouros, S. Li, G. Caire, and P. Xiao, “Affine frequency division multiplexing: Extending OFDM for scenario-flexibility and resilience,” 2025. [Online]. Available: https://arxiv.org/abs/2502.04735
[3] A. Bemani, N. Ksairi, and M. Kountouris, “Affine frequency division multiplexing for next generation wireless communications,” IEEE Transactions on Wireless Communications, vol. 22, no. 11, pp. 8214–8229, 2023.
[4] H. S. Rou, G. T. F. de Abreu, J. Choi, D. González G., M. Kountouris, Y. L. Guan, and O. Gonsa, “From orthogonal time–frequency space to affine frequency-division multiplexing: A comparative study of next-generation waveforms for integrated sensing and communications in doubly dispersive channels,” IEEE Signal Processing Magazine, vol. 41, no. 5, pp. 71–86, 2024.
[5] M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi, “Toward 6G networks: Use cases and technologies,” IEEE Communications Magazine, vol. 58, no. 3, pp. 55–61, 2020.
[6] M. Noor-A-Rahim, Z. Liu, H. Lee, M. O. Khyam, J. He, D. Pesch, K. Moessner, W. Saad, and H. V. Poor, “6G for vehicle-to-everything (V2X) communications: Enabling technologies, challenges, and opportunities,” Proceedings of the IEEE, vol. 110, no. 6, pp. 712–734, 2022.
[7] M. M. Azari, S. Solanki, S. Chatzinotas, O. Kodheli, H. Sallouha, A. Colpaert, J. F. Mendoza Montoya, S. Pollin, A. Haqiqatnejad, A. Mostaani, E. Lagunas, and B. Ottersten, “Evolution of non-terrestrial networks from 5G to 6G: A survey,” IEEE Communications Surveys Tutorials, vol. 24, no. 4, pp. 2633–2672, 2022.
[8] G. Liu, Y. Huang, N. Li, J. Dong, J. Jin, Q. Wang, and N. Li, “Vision, requirements and network architecture of 6G mobile network beyond 2030,” China Communications, vol. 17, no. 9, pp. 92–104, 2020.
[9] Y. Zeng, R. Zhang, and T. J. Lim, “Wireless communications with unmanned aerial vehicles: Opportunities and challenges,” IEEE Communications Magazine, vol. 54, no. 5, pp. 36–42, 2016.
[10] T. Zhou, C. Tao, S. Salous, L. Liu, and Z. Tan, “Channel sounding for high-speed railway communication systems,” IEEE Communications Magazine, vol. 53, no. 10, pp. 70–77, 2015.
[11] Y. Zhou, H. Yin, J. Xiong, S. Song, J. Zhu, J. Du, H. Chen, and Y. Tang, “Overview and performance analysis of various waveforms in high mobility scenarios,” in 2024 7th International Conference on Communication Engineering and Technology (ICCET), 2024, pp. 35–40.
[12] G. Stuber, J. Barry, S. McLaughlin, Y. Li, M. Ingram, and T. Pratt, “Broadband MIMO-OFDMwireless communications,” Proceedings of the IEEE, vol. 92, no. 2, pp. 271–294, 2004.
[13] J. Zheng, J. Zhang, E. Björnson, Z. Li, and B. Ai, “Cell-free massive MIMO-OFDM for high-speed train communications,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 10, pp. 2823–2839, 2022.
[14] R. Hadani, S. Rakib, M. Tsatsanis, A. Monk, A. J. Goldsmith, A. F. Molisch, and R. Calderbank, “Orthogonal time frequency space modulation,” in 2017 IEEE Wireless Communications and Networking Conference (WCNC), 2017, pp. 1–6.
[15] W. Yuan, S. Li, Z. Wei, Y. Cui, J. Jiang, H. Zhang, and P. Fan, “New delay doppler communication paradigm in 6G era: A survey of orthogonal time frequency space (OTFS),” China Communications, vol. 20, no. 6, pp. 1–25, 2023.
[16] S. Li, J. Yuan, W. Yuan, Z. Wei, B. Bai, and D. W. K. Ng, “Performance analysis of coded OTFS systems over high-mobility channels,” IEEE Transactions on Wireless Communications, vol. 20, no. 9, pp. 6033–6048, 2021.
[17] P. Raviteja, Y. Hong, E. Viterbo, and E. Biglieri, “Effective diversity of OTFS modulation,” IEEE Wireless Communications Letters, vol. 9, no. 2, pp. 249–253, 2020.
[18] G.D.Surabhi, R.M.Augustine, andA.Chockalingam, “On the diversity of uncoded OTFS modulation in doubly-dispersive channels,” IEEE Transactions on Wireless Communications, vol. 18, no. 6, pp. 3049–3063, 2019.
[19] S. Buzzi, G. Caire, G. Colavolpe, C. D'Andrea, T. Foggi, A. Piemontese, and A. Ugolini, “LEO satellite diversity in 6G non-terrestrial networks: OFDM vs. OTFS,” IEEE Communications Letters, vol. 27, no. 11, pp. 3013–3017, 2023.
[20] W. Shen, L. Dai, J. An, P. Fan, and R. W. Heath, “Channel estimation for orthogonal time frequency space (OTFS) massive MIMO,” IEEE Transactions on Signal Processing, vol. 67, no. 16, pp. 4204–4217, 2019.
[21] X. Ouyang and J. Zhao, “Orthogonal chirp division multiplexing,” IEEE Transactions on Communications, vol. 64, no. 9, pp. 3946–3957, 2016.
[22] M. S. Omar and X. Ma, “Performance analysis of OCDM for wireless communications,” IEEE Transactions on Wireless Communications, vol. 20, no. 7, pp. 4032-4043, 2021.
[23] A. Bemani, N. Ksairi, and M. Kountouris, “AFDM: A full diversity next generation waveform for high mobility communications,” in 2021 IEEE International Conference on Communications Workshops (ICC Workshops), 2021, pp. 1–6.
[24] Y. Tao, M. Wen, Y.Ge, J. Li, E. Basar, and N. Al-Dhahir, “Affine frequency division multiplexing with index modulation: Full diversity condition, performance analysis, and low-complexity detection,” IEEE Journal on Selected Areas in Communications, vol. 43, no. 4, pp. 1041–1055, 2025.
[25] A. Bemani, N. Ksairi, and M. Kountouris, “Integrated sensing and communications with affine frequency division multiplexing,” IEEE Wirel. Commun. Lett., vol. 13, no. 5, pp. 1255–1259, May 2024.
[26] Y. Ni, Z. Wang, P. Yuan, and Q. Huang, “An AFDM-based integrated sensing and communications,” in 2022 International Symposium on Wireless Communication Systems (ISWCS), Oct. 2022, pp. 1–6.
[27] A. Bemani, N. Ksairi, and M. Kountouris, “Low complexity equalization for AFDM in doubly dispersive channels,” in2022IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2022, pp. 5273–5277.
[28] L. Wu, S. Luo, D. Song, F. Yang, and R. Lin, “A message passing detection based affine frequency division multiplexing communication system,” arXiv preprint arXiv:2307.16109, 2023.
[29] J. Céspedes, P. M. Olmos et al., “Expectation propagation detection for high-order high-dimensional MIMO systems,” IEEE Trans. Commun., vol. 62, no. 8, pp. 2840-2849, Aug. 2014.
[30] Y. Zhang, Z. Wu, C. Li, Z. Zhang, X. You, and C. Zhang, “Expectation propagation detection with neumann-series approximation for massive MIMO,” in 2018 IEEE International Workshop on Signal Processing Systems (SiPS), 2018, pp. 59–64.
[31] X. Tan, W. Xu, Y. Zhang, Z. Zhang, X. You, and C. Zhang, “Efficient expectation propagation massive MIMO detector with neumann-series approximation,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 10, pp. 1924-1928, 2020.
[32] X. Tan, H. Han, M. Li, K. Sun, Y. Huang, X. You, and C. Zhang, “Approximate expectation propagation massive MIMO detector with weighted neumann-series,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 2, pp. 662–666, 2021.
[33] G. Yao, G. Yang, J. Hu, and C. Fei, “A low complexity expectation propagation detection for massive MIMO system,” in 2018 IEEE Global Communications Conference (GLOBECOM), 2018, pp. 1–6.
[34] X. Tan, Y.-L. Ueng, Z. Zhang, X. You, and C. Zhang, “A low-complexity massive MIMO detection based on approximate expectation propagation,” IEEE Transactions on Vehicular Technology, vol. 68, no. 8, pp. 7260–7272, 2019.
[35] S. Tiwari, S. S. Das, and V. Rangamgari, “Low complexity LMMSE receiver for OTFS,” IEEE Commun. Lett., vol. 23, no. 12, pp. 2205–2209, Dec. 2019.
[36] G. Yao, G. Yang, J. Hu, and C. Fei, “High-efficiency expectation propagation detector for high-order massive MIMO systems,” IEEE Access, vol. 7, pp. 125225-125239, 2019.
[37] W. Tang, H. Prabhu, L. Liu, V. Öwall, and Z. Zhang, “A 1.8Gb/s 70.6pJ/b 128×16 link-adaptive near-optimal massive MIMO detector in 28nm UTBB-FDSOI,” in 2018 IEEE International Solid-State Circuits Conference- (ISSCC), 2018, pp. 224-226.
[38] J. R. Shewchuketal., “An introduction to the conjugate gradient method without the agonizing pain,” 1994.
[39] K. Chen, Matrix preconditioning techniques and applications. Cambridge University Press, 2005, no. 19.
[40] M. Benzi, “Preconditioning techniques for large linear systems: a survey,” Journal of computational Physics, vol. 182, no. 2, pp. 418–477, 2002.
[41] H. Yin and Y. Tang, “Pilot aided channel estimation for AFDM in doubly dispersive channels,” in 2022 IEEE/CIC International Conference on Communications in China (ICCC). IEEE, 2022, pp. 308–313.
[42] H. Yin, X. Wei, Y. Tang, and K. Yang, “Diagonally reconstructed channel estimation for MIMO-AFDMwithinter-dopplerinterferenceindoublyselectivechannels,” IEEE Trans. Wirel. Commun., 2024.
[43] W. Hackbusch, Iterative solution of large sparse systems of equations. Springer, 1994, vol. 95.
[44] Y. Saad, Iterative methods for sparse linear systems. SIAM, 2003.
[45] J. Xiao, J. Hu, and K. Han, “Low complexity expectation propagation detection for SCMAusingapproximate computing,” in 2019 IEEE Global Communications Conference (GLOBECOM), 2019, pp. 1–6.
[46] J. Zeng, J. Lin, and Z. Wang, “An improved gauss-seidel algorithm and its efficient architecture for massive MIMO systems,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 9, pp. 1194–1198, 2018.
[47] Q.Deng,X.Chen,W.Fu,X.Liang,S.Xie, F.Shu, and Y.Y.Wu,“Improved approximate expectation propagation massive MIMO detector with second-order richardson iteration,” Wireless Communications and Mobile Computing, vol. 2022, no. 1, p. 5336187, 2022.
[48] Y. Chen, S. Song, Z. Wang, and J. Lin, “An efficient massive MIMO detector based on approximate expectation propagation,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 31, no. 5, pp. 696–700, 2023.
[49] Y. Chen, H. Feng, S. Song, and Z. Wang, “Correlated channel-oriented expectation propagation-based detector for massive MIMO systems,” IEEETransactions on Circuits and Systems I: Regular Papers, vol. 71, no. 3, pp. 1429–1442, 2024.
[50] X.Gao,L.Dai,Y.Hu,Z.Wang,andZ.Wang,“Matrix inversion-less signal detection using SOR method for uplink large-scale MIMO systems,” in 2014 IEEE Global Communications Conference, 2014, pp. 3291–3295.
[51] R. Chataut, R. Akl, U. K. Dey, and M. Robaei, “SSOR preconditioned gauss-seidel detection and its hardware architecture for 5G and beyond massive MIMO networks,” Electronics, vol. 10, no. 5, p. 578, 2021.
[52] H. Yin and Y. Tang, “Pilot aided channel estimation for AFDM in doubly dispersive channels,” in 2022 IEEE/CIC International Conference on Communications in China (ICCC), 2022, pp. 308–313.
[53] K. Zheng, M. Wen, T. Mao, L. Xiao, and Z. Wang, “Channel estimation for AFDM with superimposed pilots,” IEEE Transactions on Vehicular Technology, vol. 74, no. 2, pp. 3389–3394, 2025.
[54] J. J. Murillo-Fuentes, I. Santos, J. C. Aradillas, and M. Sánchez-Fernández, “A low-complexity double EP-based detector for iterative detection and decoding in MIMO,” IEEE Transactions on Communications, vol. 69, no. 3, pp. 1538–1547, 2021.
[55] X. Tan, Q. Qian, Y. Cai, Z. Zhang, Y. Huang, X. You, and C. Zhang, “Expectation propagation-based parallel iterative detection and decoding for massive MIMO,” IEEE Transactions on Vehicular Technology, vol. 73, no. 1, pp. 93–106, 2024.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99471-
dc.description.abstract在第六代行動通訊系統(6G)中,高速移動環境所引發之都卜勒效應對傳統正交分頻多工(Orthogonal Frequency Division Multiplexing, OFDM)系統造成嚴重干擾,導致其性能大幅衰退。仿射分頻多工(Affine Frequency Division Multiplexing, AFDM)因具備高頻譜效率及優異的抗都卜勒特性,近年來被視為極具潛力的替代方案。然而,為充分發揮AFDM潛藏的全多樣性增益,仍須仰賴高效率且精確的符號檢測機制。
本研究因應此挑戰,導入期望傳播(Expectation Propagation, EP)作為AFDM系統之檢測框架,藉由估計傳送符號的聯合後驗機率分佈以強化解碼性能。儘管EP 展現出優異的檢測效果,其演算法本身須反覆執行矩陣逆運算,造成運算複雜度相當高。雖然紐曼級數近似(Neumann-Series Approximation, NSA)於部分文獻中被採用以降低逆運算之成本,但在本研究所考量之AFDM系統中,由於通道矩陣條件數偏高,使得NSA的效果不彰。
為解決此一問題,本研究提出消息傳遞初始化之近似變異期望傳播演算法(Message Passing-Initialized Approximated-Variance EP, MPI-AVEP)。該方法充分利用AFDM通道矩陣所呈現之準帶狀結構(Quasi-banded structure),以實現低複雜度的LDL分解,進而將整體運算複雜度自傳統立方級顯著降低至與子載波數成線性關係,並在性能上達到接近原始EP之水準。然而,此基於LDL分解之MPI-AVEP 演算法僅於整數都卜勒偏移(Integer Doppler shift)之稀疏通道環境下有效;若處於非整數都卜勒偏移(Fractional Doppler shift)環境,則通道稀疏性將不復存在,導致此基於LDL方法於位元錯誤率(BER)表現上明顯劣化。
為克服此限制,本研究進一步提出基於預處理共軛梯度法(Preconditioned Conjugate Gradient, PCG)之 MPI-AVEP 演算法,專為非整數都卜勒場景設計。透過搭配有效的預處理器,該方法在維持穩健檢測效能的同時,仍具備良好的運算效率,進一步拓展AFDM於高速移動通訊環境中的實際應用潛力。
zh_TW
dc.description.abstractHigh-mobility communications in 6G systems face challenges due to Doppler effects, which severely degrade the performance of traditional orthogonal frequency division multiplexing (OFDM). Affine frequency division multiplexing (AFDM) has emerged as a promising alternative, offering high spectral efficiency and inherent robustness to Doppler shifts. However, to fully exploit its diversity gain, efficient symbol detection algorithms are essential for optimal performance.
To this end, we introduce expectation propagation (EP) as an effective detection framework for AFDM systems, which enhances detection performance by jointly estimating the posterior distribution of transmitted symbols. Despite its effectiveness, EP suffers from high computational complexity due to repeated matrix inversions. Although the Neumann Series Approximation (NSA) is commonly used to alleviate this burden, it proves ineffective in AFDM systems due to the ill-conditioning of their channel matrices.
To address this challenge, we propose the Message Passing-initialized approximated variance EP (MPI-AVEP) algorithm, which exploits the quasi-banded structure of AFDM channel matrices to enable a low-complexity LDL decomposition. This method reduces the computational complexity from cubic to linear in the number of subcarriers, while maintaining performance comparable to that of standard EP. However, the LDLT-based MPI-AVEP is primarily effective in integer Doppler scenarios, where channel sparsity is preserved. In fractional Doppler scenarios, the loss of sparsity causes the LDLT-based method to break down, leading to a deterioration in bit error rate (BER) performance.
To overcome this limitation, we propose a Preconditioned Conjugate Gradient (PCG) based MPI-AVEP algorithm, specifically designed for fractional Doppler scenarios. By incorporating an effective preconditioner, this approach not only ensures robust detection performance but also maintains computational efficiency, thereby extending the practical applicability of AFDM to challenging high-mobility environments.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:23:26Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-10T16:23:26Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements i
摘要 iii
Abstract v
Contents vii
List of Figures xi
List of Tables xv
Notations xvii
Chapter1 Introduction 1
1.1 Background 1
1.1.1 Challenges in 6G High-Mobility Scenarios 1
1.2 Challenges and Candidates for 6G Waveform 3
1.2.1 Limitations of OFDM in Doubly Selective Channels 3
1.2.2 OTFS and OCDM: Alternatives to OFDM 4
1.2.3 AFDM: A Promising Waveform Candidate for 6G Systems 8
1.3 Symbol Detection for AFDM Systems 11
1.3.1 Classical Methods and Their Limitations 11
1.3.2 Iterative Non-linear Methods for Enhanced Performance 12
1.4 Challenges of High-Complexity EP Detector 14
1.4.1 Matrix Inversion under Ill-Conditioned AFDM Channels 14
1.4.2 Research Contributions 15
1.4.3 Dense Constellation Sets in High-order Modulation 16
1.4.4 Research Contributions 16
1.5 Challenges of EP under Fractional Doppler Scenarios 17
1.5.1 Instability of LDLT-based MPI-AVEP in Exact Mean Computation 17
1.5.2 Research Contributions 18
1.5.3 Performance Limitations due to the Complex-valued Framework 19
1.5.4 Research Contributions 19
1.6 Thesis Organization 20
Chapter2 System Model and Prior Works 21
2.1 Introduction to AFDM System Model 21
2.1.1 Overview 21
2.1.2 AFDM Modulation 22
2.1.3 Doubly Selective Channel Model 23
2.1.4 AFDM Demodulation 24
2.1.5 AFDM Channel Structure under Doppler Shifts 24
2.2 Problem Formulation and Prior Detectors 26
2.2.1 Mathematical Formulation of MAP, MMSE and MP Detection 26
2.2.2 Mathematical Formulation of EP Detection 28
2.3 Prior Works on Low-Complexity EP Detection 30
2.3.1 Computational Bottlenecks of EP Detection 30
2.3.2 Limitations of wNSA-Based EP in AFDM Systems 31
2.3.3 Limitations of SSA in High-Order Modulation 33
2.4 Summary 34
Chapter3 Low-Complexity LDLT-Based MPI-AVEP for Integer Doppler Scenarios 35
3.1 LDL Decomposition for Exact Mean Computation 36
3.2 Proposed MP-Initialized Variance 38
3.2.1 Motivation 38
3.2.2 Derivation of the MP-Based Initial Variance 39
3.2.3 Simulation Result 41
3.3 Proposed 3-Point Interpolation Method 43
3.3.1 Motivation 43
3.3.2 Mathematical Derivation 44
3.3.3 Simulation Result 45
3.4 Summary 46
Chapter4 Enhanced PCG-Based MPI-AVEP for Fractional Doppler Scenarios 47
4.1 Limitations of Complex-Valued Framework 47
4.2 Challenges in Real-Valued AFDM System 49
4.3 Introduction to the Conjugate Gradient Method 51
4.3.1 Quadratic Form Minimization and Steepest Descent 51
4.3.2 Efficient Search Direction Update 53
4.3.3 Computational Complexity Analysis 54
4.3.4 Convergence Challenges and Preconditioning 55
4.3.5 Preconditioned Conjugate Gradient (PCG) Algorithm 56
4.4 Extension to Fractional Doppler Scenarios 57
4.4.1 Instability of LDLT-based MPI-AVEP in Exact Mean Computation 57
4.4.2 Proposed PCG-Based MPI-AVEP Algorithm 58
4.4.3 Design of the Proposed Incomplete LDLT Preconditioner 60
4.4.4 Comparative Analysis of Standard Preconditioners 62
4.4.5 Simulation Result 63
4.5 Summary 64
Chapter5 Conclusion and Future Work 65
5.1 Design Achievements 65
5.2 Future Work 66
References 67
-
dc.language.isoen-
dc.subject仿射分頻多工zh_TW
dc.subject高速移動通訊zh_TW
dc.subject雙選擇性通道zh_TW
dc.subject期望傳播算法zh_TW
dc.subject消息傳遞算法zh_TW
dc.subject預處理共軛梯度法zh_TW
dc.subjectdoubly selective channelen
dc.subjectAffine frequency division multiplexing (AFDM)en
dc.subjectPreconditioned conjugate gradient (PCG)en
dc.subjectmessage passing (MP)en
dc.subjectexpectation propagation (EP)en
dc.subjecthigh-mobility communicationsen
dc.title適用於抗都卜勒AFDM系統之低複雜度期望傳播檢測器設計zh_TW
dc.titleLow-Complexity EP Detector Design for Doppler-Resilient AFDM Systemsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蔡佩芸;黃元豪;蔡隆盛zh_TW
dc.contributor.oralexamcommitteePei-Yun Tsai;Yuan-Hao Huang;Long-Son Tsaien
dc.subject.keyword仿射分頻多工,高速移動通訊,雙選擇性通道,期望傳播算法,消息傳遞算法,預處理共軛梯度法,zh_TW
dc.subject.keywordAffine frequency division multiplexing (AFDM),high-mobility communications,doubly selective channel,expectation propagation (EP),message passing (MP),Preconditioned conjugate gradient (PCG),en
dc.relation.page74-
dc.identifier.doi10.6342/NTU202502093-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-30-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
dc.date.embargo-lift2030-08-01-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
10.63 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved