Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99466
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor戴子安zh_TW
dc.contributor.advisorChi-An Daien
dc.contributor.author楊品欣zh_TW
dc.contributor.authorPin-Hsin Yangen
dc.date.accessioned2025-09-10T16:22:32Z-
dc.date.available2025-09-11-
dc.date.copyright2025-09-10-
dc.date.issued2025-
dc.date.submitted2025-07-24-
dc.identifier.citation(1) Tarascon, J.-M.; Armand, M. Issues and Challenges Facing Rechargeable Lithium Batteries. Nature 2001, 414 (6861), 359–367. https://doi.org/10.1038/35104644.
(2) Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chem Rev 2017, 117 (15), 10403–10473. DOI: 10.1021/acs.chemrev.7b00115.
(3) Whittingham, M. S. Electrical Energy Storage and Intercalation Chemistry. Science 1976, 192 (4244), 1126–1127. https://doi.org/10.1126/science.192.4244.1126.
(4) Lyu, Y.; Wu, X.; Wang, K.; Feng, Z.; Cheng, T.; Liu, Y.; Wang, M.; Chen, R.; Xu, L.; Zhou, J.; et al. An Overview on the Advances of LiCoO2 Cathodes for Lithium‐Ion Batteries. Advanced Energy Materials 2020, 11 (2). DOI: 10.1002/aenm.202000982.
(5) Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. LixCoO₂: A New Cathode Material for Batteries of High Energy Density. Materials Research Bulletin 1980, 15 (6), 783–789. DOI: 10.1016/0025-5408(80)90012-4.
(6) Armand, M. B. Lithium “Rocking Chair” Batteries: An Old Concept? Nature 1991, 354 (6347), 121. DOI: 10.1038/354121a0.
(7) Mauger, A.; Julien, C. M.; Goodenough, J. B.; Zaghib, K. Tribute to Michel Armand: from Rocking Chair – Li-ion to Solid-State Lithium Batteries. Journal of The Electrochemical Society 2020, 167 (7). DOI: 10.1149/2.0072007jes.
(8) Kim, J. H. Grand challenges and opportunities in batteries and electrochemistry. Frontiers in Batteries and Electrochemistry 2022, 1. DOI: 10.3389/fbael.2022.1066276.
(9) Stevenson, K. J. The origin, development, and future of the lithium-ion battery. Journal of Solid State Electrochemistry 2012, 16 (6), 2017–2018. DOI: 10.1007/s10008-012-1745-0.
(10) Scrosati, B. History of lithium batteries. Journal of Solid State Electrochemistry 2011, 15 (7-8), 1623–1630. DOI: 10.1007/s10008-011-1386-8.
(11) Blomgren, G. E. The Development and Future of Lithium Ion Batteries. Journal of The Electrochemical Society 2016, 164 (1), A5019–A5025. DOI: 10.1149/2.0251701jes.
(12) Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat Commun 2020, 11 (1), 1550. DOI: 10.1038/s41467-020-15355-0.
(13) Chen, X.; feng, Q. DOI: 10.36227/techrxiv.14134325.v1.
(14) Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev 2014, 114 (23), 11503–11618. DOI: 10.1021/cr500003w.
(15) Winter, M.; Barnett, B.; Xu, K. Before Li Ion Batteries. Chemical Reviews 2018, 118 (23), 11433–11456. DOI: 10.1021/acs.chemrev.8b00422.
(16) Pu, W.; He, X.; Wang, L.; Jiang, C.; Wan, C. Preparation of PVDF–HFP microporous membrane for Li-ion batteries by phase inversion. Journal of Membrane Science 2006, 272 (1-2), 11–14. DOI: 10.1016/j.memsci.2005.12.038.
(17) Goodenough, J. B.; Park, K.-S. The Li-Ion Rechargeable Battery: A Perspective. Journal of the American Chemical Society 2013, 135 (4), 1167–1176. DOI: 10.1021/ja3091438.
(18) Asenbauer, J.; Eisenmann, T.; Kuenzel, M.; Kazzazi, A.; Chen, Z.; Bresser, D. The success story of graphite as a lithium-ion anode material – fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustainable Energy & Fuels 2020, 4 (11), 5387–5416. DOI: 10.1039/d0se00175a.
(19) Herold, A. Intercalation of the Layer Lattices of Graphite. In Physics and Chemistry of Materials and Their Applications, Pergamon, 1961, pp. 345–366.
(20) Sethuraman, V. A.; Hardwick, L. J.; Srinivasan, V.; Kostecki, R. Surface structural disordering in graphite upon lithium intercalation/deintercalation. Journal of Power Sources 2010, 195 (11), 3655–3660. DOI: 10.1016/j.jpowsour.2009.12.034.
(21) Allart, D.; Montaru, M.; Gualous, H. Model of Lithium Intercalation into Graphite by Potentiometric Analysis with Equilibrium and Entropy Change Curves of Graphite Electrode. Journal of The Electrochemical Society 2018, 165 (2), A380–A387. DOI: 10.1149/2.1251802jes.
(22) Nishida, T.; Guyomard, D.; Touzain, P.; Tarascon, J.-M. A Reversible Graphite-Lithium Negative Electrode for Electrochemical Generators. Electrochimica Acta 1993, 38 (09), 1271–1281. DOI: 10.1016/0013-4686(93)85042-E.
(23) Wang, Y.; Liu, W.; Guo, R.; Qu, Q.; Zheng, H.; Zhang, J.; Huang, Y. A high-capacity organic anode with self-assembled morphological transformation for green lithium-ion batteries. Journal of Materials Chemistry A 2019, 7 (39), 22621–22630. DOI: 10.1039/c9ta07354j.
(24) Jo, Y. N.; Kim, Y.; Kim, J. S.; Song, J. H.; Kim, K. J.; Kwag, C. Y.; Lee, D. J.; Park, C. W.; Kim, Y. J. Si–graphite composites as anode materials for lithium secondary batteries. Journal of Power Sources 2010, 195 (18), 6031–6036. DOI: 10.1016/j.jpowsour.2010.03.008.
(25) Li, J.-Y.; Xu, Q.; Li, G.; Yin, Y.-X.; Wan, L.-J.; Guo, Y.-G. Research progress regarding Si-based anode materials towards practical application in high energy density Li-ion batteries. Materials Chemistry Frontiers 2017, 1 (9), 1691–1708. DOI: 10.1039/c6qm00302h.
(26) Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 2008, 3 (1), 31–35. DOI: 10.1038/nnano.2007.411 From NLM Medline.
(27) Sylla, D.; Gaberscek, M.; Jamnik, J.; Tasaki, K.; Kerr, J.; Yazami, R. All‐Solid Lithium Electrodes with Mixed‐Conductor Matrix. Advanced Materials 2003, 15 (10), 753–756. https://doi.org/10.1002/adma.200300376.
(28) Hanyu, Y.; Sugimoto, T.; Ganbe, Y.; Masuda, A.; Honma, I. Multielectron Redox Compounds for Organic Cathode Quasi-Solid State Lithium Battery. Journal of The Electrochemical Society 2013, 161 (1), A6–A9. DOI: 10.1149/2.015401jes.
(29) Liu, K.; Zheng, J.; Zhong, G.; Yang, Y. Poly(2,5-dihydroxy-1,4-benzoquinonyl sulfide) (PDBS) as a cathode material for lithium ion batteries. Journal of Materials Chemistry 2011, 21 (12). DOI: 10.1039/c0jm03127e.
(30) Wang, Y.; Deng, Y.; Qu, Q.; Zheng, X.; Zhang, J.; Liu, G.; Battaglia, V. S.; Zheng, H. Ultrahigh-Capacity Organic Anode with High-Rate Capability and Long Cycle Life for Lithium-Ion Batteries. ACS Energy Letters 2017, 2 (9), 2140–2148. DOI: 10.1021/acsenergylett.7b00622.
(31) Liang, Y.; Zhang, P.; Chen, J. Function-oriented design of conjugated carbonyl compound electrodes for high energy lithium batteries. Chemical Science 2013, 4 (3). DOI: 10.1039/c3sc22093a.
(32) Xie, J.; Zhang, Q. Recent progress in rechargeable lithium batteries with organic materials as promising electrodes. Journal of Materials Chemistry A 2016, 4 (19), 7091–7106. DOI: 10.1039/c6ta01069e.
(33) Zhao, Q.; Lu, Y.; Chen, J. Advanced Organic Electrode Materials for Rechargeable Sodium‐Ion Batteries. Advanced Energy Materials 2016, 7 (8). DOI: 10.1002/aenm.201601792.
(34) Lee, J.; Kim, H.; Park, M. J. Long-Life, High-Rate Lithium-Organic Batteries Based on Naphthoquinone Derivatives. Chemistry of Materials 2016, 28 (7), 2408–2416. DOI: 10.1021/acs.chemmater.6b00624.
(35) Han, X.; Chang, C.; Yuan, L.; Sun, T.; Sun, J. Aromatic Carbonyl Derivative Polymers as High‐Performance Li‐Ion Storage Materials. Advanced Materials 2007, 19 (12), 1616–1621. DOI: 10.1002/adma.200602584.
(36) Nokami, T.; Matsuo, T.; Inatomi, Y.; Hojo, N.; Tsukagoshi, T.; Yoshizawa, H.; Shimizu, A.; Kuramoto, H.; Komae, K.; Tsuyama, H.; et al. Polymer-Bound Pyrene-4,5,9,10-tetraone for Fast-Charge and -Discharge Lithium-Ion Batteries with High Capacity. Journal of the American Chemical Society 2012, 134 (48), 19694–19700. DOI: 10.1021/ja306663g.
(37) Wang, Y.; Zhang, L.; Zhang, L.; Zhang, F.; He, P.; Zheng, H.; Zhou, H. Reversible Lithium‐Ion Uptake in Poly(methylmethacrylate) Thin‐Film via Lithiation/Delithiation at In Situ Formed Intramolecular Cyclopentanedione. Advanced Energy Materials 2016, 6 (22). DOI: 10.1002/aenm.201601375.
(38) Milczarek, G.; Inganas, O. Renewable cathode materials from biopolymer/conjugated polymer interpenetrating networks. Science 2012, 335 (6075), 1468–1471. DOI: 10.1126/science.1215159.
(39) Wang, S.; Wang, L.; Zhang, K.; Zhu, Z.; Tao, Z.; Chen, J. Organic Li4C8H2O6 Nanosheets for Lithium-Ion Batteries. Nano Letters 2013, 13 (9), 4404–4409. DOI: 10.1021/nl402239p.
(40) Chen, H.; Armand, M.; Demailly, G.; Dolhem, F.; Poizot, P.; Tarascon, J. M. From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries. ChemSusChem 2008, 1 (4), 348–355. DOI: 10.1002/cssc.200700161.
(41) Schon, T. B.; McAllister, B. T.; Li, P. F.; Seferos, D. S. The rise of organic electrode materials for energy storage. Chem Soc Rev 2016, 45 (22), 6345–6404. DOI: 10.1039/c6cs00173d
(42) Song, Z.; Zhou, H. Investigation into the Electrochemical Reaction of Quinone Compounds for Use in Rechargeable Batteries. Energy & Environmental Science 2013, 6 (8), 2280–2301. https://doi.org/10.1039/C3EE00011J.
(43) Han, X.; Qing, G.; Sun, J.; Sun, T. How many lithium ions can be inserted onto fused C6 aromatic ring systems? Angew Chem Int Ed Engl 2012, 51 (21), 5147–5151. DOI: 10.1002/anie.201109187.
(44) Armand, M.; Grugeon, S.; Vezin, H.; Laruelle, S.; Ribiere, P.; Poizot, P.; Tarascon, J. M. Conjugated dicarboxylate anodes for Li-ion batteries. Nat Mater 2009, 8 (2), 120–125. DOI: 10.1038/nmat2372.
(45) Li, A.; Pfelzer, N.; Zuijderwijk, R.; van Maris, A. J. A.; Pronk, J. T. Direct Production of Itaconic Acid from Liquefied Corn Starch by Genetically Engineered Aspergillus terreus. Bioresource Technology 2013, 135, 529–536. https://doi.org/10.1016/j.biortech.2012.09.020.
(46) Wei, L.; Wang, J.; Zhou, H.; Jin, W.; Hu, Z.; Ni, J. Directional Breeding of High Itaconic Acid Yielding Strain of <i>Aspergillus terreus</i> with a New Plate Technique. Advances in Microbiology 2013, 03 (04), 376–381. DOI: 10.4236/aim.2013.34051
(47) Guo, R.; Wang, Y.; Shan, X.; Han, Y.; Cao, Z.; Zheng, H. A novel itaconic acid-graphite composite anode for enhanced lithium storage in lithium ion batteries. Carbon 2019, 152, 671–679. DOI: 10.1016/j.carbon.2019.06.065
(48) Chern, C. S. Emulsion polymerization mechanisms and kinetics. Progress in Polymer Science 2006, 31 (5), 443–486. DOI: 10.1016/j.progpolymsci.2006.02.001.
(49) Smith, W. V.; Ewart, R. H. Kinetics of Emulsion Polymerization. The Journal of Chemical Physics 1948, 16 (6), 592–599. DOI: 10.1063/1.1746951.
(50) Carratt, J. A.; Soong, D. S. Reducing the Gel Effect in Free Radical Polymerization. Journal of Applied Polymer Science 1984, 29 (10), 3431–3442. https://doi.org/10.1002/app.1984.070291024
(51) Yang, M.; Winnik, M. A. Small Core–Thick Shell Polystyrene–Poly(methyl methacrylate) Latexes. Macromolecules 1995, 28 (26), 9551–9558. https://doi.org/10.1021/ma00130a031
(52) Singh, R.; Bhateria, R. Core-shell nanostructures: a simplest two-component system with enhanced properties and multiple applications. Environ Geochem Health 2021, 43 (7), 2459–2482. DOI: 10.1007/s10653-020-00766-1.
(53) Aguiar, A.; González-Villegas, S.; Rabelero, M.; Mendizábal, E.; Puig, J. E.; Domínguez, J. M.; Katime, I. Core−Shell Polymers with Improved Mechanical Properties Prepared by Microemulsion Polymerization. Macromolecules 1999, 32 (20), 6767–6771. DOI: 10.1021/ma981703s.
(54) Wu, J.; Huang, G.; Gao, L. High-Content Polystyrene Latex by Microemulsion Polymerization. Journal of Applied Polymer Science 2001, 80 (10), 1708–1714. https://doi.org/10.1002/app.1269.
(55) Jönsson, J.-E.; Karlsson, O. J.; Hassander, H.; Törnell, B. Semi-continuous emulsion polymerization of styrene in the presence of poly(methyl methacrylate) seed particles. Polymerization conditions giving core–shell particles. European Polymer Journal 2007, 43 (4), 1322–1332. DOI: 10.1016/j.eurpolymj.2007.01.027.
(56) Mu, Y.; Qiu, T.; Li, X. Monodisperse and multilayer core–shell latex via surface cross-linking emulsion polymerization. Materials Letters 2009, 63 (18-19), 1614–1617. DOI: 10.1016/j.matlet.2009.04.029.
(57) Wang, C.; He, C.; Tong, Z.; Liu, X.; Ren, B.; Zeng, F. Combination of adsorption by porous CaCO3 microparticles and encapsulation by polyelectrolyte multilayer films for sustained drug delivery. Int J Pharm 2006, 308 (1-2), 160–167. DOI: 10.1016/j.ijpharm.2005.11.004.
(58) Ming, W.; Boven, G.; With, G. de; Benthem, R. van. Polyurethane Macromers—New Building Blocks for Acrylic Hybrid Emulsions with Outstanding Performance. Progress in Organic Coatings 2005, 54 (2), 128–135. https://doi.org/10.1016/j.porgcoat.2005.06.006.
(59) Shi, Z.; Jiang, S.; Robertson, L. A.; Zhao, Y.; Sarnello, E.; Li, T.; Chen, W.; Zhang, Z.; Zhang, L. Restorable Neutralization of Poly(acrylic acid) Binders toward Balanced Processing Properties and Cycling Performance for Silicon Anodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2020, 12 (52), 57932–57940. DOI: 10.1021/acsami.0c18559.
(60) Hu, B.; Jiang, S.; Shkrob, I. A.; Zhang, J.; Trask, S. E.; Polzin, B. J.; Jansen, A.; Chen, W.; Liao, C.; Zhang, Z.; et al. Understanding of pre-lithiation of poly(acrylic acid) binder: Striking the balances between the cycling performance and slurry stability for silicon-graphite composite electrodes in Li-ion batteries. Journal of Power Sources 2019, 416, 125–131. DOI: 10.1016/j.jpowsour.2019.01.068.
(61) Angar, N. E.; Aliouche, D. Swelling Kinetics and Steady Shear Rheology of pH-Sensitive Poly(acrylamide-co-itaconic acid) Hydrogels. Revue Roumaine de Chimie 2016, 61 (01), 41–45.
(62) Tasdelen, B.; Kayaman-Apohan, N.; Guven, O.; Baysal, B. M. Preparation of poly(N-isopropylacrylamide/itaconic acid) copolymeric hydrogels and their drug release behavior. Int J Pharm 2004, 278 (2), 343–351. DOI: 10.1016/j.ijpharm.2004.03.017.
(63) Tomić, S. L.; Jovašević, J. S.; Filipović, J. M. Hemocompatibility, swelling and thermal properties of hydrogels based on 2-hydroxyethyl acrylate, itaconic acid and poly(ethylene glycol) dimethacrylate. Polymer Bulletin 2013, 70 (10), 2895–2909. DOI: 10.1007/s00289-013-0995-z.
(64) Yang, F.; Wang, D.; Zhao, Y.; Tsui, K.-L.; Bae, S. J. A study of the relationship between coulombic efficiency and capacity degradation of commercial lithium-ion batteries. Energy 2018, 145, 486–495. DOI: 10.1016/j.energy.2017.12.144.
(65) Yang, Y.; Yang, W.; Yang, H.; Zhou, H. Electrolyte design principles for low-temperature lithium-ion batteries. eScience 2023, 3 (6). DOI: 10.1016/j.esci.2023.100170.
(66) Xiong, D.; Li, X.; Shan, H.; Zhao, Y.; Dong, L.; Xu, H.; Zhang, X.; Li, D.; Sun, X. Oxygen-containing Functional Groups Enhancing Electrochemical Performance of Porous Reduced Graphene Oxide Cathode in Lithium Ion Batteries. Electrochimica Acta 2015, 174, 762–769. DOI: 10.1016/j.electacta.2015.06.041.
(67) Grill, J.; Popovic-Neuber, J. Long term porosity of solid electrolyte interphase on model silicon anodes with liquid battery electrolytes. Commun Chem 2024, 7 (1), 297. DOI: 10.1038/s42004-024-01381-2.
(68) Wang, P. Y.; Chiu, T. H.; Chiu, C. C. Molecular Effects of Li(+)-Coordinating Binders and Negatively Charged Binders on the Li(+) Local Mobility near the Electrolyte/LiFePO(4) Cathode Interface within Lithium-Ion Batteries. Polymers (Basel) 2024, 16 (3). DOI: 10.3390/polym16030319.
(69) Wang, Y.; Zhang, L.; Qu, Q.; Zhang, J.; Zheng, H. Tailoring the Interplay between Ternary Composite Binder and Graphite Anodes toward High-Rate and Long-Life Li-Ion Batteries. Electrochimica Acta 2016, 191, 70–80. DOI: 10.1016/j.electacta.2016.01.025.
(70) Song, S.-W.; Baek, S.-W. Surface layer formation on Sn anode: ATR FTIR spectroscopic characterization. Electrochimica Acta 2009, 54 (4), 1312–1318. DOI: 10.1016/j.electacta.2008.09.021.
(71) Wang, R.; Feng, L.; Yang, W.; Zhang, Y.; Zhang, Y.; Bai, W.; Liu, B.; Zhang, W.; Chuan, Y.; Zheng, Z.; et al. Effect of Different Binders on the Electrochemical Performance of Metal Oxide Anode for Lithium-Ion Batteries. Nanoscale Res Lett 2017, 12 (1), 575. DOI: 10.1186/s11671-017-2348-6.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99466-
dc.description.abstract本文旨在開發一種兼具儲鋰能力與流變穩定性之功能性黏結劑,應用於鋰離子電池石墨負極,以實現更高性能之石墨電池。基於綠色有機鋰儲存材料對新型電源永續發展的重要性,本研究選用可再生有機化合物聚衣康酸(poly(itaconic acid), PIA) 為主體,結合二丁基衣康酸酯 (poly(dibutyl itaconate), PDBIA)、月桂酸丙烯酸酯 (poly(lauryl acrylate), PLA) 與甲基丙烯酸甲酯(poly(methyl methacrylate), PMMA) 等共聚單體,經乳化聚合合成具梯度核殼結構之乳膠粒子。其中,PIA 所提供之雙羧基結構( C(=O)OH ) 可作為活性儲鋰位點,每一 PIA 結構單元可與最多六個鋰離子反應,其中四個為可逆鋰化/脫鋰反應,展現作為鋰電池功能性黏結劑之潛力。
以代表性配方 (IA 含量 15 wt%) 為例,在 0.001–1.8 V (vs. Li/Li⁺) 電壓範圍下,0.1C 的 formation test 首圈可達 385 mAh g⁻¹ ;於 0.3C 下進行 500 次循環後仍維持 376 mAh g⁻¹,PIA的表面含氧官能基有助於降低電荷轉移阻力(Rct),是長期穩定循環的關鍵因素。此外,其在 5C 高倍率測試下亦保有 379 mAh g⁻¹,歸因於 PIA 中含氧官能基與鋰離子形成可逆配位,於界面提供穩定的鋰離子通道,促進鋰脫溶與嵌入石墨層間的反應動力學。
另一方面,為提升漿料加工性與塗佈均勻性,鋰電池電極製程中常以鹼性中和處理改善溶液黏度與流變性能。傳統使用氫氧化鋰(LiOH)中和雖可提升黏度,卻會造成黏合強度降低與界面劣化,削弱黏附性並降低電池循環壽命。本研究創新提出以氨水作為 PIA 黏結劑的可逆中和劑,形成的羧酸銨鹽基團(–COO⁻⋯NH₄⁺)可於乾燥階段熱分解回原始 PIA 結構,提升界面黏著與穩定性。DLM334-IA15 pH4之樣品在0.1C 的 formation test 首圈可達 420 mAh g⁻¹,且400圈時總界面阻抗僅 196.8 Ω。氨水可逆中和製程成功保留鹼性中和的加工優勢,更進一步提升鋰電池的電容量,以及降低電荷轉移阻抗,展現其在高性能鋰離子電池之應用潛力。
zh_TW
dc.description.abstractThis study aims to develop a functional binder that combines both lithium-storage capability and rheological stability, tailored explicitly for graphite anodes in lithium-ion batteries (LIBs) to achieve enhanced electrochemical performance. Considering the significance of green organic lithium-storage materials in the sustainable development of next-generation energy systems, we synthesized gradient core–shell latex particles via emulsion polymerization using renewable poly(itaconic acid) (PIA) as the lithium-active backbone, co-polymerized with poly(dibutyl itaconate) (PDBIA), poly(lauryl acrylate) (PLA), and poly(methyl methacrylate) (PMMA). The dicarboxylic structure (C(=O)OH) in PIA serves as active sites for lithium storage, with each repeating unit capable of reversibly coordinating up to four lithium ions, demonstrating strong potential as a functional binder for LIB applications.
A representative formulation containing 15 wt% IA exhibited an initial specific capacity of 385 mAh g⁻¹ at 0.1C (0.001–1.8 V vs. Li/Li⁺), and retained 376 mAh g⁻¹ after 500 cycles at 0.3C. The surface oxygen-containing functional groups on PIA significantly reduced charge transfer resistance (Rct), which is identified as a key factor in sustaining long-term cycling stability. Moreover, even under high-rate testing at 5C, the capacity remained as high as 379 mAh g⁻¹, attributed to the reversible coordination between Li⁺ and oxygenated functional groups that serve as intermediate transport sites at the electrode–electrolyte interface, facilitating Li⁺ desolvation and intercalation kinetics.
To improve slurry processability and coating uniformity, alkaline neutralization is commonly used to modify the rheology of the binder in electrode fabrication. However, conventional neutralization using lithium hydroxide (LiOH) often leads to irreversible lithium binding and reduced interfacial adhesion, compromising structural integrity and cycling life. In this work, we introduce ammonia (NH₃) as a reversible neutralizing agent for PIA, forming ammonium carboxylate (–COO⁻⋯NH₄⁺) groups that thermally decompose during drying, restoring the original PIA structure and enhancing interfacial adhesion. The optimized sample (PIA 15 wt%, pH 4) achieved an initial capacity of 420 mAh g⁻¹ and maintained a low total interfacial resistance of 196.8 Ω after 400 cycles.
The proposed ammonia-neutralized PIA system successfully retains the processing advantages of alkaline-treated slurries while simultaneously improving capacity and reducing interfacial resistance. This strategy demonstrates promising potential for high-performance lithium-ion battery applications.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:22:32Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-10T16:22:32Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
目次 v
圖次 ix
表次 xiii
Chapter 1 緒論 1
Chapter 2 文獻回顧 2
2.1 鋰離子二次電池 (LIBs) 2
2.1.1 鋰離子電池歷史與發展 2
2.1.2 鋰離子電池工作原理 3
2.2 石墨負極材料 5
2.2.1 石墨插層機制與模型 5
2.2.2 石墨負極現狀與挑戰 6
2.3 可逆儲存鋰的有機化合物 - 共軛羰基化合物 8
2.4 衣康酸 (Itaconic acid) 9
2.5 乳化聚合 11
2.5.1 乳化聚合介紹與機制 11
2.5.2 核殼形結構 12
2.6 中和製程 14
Chapter 3 實驗藥品及儀器 16
3.1 實驗藥品 16
3.2 實驗儀器 19
Chapter 4 實驗方法 21
4.1 樣品製備 21
4.1.1 乳化聚合 21
4.1.2 調整pH值的乳液溶液製備 22
4.1.3 薄膜製作 22
4.1.4 漿料製備 23
4.1.5 電極塗布與滾壓 24
4.1.6 極片裁切與CR2032半電池組裝 24
4.2 乳液性質分析 26
4.2.1 乳液轉化率 26
4.2.2 乳液薄膜耐受度分析 26
4.2.3 動態力學分析(DMA) 26
4.2.4 乳液粒徑分布與穩定度分析 (DLS & Zeta potential) 26
4.2.1 乳液型態分析 (TEM) 27
4.3 半電池電化學測試 28
4.3.1 初始活化循環 (Formation test) 28
4.3.2 充放電循環分析 (Cycling Performance Test) 28
4.3.3 倍率性能測試 (Rate Capability Test) 28
4.3.4 傅立葉轉換紅外線光譜 (FTIR) 29
4.3.5 循環伏安法 (CV) 29
4.3.6 電化學阻抗分析 (EIS) 30
Chapter 5 結果與討論 33
5.1 乳液薄膜穩定性與中和製程 33
5.1.1 IA 含量對薄膜穩定性之影響 33
5.1.2 COOH/COO⁻ 比例對薄膜穩定性之影響 35
5.1.3 中和條件與中和劑系統比較 36
5.2 乳液結構性質與分散性分析 38
5.2.1 乳液轉化率分析 38
5.2.2 乳液玻璃轉移溫度分析 (DMA) 38
5.2.3 乳液分散性分析 (DLS – Zeta potential) 40
5.2.4 乳液粒徑分析 (DLS - Size) 41
5.2.5 穿透式電子顯微鏡分析 (TEM) 43
5.3 不同pH 值乳液薄膜穩定性比較 45
5.3.1 機械性質分析 45
5.3.2 薄膜耐受度分析 47
5.4 電化學性能分析與儲能行為探討 49
5.4.1 電容量測試 49
5.4.2 pH 1 條件下充放電循環分析 (500 cycles) 53
5.4.3 pH 4 條件下充放電循環分析 (400 cycles) 56
5.4.4 pH 3 條件下充放電循環分析 (300 cycles) 59
5.4.5 充放電速率分析 (C-rate) 61
5.4.6 PIA 的鋰儲存機制 – FTIR 65
5.4.7 PIA 的鋰儲存機制 – 恆定掃描速率條件下的循環伏安測試 66
5.4.8 PIA 的鋰儲存機制 – 儲鋰機制 70
Chapter 6 結論 71
REFERENCE 72
附錄 77
-
dc.language.isozh_TW-
dc.subject鋰離子電池zh_TW
dc.subject黏結劑zh_TW
dc.subject核殼形乳膠奈米顆粒zh_TW
dc.subject伊康酸zh_TW
dc.subject鋰離子通道zh_TW
dc.subject氨水鹼化zh_TW
dc.subjectBinderen
dc.subjectAmmonia neutralizationen
dc.subjectLithium-ion transport channelen
dc.subjectItaconic aciden
dc.subjectCore–shell latex nanoparticlesen
dc.subjectLithium-ion batteriesen
dc.title整合離子通道的負極材料應用於高性能鋰離子電池之研究zh_TW
dc.titleInvestigation of Ionic Channel-Integrated Anode Materials for High Performance Lithium-Ion Batteriesen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.coadvisor邱文英zh_TW
dc.contributor.coadvisorWen-Yen Chiuen
dc.contributor.oralexamcommittee謝之真;趙基揚;楊長謀;曹正熙zh_TW
dc.contributor.oralexamcommitteeChih-Chen Hsieh;Chi-Yang Chao;Chang-Mou Yang;Cheng-Si Tsaoen
dc.subject.keyword鋰離子電池,黏結劑,核殼形乳膠奈米顆粒,伊康酸,鋰離子通道,氨水鹼化,zh_TW
dc.subject.keywordLithium-ion batteries,Binder,Core–shell latex nanoparticles,Itaconic acid,Lithium-ion transport channel,Ammonia neutralization,en
dc.relation.page77-
dc.identifier.doi10.6342/NTU202502147-
dc.rights.note未授權-
dc.date.accepted2025-07-28-
dc.contributor.author-college工學院-
dc.contributor.author-dept高分子科學與工程學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
5.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved