Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99448
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐尚德zh_TW
dc.contributor.advisorShang-Te Danny Hsuen
dc.contributor.author姜宗昇zh_TW
dc.contributor.authorTsung-Sheng Chiangen
dc.date.accessioned2025-09-10T16:19:11Z-
dc.date.available2025-09-11-
dc.date.copyright2025-09-10-
dc.date.issued2025-
dc.date.submitted2025-07-28-
dc.identifier.citation1. Lai, C.-C., et al., Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. International Journal of Antimicrobial Agents, 2020. 55(3): p. 105924.
2. Weiss, S.R. and S. Navas-Martin, Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev, 2005. 69(4): p. 635-64.
3. Virology: Coronaviruses. Nature, 1968. 220(5168): p. 650-650.
4. Chen, B., et al., Overview of lethal human coronaviruses. Signal Transduction and Targeted Therapy, 2020. 5(1): p. 89.
5. Huang, C., et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 2020. 395(10223): p. 497-506.
6. Wrapp, D., et al., Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 2020. 367(6483): p. 1260-1263.
7. Walls, A.C., et al., Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell, 2020. 181(2): p. 281-292.e6.
8. Lan, J., et al., Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 2020. 581(7807): p. 215-220.
9. Yan, R., et al., Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science, 2020. 367(6485): p. 1444-1448.
10. Shang, J., et al., Structural basis of receptor recognition by SARS-CoV-2. Nature, 2020. 581(7807): p. 221-224.
11. Watanabe, Y., et al., Site-specific glycan analysis of the SARS-CoV-2 spike. Science, 2020. 369(6501): p. 330-333.
12. Grant, O.C., et al., Analysis of the SARS-CoV-2 spike protein glycan shield reveals implications for immune recognition. Scientific Reports, 2020. 10(1): p. 14991.
13. Casalino, L., et al., Beyond Shielding: The Roles of Glycans in the SARS-CoV-2 Spike Protein. ACS Central Science, 2020. 6(10): p. 1722-1734.
14. Ju, B., et al., Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature, 2020. 584(7819): p. 115-119.
15. Barnes, C.O., et al., Structures of Human Antibodies Bound to SARS-CoV-2 Spike Reveal Common Epitopes and Recurrent Features of Antibodies. Cell, 2020. 182(4): p. 828-842.e16.
16. Harvey, W.T., et al., SARS-CoV-2 variants, spike mutations and immune escape. Nature Reviews Microbiology, 2021. 19(7): p. 409-424.
17. Helenius, A. and M. Aebi, Intracellular functions of N-linked glycans. Science, 2001. 291(5512): p. 2364-9.
18. Aebi, M., N-linked protein glycosylation in the ER. Biochim Biophys Acta, 2013. 1833(11): p. 2430-7.
19. Hirata, T. and Y. Kizuka, N-Glycosylation, in The Role of Glycosylation in Health and Disease, G. Lauc and I. Trbojević-Akmačić, Editors. 2021, Springer International Publishing: Cham. p. 3-24.
20. Kelleher, D.J. and R. Gilmore, An evolving view of the eukaryotic oligosaccharyltransferase. Glycobiology, 2006. 16(4): p. 47r-62r.
21. Moremen, K.W., M. Tiemeyer, and A.V. Nairn, Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol, 2012. 13(7): p. 448-62.
22. Wang, P., et al., Evolution of protein N-glycosylation process in Golgi apparatus which shapes diversity of protein N-glycan structures in plants, animals and fungi. Scientific Reports, 2017. 7(1): p. 40301.
23. in Essentials of Glycobiology, A. Varki, et al., Editors. 2015, Cold Spring Harbor Laboratory Press Copyright 2015-2017 by The Consortium of Glycobiology Editors, La Jolla, California. All rights reserved.: Cold Spring Harbor (NY).
24. Čaval, T., A.J.R. Heck, and K.R. Reiding, Meta-heterogeneity: Evaluating and Describing the Diversity in Glycosylation Between Sites on the Same Glycoprotein. Molecular & Cellular Proteomics, 2021. 20: p. 100010.
25. Gavel, Y. and G. von Heijne, Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering. Protein Eng, 1990. 3(5): p. 433-42.
26. Guay, K.P., et al., ER chaperones use a protein folding and quality control glyco-code. Molecular Cell, 2023. 83(24): p. 4524-4537.e5.
27. Kozlov, G. and K. Gehring, Calnexin cycle - structural features of the ER chaperone system. Febs j, 2020. 287(20): p. 4322-4340.
28. Caramelo, J.J. and A.J. Parodi, Getting in and out from calnexin/calreticulin cycles. J Biol Chem, 2008. 283(16): p. 10221-5.
29. Jessop, C.E., et al., Substrate specificity of the oxidoreductase ERp57 is determined primarily by its interaction with calnexin and calreticulin. J Biol Chem, 2009. 284(4): p. 2194-202.
30. Nairn, A.V. and K.W. Moremen, Glucosidase, Alpha Neutral AB; Glucosidase II Subunit Beta (GANAB, PRKCSH, α-Glucosidase II), in Handbook of Glycosyltransferases and Related Genes, N. Taniguchi, et al., Editors. 2014, Springer Japan: Tokyo. p. 1283-1295.
31. Vembar, S.S. and J.L. Brodsky, One step at a time: endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol, 2008. 9(12): p. 944-57.
32. Shental-Bechor, D. and Y. Levy, Effect of glycosylation on protein folding: a close look at thermodynamic stabilization. Proc Natl Acad Sci U S A, 2008. 105(24): p. 8256-61.
33. Hanson, S.R., et al., The core trisaccharide of an N-linked glycoprotein intrinsically accelerates folding and enhances stability. Proc Natl Acad Sci U S A, 2009. 106(9): p. 3131-6.
34. Dube, D.H. and C.R. Bertozzi, Glycans in cancer and inflammation — potential for therapeutics and diagnostics. Nature Reviews Drug Discovery, 2005. 4(6): p.477-488.
35. Vigerust, D.J. and V.L. Shepherd, Virus glycosylation: role in virulence and immune interactions. Trends Microbiol, 2007. 15(5): p. 211-8.
36. Kuo, C.W., et al., Distinct shifts in site-specific glycosylation pattern of SARS-CoV-2 spike proteins associated with arising mutations in the D614G and Alpha variants. Glycobiology, 2022. 32(1): p. 60-72.
37. Hsu, Y.P., et al., Structural remodeling of SARS-CoV-2 spike protein glycans reveals the regulatory roles in receptor-binding affinity. Glycobiology, 2023. 33(2): p. 126-137.
38. Tsai, Y.-X., et al., Rapid simulation of glycoprotein structures by grafting and steric exclusion of glycan conformer libraries. Cell, 2024. 187(5): p. 1296-1311.e26.
39. Huang, H.Y., et al., Vaccination with SARS-CoV-2 spike protein lacking glycan shields elicits enhanced protective responses in animal models. Sci Transl Med,2022. 14(639): p. eabm0899.
40. Shajahan, A., et al., Comprehensive characterization of N- and O- glycosylation of SARS-CoV-2 human receptor angiotensin converting enzyme 2. Glycobiology, 2020. 31(4): p. 410-424.
41. Cheng, R.L., et al., Exploring the effects of N234 and N343 linked glycans to SARS CoV 2 spike protein pocket accessibility using Gaussian accelerated molecular dynamics simulations. Scientific Reports, 2025. 15(1): p. 7052.
42. Mehdipour, A.R. and G. Hummer, Dual nature of human ACE2 glycosylation in binding to SARS-CoV-2 spike. Proceedings of the National Academy of Sciences, 2021. 118(19): p. e2100425118.
43. Woo, H., et al., Developing a Fully Glycosylated Full-Length SARS-CoV-2 Spike Protein Model in a Viral Membrane. The Journal of Physical Chemistry B, 2020. 124(33): p. 7128-7137.
44. Jo, S., T. Kim, and W. Im, Automated builder and database of protein/membrane complexes for molecular dynamics simulations. PLoS One, 2007. 2(9): p. e880.
45. Pérez, S. and D. de Sanctis, Glycoscience@Synchrotron: Synchrotron radiation applied to structural glycoscience. Beilstein Journal of Organic Chemistry, 2017. 13: p. 1145-1167.
46. Atanasova, M., H. Bagdonas, and J. Agirre, Structural glycobiology in the age of electron cryo-microscopy. Current Opinion in Structural Biology, 2020. 62: p. 70-78.
47. Unione, L., et al., NMR of glycoproteins: profiling, structure, conformation and interactions. Current Opinion in Structural Biology, 2021. 68: p. 9-17.
48. Zaia, J., Mass Spectrometry and Glycomics. OMICS: A Journal of Integrative Biology, 2010. 14(4): p. 401-418.
49. Mallajosyula, S.S., et al., Molecular dynamics simulations of glycoproteins using CHARMM. Methods Mol Biol, 2015. 1273: p. 407-29.
50. Schoenle, M.V., et al., NMR Based SARS-CoV-2 Antibody Screening. Journal of the American Chemical Society, 2021. 143(21): p. 7930-7934.
51. Mallagaray, A., et al., Towards a Precise NMR Quantification of Acute Phase Inflammation Proteins from Human Serum. Angewandte Chemie International Edition, 2023. 62(35): p. e202306154.
52. Gimeno, A., et al., Glycan structures and their interactions with proteins. A NMR view. Current Opinion in Structural Biology, 2020. 62: p. 22-30. Kay, L.E., Protein dynamics from NMR. Nature Structural Biology, 1998. 5(7): p.513-517.
54. Alderson, T.R. and L.E. Kay, NMR spectroscopy captures the essential role of dynamics in regulating biomolecular function. Cell, 2021. 184(3): p. 577-595.
55. Dutta, A., et al., Isotope labeling in mammalian cells. Methods in molecular biology (Clifton, N.J.), 2012. 831: p. 55-69.
56. Sastry, M., C.A. Bewley, and P.D. Kwong, Effective isotope labeling of proteins in a mammalian expression system. Methods in enzymology, 2015. 565: p. 289-307.
57. Venters, R.A., R. Thompson, and J. Cavanagh, Current approaches for the study of large proteins by NMR. Journal of Molecular Structure, 2002. 602-603: p. 275-292.
58. Sattler, M. and S.W. Fesik, Use of deuterium labeling in NMR: overcoming a sizeable problem. Structure, 1996. 4(11): p. 1245-9.
59. Kato, K. and Y. Yamaguchi, Glycoproteins and Antibodies: Solution NMR Studies, in eMagRes.
60. Schutz, S. and R. Sprangers, Methyl TROSY spectroscopy: A versatile NMR approach to study challenging biological systems. Prog Nucl Magn Reson Spectrosc, 2020. 116: p. 56-84.
61. Boisbouvier, J. and L.E. Kay, Advanced isotopic labeling for the NMR investigation of challenging proteins and nucleic acids. Journal of Biomolecular NMR, 2018. 71(3): p. 115-117.
62. Kerfah, R., et al., Methyl-specific isotopic labeling: a molecular tool box for solution NMR studies of large proteins. Current Opinion in Structural Biology, 2015. 32: p. 113-122.
63. Johnson, C.M., Differential scanning calorimetry as a tool for protein folding and stability. Arch Biochem Biophys, 2013. 531(1-2): p. 100-9.
64. Lee, Y.-T.C., et al., Entropic stabilization of a deubiquitinase provides conformational plasticity and slow unfolding kinetics beneficial for functioning on the proteasome. Scientific Reports, 2017. 7(1): p. 45174.
65. Wang, L.W., et al., Comparative analysis of the folding dynamics and kinetics of an engineered knotted protein and its variants derived from HP0242 of Helicobacter pylori. J Phys Condens Matter, 2015. 27(35): p. 354106.
66. Wang, I., S.Y. Chen, and S.T. Hsu, Folding analysis of the most complex Stevedore's protein knot. Sci Rep, 2016. 6: p. 31514.
67. Höcker, A. and V. Kartvelishvili, SVD approach to data unfolding. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996. 372(3): p. 469-481.
68. Price, W.S., Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion: Part 1. Basic theory. Concepts in Magnetic Resonance, 1997. 9(5): p. 299-336.
69. Wu, D.H., A.D. Chen, and C.S. Johnson, An Improved Diffusion-Ordered Spectroscopy Experiment Incorporating Bipolar-Gradient Pulses. Journal of Magnetic Resonance, Series A, 1995. 115(2): p. 260-264.
70. Tanner, J.E., Use of the Stimulated Echo in NMR Diffusion Studies. The Journal of Chemical Physics, 1970. 52(5): p. 2523-2526.
71. Stejskal, E.O. and J.E. Tanner, Spin Diffusion Measurements: Spin Echoes in the Presence of a Time‐Dependent Field Gradient. The Journal of Chemical Physics, 1965. 42(1): p. 288-292.
72. Schanda, P., E. Kupce, and B. Brutscher, SOFAST-HMQC experiments for recording two-dimensional heteronuclear correlation spectra of proteins within a few seconds. J Biomol NMR, 2005. 33(4): p. 199-211.
73. Schanda, P. and B. Brutscher, Very Fast Two-Dimensional NMR Spectroscopy for Real-Time Investigation of Dynamic Events in Proteins on the Time Scale of Seconds. Journal of the American Chemical Society, 2005. 127(22): p. 8014-8015.
74. Delaglio, F., et al., NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR, 1995. 6(3): p. 277-93.
75. Lee, W., et al., POKY: a software suite for multidimensional NMR and 3D structure calculation of biomolecules. Bioinformatics, 2021. 37(18): p. 3041-3042.
76. Vuister, G.W. and A. Bax, Resolution enhancement and spectral editing of uniformly 13C-enriched proteins by homonuclear broadband 13C decoupling. Journal of Magnetic Resonance (1969), 1992. 98(2): p. 428-435.
77. Sattler, M., et al., A simultaneous (15)N, (1)H- and (13)C, (1)H-HSQC with sensitivity enhancement and a heteronuclear gradient echo. J Biomol NMR, 1995.5(1): p. 97-102.
78. Ying, J., et al., Sparse multidimensional iterative lineshape-enhanced (SMILE) reconstruction of both non-uniformly sampled and conventional NMR data. J Biomol NMR, 2017. 68(2): p. 101-118.
79. Woycechowsky, K.J. and R.T. Raines, Native disulfide bond formation in proteins. Curr Opin Chem Biol, 2000. 4(5): p. 533-9.
80. Hatahet, F., et al., Disruption of reducing pathways is not essential for efficient disulfide bond formation in the cytoplasm of E. coli. Microbial Cell Factories, 2010. 9(1): p. 67.
81. He, Y., et al., Purification and characterization of the receptor-binding domain of SARS-CoV-2 spike protein from Escherichia coli. Eng Life Sci, 2021. 21(6): p. 453-460.
82. Stiving, A.Q., et al., Dissecting the Heterogeneous Glycan Profiles of Recombinant Coronavirus Spike Proteins with Individual Ion Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2024. 35(1): p. 62-73.
83. Freeze, H.H. and C. Kranz, Endoglycosidase and glycoamidase release of N-linked glycans. Curr Protoc Mol Biol, 2010. Chapter 17: p. Unit 17.13A.
84. Fischler, D.A. and R. Orlando, N-linked Glycan Release Efficiency: A Quantitative Comparison between NaOCl and PNGase F Release Protocols. J Biomol Tech, 2019. 30(4): p. 58-63.
85. Kovács, N., et al., Enhanced Recombinant Protein Production of Soluble, Highly Active and Immobilizable PNGase F. Mol Biotechnol, 2022. 64(8): p. 914-918.
86. Zhao, P., et al., Virus-Receptor Interactions of Glycosylated SARS-CoV-2 Spike and Human ACE2 Receptor. Cell Host Microbe, 2020. 28(4): p. 586-601.e6.
87. Freyer, M.W. and E.A. Lewis, Isothermal Titration Calorimetry: Experimental Design, Data Analysis, and Probing Macromolecule/Ligand Binding and Kinetic Interactions, in Methods in Cell Biology. 2008, Academic Press. p. 79-113.
88. Macchioni, A., et al., Determining accurate molecular sizes in solution through NMR diffusion spectroscopy. Chem Soc Rev, 2008. 37(3): p. 479-89.
89. Wilkins, D.K., et al., Hydrodynamic Radii of Native and Denatured Proteins Measured by Pulse Field Gradient NMR Techniques. Biochemistry, 1999. 38(50): p. 16424-16431.
90. Millero, F.J., R. Dexter, and E. Hoff, Density and viscosity of deuterium oxide solutions from 5-70.deg. Journal of Chemical & Engineering Data, 1971. 16(1): p. 85-87.
91. Parmar, A.S. and M. Muschol, Hydration and hydrodynamic interactions of lysozyme: effects of chaotropic versus kosmotropic ions. Biophys J, 2009. 97(2): p. 590-8.
92. Ikeda, S. and K. Nishinari, Intermolecular Forces in Bovine Serum Albumin Solutions Exhibiting Solidlike Mechanical Behaviors. Biomacromolecules, 2000. 1(4): p. 757-763.
93. Lobanov, M.Y., N.S. Bogatyreva, and O.V. Galzitskaya, Radius of gyration as an indicator of protein structure compactness. Molecular Biology, 2008. 42(4): p. 623-628.
94. Pesce, F., et al., Assessment of models for calculating the hydrodynamic radius of intrinsically disordered proteins. Biophysical Journal, 2023. 122(2): p. 310-321.
95. Cavanagh, J., et al., CHAPTER 9 - LARGER PROTEINS AND MOLECULAR INTERACTIONS, in Protein NMR Spectroscopy (Second Edition), J. Cavanagh, et al., Editors. 2007, Academic Press: Burlington. p. 725-780.
96. Tarentino, A.L., C.M. Gómez, and T.H. Plummer, Jr., Deglycosylation of asparagine-linked glycans by peptide:N-glycosidase F. Biochemistry, 1985. 24(17): p. 4665-71.
97. Schanda, P., V. Forge, and B. Brutscher, Protein folding and unfolding studied at atomic resolution by fast two-dimensional NMR spectroscopy. Proceedings of the National Academy of Sciences, 2007. 104(27): p. 11257-11262.
98. Vang, J.Y., et al., Enzyme kinetics by real-time quantitative NMR (qNMR) spectroscopy with progress curve analysis. Analytical Biochemistry, 2022. 658: p. 114919.
99. Royer, C.A., Probing protein folding and conformational transitions with fluorescence. Chem Rev, 2006. 106(5): p. 1769-84.
100. Egan, D.A., et al., Equilibrium denaturation of recombinant human FK binding protein in urea. Biochemistry, 1993. 32(8): p. 1920-1927.
101. Solá, R.J. and K. Griebenow, Effects of glycosylation on the stability of protein pharmaceuticals. Journal of Pharmaceutical Sciences, 2009. 98(4): p. 1223-1245.
102. Nakamura, H., et al., Glycosylation decreases aggregation and immunogenicity of adalimumab Fab secreted from Pichia pastoris. The Journal of Biochemistry, 2020. 169(4): p. 435-443.
103. Yuwen, T., et al., A Methyl-TROSY-Based (1) H Relaxation Dispersion Experiment for Studies of Conformational Exchange in High Molecular Weight Proteins. Angew Chem Int Ed Engl, 2019. 58(19): p. 6250-6254.
104. Kleckner, I.R. and M.P. Foster, An introduction to NMR-based approaches for measuring protein dynamics. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2011. 1814(8): p. 942-968.
105. Wang, Q., et al., Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants. Cell, 2023. 186(2): p. 279-286.e8.
106. Liu, L., et al., Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature, 2022. 602(7898): p. 676-681.
107. Xue, S., et al., Mutations in the SARS-CoV-2 spike receptor binding domain and their delicate balance between ACE2 affinity and antibody evasion. Protein Cell, 2024. 15(6): p. 403-418.
108. Chang, Y.H., et al., Functional and structural investigation of a broadly neutralizing SARS-CoV-2 antibody. JCI Insight, 2024. 9(10).
109. Liu, P., et al., Spike N354 glycosylation augments SARS-CoV-2 fitness for human adaptation through structural plasticity. Natl Sci Rev, 2024. 11(7): p. nwae206.
110. Zhou, Q. and H. Qiu, The Mechanistic Impact of N-Glycosylation on Stability, Pharmacokinetics, and Immunogenicity of Therapeutic Proteins. J Pharm Sci, 2019. 108(4): p. 1366-1377.
111. Chiu, M.L., et al., Antibody Structure and Function: The Basis for Engineering Therapeutics. Antibodies (Basel), 2019. 8(4).
112. Poms, M., et al., NMR Investigation of Structures of G-protein Coupled Receptor Folding Intermediates*. Journal of Biological Chemistry, 2016. 291(53): p. 27170-27186.
113. Duan, J., et al., Structures of full-length glycoprotein hormone receptor signalling complexes. Nature, 2021. 598(7882): p. 688-692.
114. Chataigner, L.M.P., N. Leloup, and B.J.C. Janssen, Structural Perspectives on Extracellular Recognition and Conformational Changes of Several Type-I Transmembrane Receptors. Front Mol Biosci, 2020. 7: p. 129.
115. Zhao, J. and M. Lang, New insight into protein glycosylation in the development of Alzheimer's disease. Cell Death Discov, 2023. 9(1): p. 314.
116. Mukrasch, M.D., et al., Structural polymorphism of 441-residue tau at single residue resolution. PLoS Biol, 2009. 7(2): p. e34.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99448-
dc.description.abstract新型冠狀病毒(SARS-CoV-2)的棘蛋白(Spike protein)依賴其受體結合域(RBD)與血管張力素轉化酶2(ACE-2)結合,從而促進病毒進入宿主細胞引發感染。目前已知棘蛋白的 N-醣基化會影響病毒的感染力及免疫逃脫能力,但 N-醣基化對於其受體結合域 (RBD) 的結構與動力學特徵影響仍尚未釐清。為了定量探討這些效應,我們利用液相核磁共振光譜學以及多項生物物理分析技術,比較在人類細胞株(Expi293)表現的醣基化 RBD 與在大腸桿菌中表現的非醣基化RBD。
我們成功地在 Expi293 細胞表現的醣基化 RBD 中對含甲基之胺基酸進行了選擇性碳同位素(13C)標定,使我們能夠利用甲基核磁共振光譜分析,並發現 RBD的核心β-sheet 區域存在顯著化學位移改變。此外,核磁共振弛豫(Relaxation)測量顯示,醣基化 RBD 的橫向弛豫時間 (T2) 降低,此結果與其具較大的流體動力學半徑導致其較慢的分子滾動速率可相呼應,兩項結果為獨立核磁共振實驗測定,此結論也與熱穩定性及化學穩定性實驗測定吻合,皆顯示醣基化顯著增強了RBD的穩定性與結構完整性。然而,這些醣基化導致的結構與動態影響,並未提高RBD與ACE2的結合親和力,在我們的研究成果中顯示,醣基化並不直接幫助RBD與其受體的結合效率,而是透過影響其局部結構以及其動力學特性,在穩定其蛋白質折疊狀態方面扮演關鍵角色,本研究提供了定量分析N-醣基化對SARS-CoV-2 RBD影響的方法與方向,並在其他醣蛋白系統中具有高度運用潛力。
zh_TW
dc.description.abstractThe SARS-CoV-2 spike protein relies on its receptor-binding domain (RBD) to engage angiotensin-converting enzyme 2 (ACE2), facilitating host cell entry and initiating viral infection. While N-glycosylation of the spike protein is known to influence viral infectivity and immune evasion, its impact on the structural and dynamic features of the RBD remains elusive. To quantitatively investigate these effects, we employed solution-state NMR spectroscopy and complementary biophysical techniques to compare glycosylated (expressed in human Expi293 cell line) and non-glycosylated (expressed in E. coli) forms of the SARS-CoV-2 RBD.
We have successfully introduced selective 13C labeling of methyl-containing amino acids in Expi293-expressed glycosylated RBD. This enables methyl NMR analysis, which reveals remarkable chemical shift perturbations within the core β-sheet region. Furthermore, NMR relaxation measurements showed a decrease in transverse relaxation times (T2) for the glycosylated RBD, consistent with its slower molecular tumbling due to a larger hydrodynamic radius, which was independently confirmed by diffusion NMR. These observations were corroborated by thermal and chemical stability assessments, demonstrating that glycosylation substantially enhances the stability and structural integrity of the RBD. However, despite these structural changes, glycosylation did not improve the binding affinity of the RBD for ACE2. Our findings suggest that N-glycosylation does not directly affect receptor-binding efficiency but plays a pivotal role in stabilizing the RBD’s folded state by influencing its local conformation and overall dynamic properties. These insights paved the way for quantitative analysis of the effects of N-glycosylation on the SARS-CoV-2 RBD and hold high potential for application to other glycoprotein systems.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:19:11Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-10T16:19:11Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 i
Abstract ii
CONTENTS iv
LIST OF FIGURES viii
LIST OF TABLES xi
Chapter 1 INTRODUCTION 1
1.1 Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) 1
1.2 Structural characteristics of the spike (S) protein receptor binding domain (RBD) 2
1.3 Protein N-linked glycosylation 6
1.3.1 The N-linked glycosylation pathway in eukaryotic cells 6
1.3.2 N-Glycosylation as a key player in protein quality control and folding in the endoplasmic reticulum 8
1.3.3 Functional impacts of N-glycosylation: from modulating biophysical properties to orchestrating viral pathogenesis 10
1.4 Structural glycobiology: elucidating glycoprotein architecture 13
1.5 Nuclear Magnetic Resonance spectroscopy for glycoproteins 16
1.5.1 The unique potential of NMR in glycoprotein structural biology 16
1.5.2 Challenges in applying NMR to mammalian-derived glycoproteins 17
1.5.3 Innovative NMR strategies for glycoproteins: advancing isotope labeling in eukaryotic systems 18
1.6 Specific aims 20
Chapter 2 MATERIALS AND METHODS 21
2.1 Non-glycosylated SARS-CoV-2 RBD expression and purification 21
2.2 Glycosylated SARS-CoV-2 RBD expression and purification 22
2.3 Human ACE2 ectodomain (hACE2-8H) expression and purification 23
2.4 hACE2-Fc expression and purification 24
2.5 GST-PNGaseF expression and purification 25
2.6 Isothermal Titration Calorimetry (ITC) 26
2.7 Bio-Layer Interferometry (BLI) 27
2.8 Differential Scanning Calorimetry (DSC) 29
2.9 Chemical stability by intrinsic fluorescence spectroscopy 29
2.10 Nuclear Magnetic Resonance Spectroscopy (NMR) 32
2.10.1 Isotope-labeling in E. coli and Expi293 expression system 32
2.10.2 Pulsed Field Gradient NMR Spectroscopy for measuring translational diffusion coefficients (Dt) 33
2.10.3 Rapid acquisition of methyl 1H-13C fingerprints and dynamic monitoring using SOFAST-HMQC 35
2.10.4 Methyl 1H-13C Constant-Time HSQC for transverse relaxation (T2) estimation 37
2.10.5 Three-dimensional simultaneous 15N, 13C-edited NOESY-HSQC experiment 39
2.10.6 Time-resolved NMR analysis of SARS-CoV-2 RBD deglycosylation by GST-PNGaseF 40
Chapter 3 RESULTS 41
3.1 Production and purification of distinct SARS-CoV-2 RBD glycoforms 41
3.2 Production and purification of two types of Human ACE2 ectodomain 49
3.3 Assessing the impact of N-glycosylation on SARS-CoV-2 RBD accessibility through GlycoSHIELD computational modeling 52
3.4 Quantification of glycosylation impacts on SARS-CoV-2 RBD-ACE2 binding thermodynamics and kinetics 56
3.5 N-Glycosylation modulates the hydrodynamic properties of SARS-CoV-2 RBD in solution 62
3.6 Site-specific assignments of SARS-CoV-2 RBD methyl NMR spectra 69
3.7 N-Glycosylation induces methyl chemical shift perturbations in SARS-CoV-2 RBD 78
3.8 N-Glycosylation modulates the dynamic properties of SARS-CoV-2 RBD as probed by methyl NMR relaxation 86
3.9 Time-resolved NMR analysis of SARS-CoV-2 RBD deglycosylation kinetics and conformational change 94
3.10 N-glycosylation enhances the thermal stability of SARS-CoV-2 RBD 101
3.11 N-glycosylation enhances chemical stability and modulates the unfolding pathway of SARS-CoV-2 RBD 105
Chapter 4 DISCUSSIONS 111
4.1 N-Glycosylation as a critical determinant of SARS-CoV-2 RBD biophysical properties and structural integrity 111
4.2 Methyl NMR view of N-glycosylation-induced conformational changes in SARS-CoV-2 RBD 115
4.3 Linking global tumbling to local flexibility and protein stability in SARS-CoV-2 RBD 118
4.4 Re-evaluating the role of SARS-CoV-2 RBD N-Glycans in ACE2 receptor engagement 121
4.5 Conclusion, broader implications, and future directions 123
REFERENCES 127
APPENDIX 139
-
dc.language.isoen-
dc.subjectSARS-CoV-2(新型冠狀病毒)zh_TW
dc.subjectN-醣基化zh_TW
dc.subject核磁共振光譜學zh_TW
dc.subject蛋白質動力學zh_TW
dc.subject哺乳類細胞甲基同位素標定zh_TW
dc.subject蛋白質折疊穩定性zh_TW
dc.subjectNMR spectroscopyen
dc.subjectSARS-CoV-2en
dc.subjectN-linked glycosylationen
dc.subjectProtein folding stabilityen
dc.subjectMammalian cell methyl labelingen
dc.subjectProtein dynamicsen
dc.title醣基化對新冠病毒棘蛋白受體結合結構域功能動態的影響zh_TW
dc.titleImpacts of glycosylation on the functional dynamics of the receptor binding domain of SARS-CoV-2 spike proteinen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee余慈顏;吳昆峯zh_TW
dc.contributor.oralexamcommitteeTsyr-Yan Yu;Kuen-Phon Wuen
dc.subject.keywordSARS-CoV-2(新型冠狀病毒),N-醣基化,核磁共振光譜學,蛋白質動力學,哺乳類細胞甲基同位素標定,蛋白質折疊穩定性,zh_TW
dc.subject.keywordSARS-CoV-2,N-linked glycosylation,NMR spectroscopy,Protein dynamics,Mammalian cell methyl labeling,Protein folding stability,en
dc.relation.page147-
dc.identifier.doi10.6342/NTU202502416-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-30-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生化科學研究所-
dc.date.embargo-lift2027-08-30-
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2027-08-30
28.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved