Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99447
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐振哲zh_TW
dc.contributor.advisorCheng-Che Hsuen
dc.contributor.author江依珍zh_TW
dc.contributor.authorYi-Chen Chiangen
dc.date.accessioned2025-09-10T16:19:00Z-
dc.date.available2025-09-11-
dc.date.copyright2025-09-10-
dc.date.issued2025-
dc.date.submitted2025-07-31-
dc.identifier.citation1. D. Pappas, "Status and potential of atmospheric plasma processing of materials," Journal of Vacuum Science & Technology A, 29 (2)(2011).
2. A. M. Ali, M. A. A. Hassan, and B. I. Abdulkarim, "Thermal plasma: A technology for efficient treatment of industrial and wastewater sludge," J. Environ. Sci. Toxicol. Food. Technol, 10, 63-75 (2016).
3. K. Tachibana, "Current status of microplasma research," IEEJ Transactions on Electrical and Electronic Engineering, 1 (2), 145-155 (2006).
4. F. Iza, G. J. Kim, S. M. Lee, J. K. Lee, J. L. Walsh, Y. T. Zhang, and M. G. Kong, "Microplasmas: Sources, Particle Kinetics, and Biomedical Applications," Plasma Processes and Polymers, 5 (4), 322-344 (2008).
5. W. H. Chiang, D. Mariotti, R. M. Sankaran, J. G. Eden, and K. K. Ostrikov, "Microplasmas for Advanced Materials and Devices," Adv Mater, 32 (18), e1905508 (2020).
6. X. Yuan, J. Tang, and Y. Duan, "Microplasma technology and its applications in analytical chemistry," Applied Spectroscopy Reviews, 46 (7), 581-605 (2011).
7. R. Hippler, H. Kersten, M. Schmidt, and K. H. Schoenbach, "Low temperature plasmas," Eds R Hippler et al, Berlin: Wiley, 787(2008).
8. S. Matsusaka, "Control of particle charge by atmospheric pressure plasma jet (APPJ): A review," Advanced Powder Technology, 30 (12), 2851-2858 (2019).
9. K. H. Becker, K. H. Schoenbach, and J. G. Eden, "Microplasmas and applications," Journal of Physics D: Applied Physics, 39 (3), R55-R70 (2006).
10. P. J. Bruggeman, F. Iza, and R. Brandenburg, "Foundations of atmospheric pressure non-equilibrium plasmas," Plasma Sources Science and Technology, 26 (12)(2017).
11. L. Lin, and Q. Wang, "Microplasma: a new generation of technology for functional nanomaterial synthesis," Plasma Chemistry and Plasma Processing, 35, 925-962 (2015).
12. F. G. Bessoth, O. P. Naji, J. C. Eijkel, and A. Manz, "Towards an on-chip gas chromatograph: the development of a gas injector and a dc plasma emission detector," Journal of Analytical Atomic Spectrometry, 17 (8), 794-799 (2002).
13. C. Penache, M. Miclea, A. Bräuning-Demian, O. Hohn, S. Schössler, T. Jahnke, K. Niemax, and H. Schmidt-Böcking, "Characterization of a high-pressure microdischarge using diode laser atomic absorption spectroscopy," Plasma Sources Science and Technology, 11 (4), 476 (2002).
14. O. Sakai, Y. Kishimoto, and K. Tachibana, "Integrated coaxial-hollow micro dielectric-barrier-discharges for a large-area plasma source operating at around atmospheric pressure," Journal of Physics D: Applied Physics, 38 (3), 431 (2005).
15. K. V. Kozlov, H. E. Wagner, R. Brandenburg, and P. Michel, "Evolution of axial and radial distributions of the electric field in the microdischarge of barrier discharge in air," J. Phys. D: Appl. Phys, 34, 3164-3176 (2001).
16. Y. Xian, D. Zou, X. Lu, Y. Pan, and K. Ostrikov, "Feather-like He plasma plumes in surrounding N2 gas," Applied Physics Letters, 103 (9)(2013).
17. S.-J. Park, C. Herring, A. Mironov, J. Cho, and J. Eden, "25 W of average power at 172 nm in the vacuum ultraviolet from flat, efficient lamps driven by interlaced arrays of microcavity plasmas," Apl Photonics, 2 (4)(2017).
18. A. Kumar, N. Škoro, W. Gernjak, and N. Puač, "Cold atmospheric plasma technology for removal of organic micropollutants from wastewater—a review," The European Physical Journal D, 75 (11)(2021).
19. S. Samukawa, M. Hori, S. Rauf, K. Tachibana, P. Bruggeman, G. Kroesen, J. C. Whitehead, A. B. Murphy, A. F. Gutsol, and S. Starikovskaia, "The 2012 plasma roadmap," Journal of Physics D: Applied Physics, 45 (25), 253001 (2012).
20. T. Mieno, "Plasma Science and Technology: Progress in Physical States and Chemical Reactions ", BoD–Books on Demand, (2016), pp.
21. P. J. Bruggeman, M. J. Kushner, B. R. Locke, J. G. E. Gardeniers, W. G. Graham, D. B. Graves, R. C. H. M. Hofman-Caris, D. Maric, J. P. Reid, E. Ceriani, D. Fernandez Rivas, J. E. Foster, S. C. Garrick, Y. Gorbanev, S. Hamaguchi, F. Iza, H. Jablonowski, E. Klimova, J. Kolb, F. Krcma, P. Lukes, Z. Machala, I. Marinov, D. Mariotti, S. Mededovic Thagard, D. Minakata, E. C. Neyts, J. Pawlat, Z. L. Petrovic, R. Pflieger, S. Reuter, D. C. Schram, S. Schröter, M. Shiraiwa, B. Tarabová, P. A. Tsai, J. R. R. Verlet, T. von Woedtke, K. R. Wilson, K. Yasui, and G. Zvereva, "Plasma–liquid interactions: a review and roadmap," Plasma Sources Science and Technology, 25 (5)(2016).
22. R. Allan, and E. Hizal, presented at the Proceedings of the Institution of Electrical Engineers, 1974 (unpublished).
23. P. Bruggeman, and R. Brandenburg, "Atmospheric pressure discharge filaments and microplasmas: physics, chemistry and diagnostics," Journal of physics D: applied physics, 46 (46), 464001 (2013).
24. P. Vanraes, and A. Bogaerts, "Plasma physics of liquids—A focused review," Applied Physics Reviews, 5 (3)(2018).
25. N. Shirai, S. Uchida, and F. Tochikubo, "Influence of oxygen gas on characteristics of self-organized luminous pattern formation observed in an atmospheric dc glow discharge using a liquid electrode," Plasma Sources Science and Technology, 23 (5), 054010 (2014).
26. K. Tachibana, Y. Takekata, Y. Mizumoto, H. Motomura, and M. Jinno, "Analysis of a pulsed discharge within single bubbles in water under synchronized conditions," Plasma Sources Science and Technology, 20 (3), 034005 (2011).
27. F. Rezaei, P. Vanraes, A. Nikiforov, R. Morent, and N. De Geyter, "Applications of Plasma-Liquid Systems: A Review," Materials (Basel), 12 (17)(2019).
28. V. K. Gupta, I. Ali, T. A. Saleh, A. Nayak, and S. Agarwal, "Chemical treatment technologies for waste-water recycling—an overview," RSC advances, 2 (16), 6380-6388 (2012).
29. N. Cheremisinoff, "Handbook of water and wastewater treatment technologies. Butterworth-Heinemann," United States of America, (2002).
30. C. Xiong, Z. Jiang, and B. Hu, "Speciation of dissolved Fe (II) and Fe (III) in environmental water samples by micro-column packed with N-benzoyl-N-phenylhydroxylamine loaded on microcrystalline naphthalene and determination by electrothermal vaporization inductively coupled plasma-optical emission spectrometry," Analytica Chimica Acta, 559 (1), 113-119 (2006).
31. T. Kaneko, S. Takahashi, and R. Hatakeyama, in Ionic Liquids-New Aspects for the Future, IntechOpen, 2013.
32. R. A. Gilstrap Jr, "A colloidal nanoparticle form of indium tin oxide: system development and characterization ", Georgia Institute of Technology, (2009), pp.
33. J. P. Vareda, A. J. Valente, and L. Durães, "Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review," Journal of environmental management, 246, 101-118 (2019).
34. C. Zamora-Ledezma, D. Negrete-Bolagay, F. Figueroa, E. Zamora-Ledezma, M. Ni, F. Alexis, and V. H. Guerrero, "Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods," Environmental Technology & Innovation, 22, 101504 (2021).
35. X. Li, D. Z. Yang, H. Yuan, J. P. Liang, T. Xu, Z. L. Zhao, X. F. Zhou, L. Zhang, and W. C. Wang, "Detection of trace heavy metals using atmospheric pressure glow discharge by optical emission spectra," High Voltage, 4 (3), 228-233 (2019).
36. E. Marguí, R. Van Grieken, C. Fontàs, M. Hidalgo, and I. Queralt, "Preconcentration methods for the analysis of liquid samples by X-ray fluorescence techniques," Applied spectroscopy reviews, 45 (3), 179-205 (2010).
37. B. Bansod, T. Kumar, R. Thakur, S. Rana, and I. Singh, "A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms," Biosens Bioelectron, 94, 443-455 (2017).
38. M. Nodehi, M. Baghayeri, and A. Kaffash, "Application of BiNPs/MWCNTs-PDA/GC sensor to measurement of Tl (1) and Pb (II) using stripping voltammetry," Chemosphere, 301, 134701 (2022).
39. M. Xu, X. Wang, and X. Liu, "Detection of Heavy Metal Ions by Ratiometric Photoelectric Sensor," J Agric Food Chem, 70 (37), 11468-11480 (2022).
40. R. García, and A. Báez, "Atomic absorption spectrometry (AAS)," Atomic absorption spectroscopy, 1, 1-13 (2012).
41. P. Pohl, "Hydride generation–recent advances in atomic emission spectrometry," TrAC Trends in Analytical Chemistry, 23 (2), 87-101 (2004).
42. C. Tao, C. Li, Y. Li, H. Wang, Y. Zhang, Z. Zhou, X. Mao, Z. Ma, and D. Tian, "A UV digital micromirror spectrometer for dispersive AFS: spectral interference in simultaneous determination of Se and Pb," Journal of Analytical Atomic Spectrometry, 33 (12), 2098-2106 (2018).
43. E. Marguí, B. Zawisza, and R. Sitko, "Trace and ultratrace analysis of liquid samples by X-ray fluorescence spectrometry," TrAC Trends in Analytical Chemistry, 53, 73-83 (2014).
44. K. Kocot, B. Zawisza, E. Marguí, I. Queralt, M. Hidalgo, and R. Sitko, "Dispersive micro solid-phase extraction using multiwalled carbon nanotubes combined with portable total-reflection X-ray fluorescence spectrometry for the determination of trace amounts of Pb and Cd in water samples," Journal of Analytical Atomic Spectrometry, 28 (5), 736-742 (2013).
45. Y. GadelHak, S. H. M. Hafez, H. F. M. Mohamed, E. E. Abdel-Hady, and R. Mahmoud, "Nanomaterials-modified disposable electrodes and portable electrochemical systems for heavy metals detection in wastewater streams: A review," Microchemical Journal, 193(2023).
46. P. Jia, K. Yang, J. Hou, Y. Cao, X. Wang, and L. Wang, "Ingenious dual-emitting Ru@ UiO-66-NH2 composite as ratiometric fluorescence sensor for detection of mercury in aqueous," Journal of Hazardous Materials, 408, 124469 (2021).
47. W. Li, X. Zhang, X. Hu, Y. Shi, Z. Li, X. Huang, W. Zhang, D. Zhang, X. Zou, and J. Shi, "A smartphone-integrated ratiometric fluorescence sensor for visual detection of cadmium ions," Journal of Hazardous Materials, 408, 124872 (2021).
48. S. Muhammad-Aree, and S. Teepoo, "On-site detection of heavy metals in wastewater using a single paper strip integrated with a smartphone," Anal Bioanal Chem, 412 (6), 1395-1405 (2020).
49. Y. Zhang, J. Liu, X. Mao, G. Chen, and D. Tian, "Review of miniaturized and portable optical emission spectrometry based on microplasma for elemental analysis," TrAC Trends in Analytical Chemistry, 144(2021).
50. X. Liu, K. Yu, H. Zhang, X. Zhang, H. Zhang, J. Zhang, J. Gao, N. Li, and J. Jiang, "A portable electromagnetic heating-microplasma atomic emission spectrometry for direct determination of heavy metals in soil," Talanta, 219, 121348 (2020).
51. Y. Cai, S.-H. Li, S. Dou, Y.-L. Yu, and J.-H. Wang, "Metal carbonyl vapor generation coupled with dielectric barrier discharge to avoid plasma quench for optical emission spectrometry," Analytical Chemistry, 87 (2), 1366-1372 (2015).
52. M. Li, K. Li, L. He, X. Zeng, X. Wu, X. Hou, and X. Jiang, "Point discharge microplasma optical emission spectrometer: hollow electrode for efficient volatile hydride/mercury sample introduction and 3D-printing for compact instrumentation," Analytical chemistry, 91 (11), 7001-7006 (2019).
53. C. Yang, D. He, Z. Zhu, H. Peng, Z. Liu, G. Wen, J. Bai, H. Zheng, S. Hu, and Y. Wang, "Battery-operated atomic emission analyzer for waterborne arsenic based on atmospheric pressure glow discharge excitation source," Analytical Chemistry, 89 (6), 3694-3701 (2017).
54. X. Peng, and Z. Wang, "Ultrasensitive determination of selenium and arsenic by modified helium atmospheric pressure glow discharge optical emission spectrometry coupled with hydride generation," Analytical chemistry, 91 (15), 10073-10080 (2019).
55. T. Cserfalvi, and P. Mezei, "Direct solution analysis by glow discharge: electrolyte-cathode discharge spectrometry," Journal of Analytical Atomic Spectrometry, 9 (3), 345-349 (1994).
56. T. Cserfalvi, P. Mezei, and P. Apai, "Emission studies on a glow discharge in atmospheric pressure air using water as a cathode," Journal of Physics D: Applied Physics, 26 (12), 2184 (1993).
57. K. Greda, K. Swiderski, P. Jamroz, and P. Pohl, "Flowing Liquid Anode Atmospheric Pressure Glow Discharge as an Excitation Source for Optical Emission Spectrometry with the Improved Detectability of Ag, Cd, Hg, Pb, Tl, and Zn," Anal Chem, 88 (17), 8812-8820 (2016).
58. D. Van Khoai, A. Kitano, T. Yamamoto, Y. Ukita, and Y. Takamura, "Development of high sensitive liquid electrode plasma–Atomic emission spectrometry (LEP-AES) integrated with solid phase pre-concentration," Microelectronic engineering, 111, 343-347 (2013).
59. Y. Zhu, R. E. Russo, and G. C. Y. Chan, "Temporal characterization of fundamental plasma parameters in pulsed liquid electrode plasma (LEP) optical emission spectrometry," Spectrochimica Acta Part B: Atomic Spectroscopy, 179(2021).
60. C. Y. Wang, and C. C. Hsu, "Online, Continuous, and Interference-Free Monitoring of Trace Heavy Metals in Water Using Plasma Spectroscopy Driven by Actively Modulated Pulsed Power," Environ Sci Technol, 53 (18), 10888-10896 (2019).
61. R. Manjusha, R. Shekhar, and S. Jaikumar, "Direct determination of impurities in high purity chemicals by electrolyte cathode discharge atomic emission spectrometry (ELCAD-AES)," Microchemical Journal, 145, 301-307 (2019).
62. Z. Wang, R. Gai, L. Zhou, and Z. Zhang, "Design modification of a solution-cathode glow discharge-atomic emission spectrometer for the determination of trace metals in titanium dioxide," Journal of Analytical Atomic Spectrometry, 29 (11), 2042-2049 (2014).
63. C. D. Quarles Jr, J. Gonzalez, I. Choi, J. Ruiz, X. Mao, R. K. Marcus, and R. E. Russo, "Liquid sampling-atmospheric pressure glow discharge optical emission spectroscopy detection of laser ablation produced particles: A feasibility study," Spectrochimica Acta Part B: Atomic Spectroscopy, 76, 190-196 (2012).
64. M. Jin, H. Yuan, B. Liu, J. Peng, L. Xu, and D. Yang, "Review of the distribution and detection methods of heavy metals in the environment," Anal Methods, 12 (48), 5747-5766 (2020).
65. "<放流水標準第二條附表一至附表十一、附表十四、附表十五修正總說明.pdf>,"
66. "<金屬回收技術.pdf>,"
67. "<水中金屬及微量元素檢測方法-感應耦合電漿原子發射光譜法 (NIEA W311.54C).pdf>,"
68. "<電鍍製程重金屬廢水離子交換處理技術及案例介紹 ti080-2.pdf>,"
69. "<ICP操作與前處理概述.pdf>,"
70. Y. Morishige, and A. Kimura, "Ionization interference in inductively coupled plasma-optical emission spectroscopy," SEI TECHNICAL REVIEW-ENGLISH EDITION-, 66, 106 (2008).
71. E. Abad-Peña, M. Edelia Villanueva-Tagle, and M. Simeón Pomares-Alfonso, "Revisiting the sodium and calcium matrix effects in inductively coupled plasma optical emission spectrometry. Excitation mechanisms by inelastic collisions," Spectroscopy Letters, 51 (8), 414-421 (2018).
72. P. Razpotnik, B. Budic, and M. Veber, "Effects of matrix elements on the analyte emission signals in inductively coupled plasma optical emission spectrometry using a thermospray sample introduction system," Applied Spectroscopy, 56 (8), 1000-1005 (2002).
73. G. C. Y. Chan, and W.-T. Chan, "Plasma-related matrix effects in inductively coupled plasma—atomic emission spectrometry by group I and group II matrix-elements," Spectrochimica Acta Part B: Atomic Spectroscopy, 58 (7), 1301-1317 (2003).
74. Z. N. Zhang, and K. Wagatsuma, "Matrix effects of easily ionizable elements and nitric acid in high-power microwave-induced nitrogen plasma atomic emission spectrometry," Spectrochimica Acta Part B-Atomic Spectroscopy, 57 (8), 1247-1257 (2002).
75. N. A. Sirotkin, and V. A. Titov, "Transfer of Liquid Cathode Components to the Gas Phase and Their Effect on the Parameters of the Atmospheric Pressure DC Discharge," Plasma Chemistry and Plasma Processing, 37 (6), 1475-1490 (2017).
76. O. V. Pelipasov, and E. V. Polyakova, "Matrix effects in atmospheric pressure nitrogen microwave induced plasma optical emission spectrometry," Journal of Analytical Atomic Spectrometry, 35 (7), 1389-1394 (2020).
77. C. Agatemor, and D. Beauchemin, "Matrix effects in inductively coupled plasma mass spectrometry: a review," Anal Chim Acta, 706 (1), 66-83 (2011).
78. B. Wu, M. Zoriy, Y. Chen, and J. S. Becker, "Imaging of nutrient elements in the leaves of Elsholtzia splendens by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)," Talanta, 78 (1), 132-137 (2009).
79. J. S. Becker, R. Dietrich, A. Matusch, D. Pozebon, and V. Dressler, "Quantitative images of metals in plant tissues measured by laser ablation inductively coupled plasma mass spectrometry," Spectrochimica Acta Part B: Atomic Spectroscopy, 63 (11), 1248-1252 (2008).
80. M. A. Aguirre, N. Kovachev, B. Almagro, M. Hidalgo, and A. Canals, "Compensation for matrix effects on ICP-OES by on-line calibration methods using a new multi-nebulizer based on Flow Blurring® technology," Journal of Analytical Atomic Spectrometry, 25 (11), 1724-1732 (2010).
81. S. Buerger, L. Riciputi, and D. Bostick, "Determination of impurities in uranium matrices by time-of-flight ICP-MS using matrix-matched method," Journal of Radioanalytical and Nuclear Chemistry, 274 (3), 491-505 (2007).
82. W. B. Jones, G. L. Donati, C. P. Calloway Jr, and B. T. Jones, "Standard dilution analysis," Analytical chemistry, 87 (4), 2321-2327 (2015).
83. G. L. Scheffler, and D. Pozebon, "Internal standardization in axially viewed inductively coupled plasma optical emission spectrometry (ICP OES) combined with pneumatic nebulization and aerosol desolvation," Analytical Methods, 5 (17)(2013).
84. J. Andrade, J. Terán-Baamonde, R. Soto-Ferreiro, and A. Carlosena, "Interpolation in the standard additions method," Analytica Chimica Acta, 780, 13-19 (2013).
85. F. King, in Nuclear corrosion science and engineering, Elsevier, 2012, pp. 77-103.
86. M. Pourbaix, "Atlas of electrochemical equilibria in aqueous solutions," NACE, (1966).
87. A. T. Al-Hinai, M. H. Al-Hinai, and J. Dutta, "Application of Eh-pH diagram for room temperature precipitation of zinc stannate microcubes in an aqueous media," Materials research bulletin, 49, 645-650 (2014).
88. M. K. Sinha, and W. Purcell, "Reducing agents in the leaching of manganese ores: A comprehensive review," Hydrometallurgy, 187, 168-186 (2019).
89. B. C. Huayhuas-Chipana, J. C. M. Gomero, and M. D. P. T. Sotomayor, "Nanostructured Screen-Printed Electrodes Modified with Self-Assembled Monolayers for Determination of Metronidazole in Different Matrices," Journal of the Brazilian Chemical Society, (2014).
90. S. Arribas Jimeno, J. HERNÁNDEZ MÉNDEZ, and F. Lucena Conde, "Química analítica cualitativa ", Ediciones Paraninfo, SA, (2002), pp.
91. C. Nau-Hix, T. M. Holsen, and S. M. Thagard, "Influence of solution electrical conductivity and ionic composition on the performance of a gas–liquid pulsed spark discharge reactor for water treatment," Journal of Applied Physics, 130 (12)(2021).
92. Y. Ozaki, Y. Morisawa, A. Ikehata, and N. Higashi, "Far-Ultraviolet Spectroscopy in the Solid and Liquid States: A Review," Applied Spectroscopy, 66 (1), 1-25 (2012).
93. X. Zhou, P. Hu, C. Ma, S. Huang, and J. Sun, "SO3 and sulfuric acid (H2SO4) aerosol detection by UV absorption spectroscopy of liquid H2SO4 solution," Optik, 265(2022).
94. L. A. Mendes, L. C. Vasconcelos, M. M. P. Fontes, G. S. Martins, A. D. S. Bergamin, M. A. Silva, R. R. A. Silva, T. V. Oliveira, V. G. L. Souza, M. Ferreira, R. R. Teixeira, and R. P. Lopes, "Herbicide and Cytogenotoxic Activity of Inclusion Complexes of Psidium gaudichaudianum Leaf Essential Oil and beta-Caryophyllene on 2-Hydroxypropyl-beta-cyclodextrin," Molecules, 28 (15)(2023).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99447-
dc.description.abstract水溶液電漿(Solution Plasma)由電漿與水溶液交互作用產生,伴隨多種化學反應,近年來因其在各領域中的廣泛應用而備受關注。本研究利用水中放電方式產生水溶液電漿,並搭配微型電腦同步控制高壓脈衝模組與光譜擷取系統,成功建立一套可穩定獲取電漿放光之重金屬檢測平台。研究內容涵蓋四個主軸,分別為電漿操作參數之優化、酸化條件對訊號影響之探討、基質干擾效應分析,以及重金屬濃度之定量分析與預測。
第一部分為電漿操作參數之優化,針對操作電壓、脈衝時間與脈衝間隔時間進行分析,並探討調控上述參數對四種重金屬放光訊號之影響。進一步針對各金屬之最佳操作條件,解析其影響機制,增進對金屬激發行為之理解。
第二部分為探討酸化條件對檢測訊號之影響,選用硝酸、鹽酸與硫酸作為酸化劑,並搭配三種酸化程度:0.01 M、0.16 M、0.48 M,比較不同酸化濃度與陰離子特性對光譜與電訊號之影響。綜合金屬放光強度、訊號穩定性與偵測極限等指標,最終選定0.16 M硝酸作為最佳酸化條件。
第三部分為基質干擾效應之分析,選用放流水中常見之鈉與鈣進行系統性探討。於相同導電度條件下,比較硝酸與硝酸鈉溶液之電漿與光譜與電訊號行為,並建立基質校正因子回歸模型,以量化基質干擾對各重金屬訊號之影響,進一步分析不同陰離子:硝酸根、硫酸根、氯離子對干擾程度之差異。
第四部分進行重金屬濃度之定量分析與預測,基於優化後之操作參數與酸化條件,建立重金屬線性回歸模型,並應用於實際工廠廢水樣品。由於水樣中基質干擾嚴重,經基質校正流程後,各金屬回收率均符合法規要求,驗證本系統於複雜水樣中具備良好之準確性與穩定性。
zh_TW
dc.description.abstractSolution plasma is generated through the interaction between plasma and aqueous solutions, accompanied by a variety of chemical reactions. In recent years, it has attracted considerable attention due to its broad applications across multiple fields. In this study, solution plasma was generated via underwater discharge, and a heavy metal detection platform capable of stably acquiring plasma emission and spectral information was successfully established by integrating a microcontroller-synchronized high-voltage pulse module with a spectral acquisition system. The scope of this study covers four main aspects: optimization of plasma operating parameters, investigation of acidification environment effects on signal behavior, analysis of matrix interference effects, and quantitative analysis and prediction of heavy metal concentrations.
The first part focuses on the optimization of plasma operating parameters, analyzing the effects of operating voltage, pulse duration, and pulse interval. The influence of these parameters on the emission signals of four heavy metals was systematically investigated. Furthermore, the optimal operating conditions for each metal were identified, and the underlying mechanisms were analyzed to enhance the understanding of metal excitation behavior.
The second part investigates the effects of the acidification environment on detection signals, using nitric acid, hydrochloric acid, and sulfuric acid as acidifying agents, combined with three acidification levels: 0.01 M, 0.16 M, and 0.48 M. The influence of different acid concentrations and anion characteristics on spectral and electrical signals was compared, and the relationship between the platinum electrode–optical fiber distance and signal performance was further explored. Based on emission intensity, signal stability, and detection limit indicators, 0.16 M nitric acid was ultimately selected as the optimal acidification condition.
The third part focuses on the analysis of matrix interference effects, using sodium and calcium that common constituents in wastewater as target analytes. Under identical conductivity conditions, the plasma and spectral behaviors of nitric acid and sodium nitrate solutions were compared. A matrix correction factor regression model was established to quantify the impact of matrix interference on the emission signals of each heavy metal. Furthermore, the differences in interference effects among different anions (nitrate, sulfate, and chloride) were systematically analyzed.
The fourth part focuses on the quantitative analysis and prediction of heavy metal concentrations. Based on the optimized operating parameters and acidification conditions, linear regression models for heavy metals were established and applied to actual industrial wastewater samples. After applying the matrix correction process, the recovery rates of all metals met regulatory requirements, verifying that the developed system exhibits excellent accuracy and stability in complex aqueous samples.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:19:00Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-10T16:19:00Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 iii
ABSTRACT v
目次 vii
圖次 x
表次 xvii
第 1 章 緒論 1
1.1 前言 1
1.2 研究動機與目標 2
1.3 論文總覽 3
第 2 章 文獻探討 5
2.1 電漿系統概論 5
2.1.1 電漿產生機制與反應 5
2.1.2 電漿系統之分類 8
2.1.3 微電漿系統概論 10
2.2 水溶液電漿系統 16
2.2.1 水溶液電漿系統之架構 17
2.2.2 水溶液電漿系統之應用 22
2.3 重金屬檢測技術與環境法規彙整 25
2.3.1 現行重金屬分析技術 25
2.3.2 微電漿光譜分析技術 33
2.3.3 重金屬排放標準與廢水前處理流程 41
2.4 水樣分析中基質干擾效應 46
2.4.1 基質干擾之機制與影響 46
2.4.2 基質干擾之校正技術 52
第 3 章 實驗設備與架構 57
3.1 脈衝式電源驅動水溶液電漿之架構 57
3.1.1 水溶液電漿產生單元 58
3.1.2 微型電腦與光譜傳輸架構 58
3.1.3 調控式脈衝電源操作模組 59
3.1.4 光纖與電極距離之調控 60
3.2 實驗條件 61
3.2.1 實驗藥品 61
3.2.2 實驗參數 62
3.3 檢測設備 64
3.3.1 溶液性質量測 64
3.3.2 電漿電性量測 64
3.3.3 電漿光學量測 66
3.3.4 水樣光吸收量測 68
3.4 光譜數據分析 69
第 4 章 實驗結果與討論 75
4.1 不同酸化程度對放光訊號之研究 76
4.1.1 電漿操作條件之優化分析 76
4.1.2 操作條件與電化學反應之關聯 83
4.1.3 酸化程度之電訊號分析 88
4.1.4 酸化程度對重金屬訊號之影響 91
4.2 不同酸化環境對檢測訊號之研究 95
4.2.1 酸種類對光譜與光吸收特性之比較 95
4.2.2 收光間距對光吸收變化之分析 99
4.2.3 酸化環境對重金屬訊號之影響 102
4.3 基質干擾於水溶液電漿系統之研究 109
4.3.1 不同基質之電漿光譜分析 109
4.3.2 不同基質之電訊號分析 114
4.3.3 基質對重金屬訊號之影響 117
4.4 重金屬訊號定量分析 124
4.4.1 重金屬訊號檢測之操作參數統整 124
4.4.2 重金屬訊號與濃度之線性回歸 127
4.4.3 真實廢水之檢測與校正 131
第 5 章 結論與未來展望 135
參考文獻 139
-
dc.language.isozh_TW-
dc.subject電漿操作參數優化zh_TW
dc.subject基質干擾效應zh_TW
dc.subject校正因子回歸模型zh_TW
dc.subject酸化環境zh_TW
dc.subject電漿光譜分析zh_TW
dc.subject廢水分析zh_TW
dc.subject水溶液電漿zh_TW
dc.subject重金屬檢測zh_TW
dc.subjectplasma spectroscopy analysisen
dc.subjectwastewater analysisen
dc.subjectcorrection factor regression modelen
dc.subjectmatrix interference effecten
dc.subjectacidification environmenten
dc.subjectplasma operating parameter optimizationen
dc.subjectheavy metal detectionen
dc.subjectSolution plasmaen
dc.title微電漿光譜法於重金屬檢測之酸化環境調控與基質干擾效應之研究zh_TW
dc.titleAcidic Condition Control and Matrix Interference in Heavy Metal Detection Using Solution Plasma Optical Emission Spectroscopyen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee謝之真;林致廷zh_TW
dc.contributor.oralexamcommitteeChih-Chen Hsieh ;Chih-Ting Linen
dc.subject.keyword水溶液電漿,重金屬檢測,電漿操作參數優化,酸化環境,基質干擾效應,校正因子回歸模型,廢水分析,電漿光譜分析,zh_TW
dc.subject.keywordSolution plasma,heavy metal detection,plasma operating parameter optimization,acidification environment,matrix interference effect,correction factor regression model,wastewater analysis,plasma spectroscopy analysis,en
dc.relation.page150-
dc.identifier.doi10.6342/NTU202503154-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-04-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
dc.date.embargo-lift2030-07-31-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2030-07-31
7.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved